1
|
Perrone MG, Filieri S, Azzariti A, Armenise D, Baldelli OM, Liturri A, Sardanelli AM, Ferorelli S, Miciaccia M, Scilimati A. Exosomes in Ovarian Cancer: Towards Precision Oncology. Pharmaceuticals (Basel) 2025; 18:371. [PMID: 40143147 PMCID: PMC11946531 DOI: 10.3390/ph18030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Identification of targetable biomarkers to improve early disease detection and overall patient outcomes is becoming an urgent need in clinical oncology. Ovarian cancer (OC) has one of the highest mortality rates among gynecological cancers. It is asymptomatic and almost always diagnosed at an advanced stage (III or IV), leading to a 5-year survival rate of approximately 35%. Methods: Current therapeutic approaches for OC are very limited and mainly consist of cytoreductive surgery and cisplatin plus taxane-based chemotherapy. No gender and tumor specific biomarkers are known. Exosomes, lipid bilayer vesicles of endocytic origin secreted by most cell types, represent sources of information for their involvement in the onset and progression of many diseases. Hence, research on exosome contents as tools and targets in precise oncology therapy provides knowledge essential to improving diagnosis and prognosis of the disease. Results: This review attempts to give an overview of how exosomes are implicated in ovarian carcinoma pathogenesis to trigger further cancer exosome-based investigations aimed at developing ovarian cancer fine-tuning diagnostic methodologies. Conclusions: It is essential to investigate exosome-based cancer drugs to advance understanding, improve treatment plans, create personalized strategies, ensure safety, and speed up clinical translation to increase patients' overall survival and quality of life. Papers published in PubMed and Web of Science databases in the last five years (2020-2024) were used as a bibliographic source.
Collapse
Affiliation(s)
- Maria Grazia Perrone
- Research Laboratory for Woman and Child Health, Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (M.G.P.); (D.A.); (O.M.B.); (A.L.); (S.F.)
| | - Silvana Filieri
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy; (S.F.); (A.M.S.)
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V. O. Flacco, 65, 70124 Bari, Italy;
| | - Domenico Armenise
- Research Laboratory for Woman and Child Health, Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (M.G.P.); (D.A.); (O.M.B.); (A.L.); (S.F.)
| | - Olga Maria Baldelli
- Research Laboratory for Woman and Child Health, Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (M.G.P.); (D.A.); (O.M.B.); (A.L.); (S.F.)
| | - Anselma Liturri
- Research Laboratory for Woman and Child Health, Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (M.G.P.); (D.A.); (O.M.B.); (A.L.); (S.F.)
| | - Anna Maria Sardanelli
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy; (S.F.); (A.M.S.)
| | - Savina Ferorelli
- Research Laboratory for Woman and Child Health, Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (M.G.P.); (D.A.); (O.M.B.); (A.L.); (S.F.)
| | - Morena Miciaccia
- Research Laboratory for Woman and Child Health, Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (M.G.P.); (D.A.); (O.M.B.); (A.L.); (S.F.)
| | - Antonio Scilimati
- Research Laboratory for Woman and Child Health, Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (M.G.P.); (D.A.); (O.M.B.); (A.L.); (S.F.)
| |
Collapse
|
2
|
Solidoro R, Centonze A, Miciaccia M, Baldelli OM, Armenise D, Ferorelli S, Perrone MG, Scilimati A. Fluorescent imaging probes for in vivo ovarian cancer targeted detection and surgery. Med Res Rev 2024; 44:1800-1866. [PMID: 38367227 DOI: 10.1002/med.22027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/05/2023] [Accepted: 01/25/2024] [Indexed: 02/19/2024]
Abstract
Ovarian cancer is the most lethal gynecological cancer, with a survival rate of approximately 40% at five years from the diagno. The first-line treatment consists of cytoreductive surgery combined with chemotherapy (platinum- and taxane-based drugs). To date, the main prognostic factor is related to the complete surgical resection of tumor lesions, including occult micrometastases. The presence of minimal residual diseases not detected by visual inspection and palpation during surgery significantly increases the risk of disease relapse. Intraoperative fluorescence imaging systems have the potential to improve surgical outcomes. Fluorescent tracers administered to the patient may support surgeons for better real-time visualization of tumor lesions during cytoreductive procedures. In the last decade, consistent with the discovery of an increasing number of ovarian cancer-specific targets, a wide range of fluorescent agents were identified to be employed for intraoperatively detecting ovarian cancer. Here, we present a collection of fluorescent probes designed and developed for fluorescence-guided ovarian cancer surgery. Original articles published between 2011 and November 2022 focusing on fluorescent probes, currently under preclinical and clinical investigation, were searched in PubMed. The keywords used were targeted detection, ovarian cancer, fluorescent probe, near-infrared fluorescence, fluorescence-guided surgery, and intraoperative imaging. All identified papers were English-language full-text papers, and probes were classified based on the location of the biological target: intracellular, membrane, and extracellular.
Collapse
Affiliation(s)
- Roberta Solidoro
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Antonella Centonze
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Morena Miciaccia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Olga Maria Baldelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Domenico Armenise
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | - Savina Ferorelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| | | | - Antonio Scilimati
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Bari, Italy
| |
Collapse
|
3
|
Solidoro R, Miciaccia M, Bonaccorso C, Fortuna CG, Armenise D, Centonze A, Ferorelli S, Vitale P, Rodrigues P, Guimarães R, de Oliveira A, da Paz M, Rangel L, Sathler PC, Altomare A, Perrone MG, Scilimati A. A further pocket or conformational plasticity by mapping COX-1 catalytic site through modified-mofezolac structure-inhibitory activity relationships and their antiplatelet behavior. Eur J Med Chem 2024; 266:116135. [PMID: 38219659 DOI: 10.1016/j.ejmech.2024.116135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Cyclooxygenase enzymes have distinct roles in cardiovascular, neurological, and neurodegenerative disease. They are differently expressed in different type of cancers. Specific and selective COXs inhibitors are needed to be used alone or in combo-therapies. Fully understand the differences at the catalytic site of the two cyclooxygenase (COX) isoforms is still opened to investigation. Thus, two series of novel compounds were designed and synthesized in fair to good yields using the highly selective COX-1 inhibitor mofezolac as the lead compound to explore a COX-1 zone formed by the polar residues Q192, S353, H90 and Y355, as well as hydrophobic amino acids I523, F518 and L352. According to the structure of the COX-1:mofezolac complex, hydrophobic amino acids appear to have free volume eventually accessible to the more sterically hindering groups than the methoxy linked to the phenyl groups of mofezolac, in particular the methoxyphenyl at C4-mofezolac isoxazole. Mofezolac bears two methoxyphenyl groups linked to C3 and C4 of the isoxazole core ring. Thus, in the novel compounds, one or both methoxy groups were replaced by the higher homologous ethoxy, normal and isopropyl, normal and tertiary butyl, and phenyl and benzyl. Furthermore, a major difference between the two sets of compounds is the presence of either a methyl or acetic moiety at the C5 of the isoxazole. Among the C5-methyl series, 12 (direct precursor of mofezolac) (COX-1 IC50 = 0.076 μM and COX-2 IC50 = 0.35 μM) and 15a (ethoxy replacing the two methoxy groups in 12; COX-1 IC50 = 0.23 μM and COX-2 IC50 > 50 μM) were still active and with a Selectivity Index (SI = COX-2 IC50/COX-1 IC50) = 5 and 217, respectively. The other symmetrically substituted alkoxyphenyl moietis were inactive at 50 μM final concentration. Among the asymmetrically substituted, only the 16a (methoxyphenyl on C3-isoxazole and ethoxyphenyl on C4-isoxazole) and 16b (methoxyphenyl on C3-isoxazole and n-propoxyphenyl on C4-isoxazole) were active with SI = 1087 and 38, respectively. Among the set of compounds with the acetic moiety, structurally more similar to mofezolac (SI = 6329), SI ranged between 1.4 and 943. It is noteworthy that 17b (n-propoxyphenyl on both C3- and C4-isoxazole) were found to be a COX-2 slightly selective inhibitor with SI = 0.072 (COX-1 IC50 > 50 μM and COX-2 IC50 = 3.6 μM). Platelet aggregation induced by arachidonic acid (AA) can be in vitro suppressed by the synthesized compounds, without affecting of the secondary hemostasia, confirming the biological effect provided by the selective inhibition of COX-1. A positive profile of hemocompatibility in relation to erythrocyte and platelet toxicity was observed. Additionally, these compounds exhibited a positive profile of hemocompatibility and reduced cytotoxicity. Quantitative structure activity relationship (QSAR) models and molecular modelling (Ligand and Structure based virtual screening procedures) provide key information on the physicochemical and pharmacokinetic properties of the COX-1 inhibitors as well as new insights into the mechanisms of inhibition that will be used to guide the development of more effective and selective compounds. X-ray analysis was used to confirm the chemical structure of 14 (MSA17).
Collapse
Affiliation(s)
- Roberta Solidoro
- Research Laboratory for Woman and Child Health, Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Morena Miciaccia
- Research Laboratory for Woman and Child Health, Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Carmela Bonaccorso
- Laboratory of Molecular Modelling and Heterocyclic Compounds ModHet, Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Cosimo Gianluca Fortuna
- Laboratory of Molecular Modelling and Heterocyclic Compounds ModHet, Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Domenico Armenise
- Research Laboratory for Woman and Child Health, Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Antonella Centonze
- Research Laboratory for Woman and Child Health, Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Savina Ferorelli
- Research Laboratory for Woman and Child Health, Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Paola Vitale
- Research Laboratory for Woman and Child Health, Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Pryscila Rodrigues
- Laboratory of Experimental Hemostasis, Carlos Chagas Filho Avenue, 373, 21941599, Rio de Janeiro, Brazil
| | - Renilda Guimarães
- Laboratory of Experimental Hemostasis, Carlos Chagas Filho Avenue, 373, 21941599, Rio de Janeiro, Brazil
| | - Alana de Oliveira
- Laboratory of Experimental Hemostasis, Carlos Chagas Filho Avenue, 373, 21941599, Rio de Janeiro, Brazil
| | - Mariana da Paz
- Laboratory of Tumoral Biochemistry, Faculty of Pharmacy, Federal University of Rio de Janeiro, Carlos Chagas Filho Avenue, 373, 21941599, Rio de Janeiro, Brazil
| | - Luciana Rangel
- Laboratory of Tumoral Biochemistry, Faculty of Pharmacy, Federal University of Rio de Janeiro, Carlos Chagas Filho Avenue, 373, 21941599, Rio de Janeiro, Brazil
| | - Plínio Cunha Sathler
- Laboratory of Experimental Hemostasis, Carlos Chagas Filho Avenue, 373, 21941599, Rio de Janeiro, Brazil
| | - Angela Altomare
- Institute of Crystallography-CNR, Via Amendola 122/o, 70126, Bari, Italy
| | - Maria Grazia Perrone
- Research Laboratory for Woman and Child Health, Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy.
| | - Antonio Scilimati
- Research Laboratory for Woman and Child Health, Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
4
|
Zalfa F, Perrone MG, Ferorelli S, Laera L, Pierri CL, Tolomeo A, Dimiccoli V, Perrone G, De Grassi A, Scilimati A. Genome-Wide Identification and Validation of Gene Expression Biomarkers in the Diagnosis of Ovarian Serous Cystadenocarcinoma. Cancers (Basel) 2022; 14:cancers14153764. [PMID: 35954427 PMCID: PMC9367275 DOI: 10.3390/cancers14153764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Despite ovarian serous adenocarcinoma (OSCA) is a high-incidence type of cancer, limited molecular screening methods are available and the diagnosis mostly occurs at a late stage. The aim of this study is screening the potential of gene expression for identifying OSCA-specific molecular biomarkers for improving diagnosis. A genome-wide survey was performed on high-throughput RNA-sequencing experiments on hundreds ovarian cancer samples and healthy ovarian tissues, providing a number of putative OSCA biomarkers, which were then validated on an independent sample set and using a different RNA-quantification technology. Combinations of gene expression biomarkers were identified, which showed high accuracy in discriminating OSCA tissues from the normal counterpart and from other tumor types. The detected biomarkers can improve the molecular diagnosis of OSCA on tissue samples and are, in principle, translatable to the analysis of liquid biopsies. Abstract Ovarian cancer is the second most prevalent gynecologic malignancy, and ovarian serous cystadenocarcinoma (OSCA) is the most common and lethal subtype of ovarian cancer. Current screening methods have strong limits on early detection, and the majority of OSCA patients relapse. In this work, we developed and cross-validated a method for detecting gene expression biomarkers able to discriminate OSCA tissues from healthy ovarian tissues and other cancer types with high accuracy. A preliminary ranking-based approach was applied, resulting in a panel of 41 over-expressed genes in OSCA. The RNA quantity gene expression of the 41 selected genes was then cross-validated by using NanoString nCounter technology. Moreover, we showed that the RNA quantity of eight genes (ADGRG1, EPCAM, ESRP1, MAL2, MYH14, PRSS8, ST14 and WFDC2) discriminates each OSCA sample from each healthy sample in our data set with sensitivity of 100% and specificity of 100%. For the other three genes (MUC16, PAX8 and SOX17) in combination, their RNA quantity may distinguish OSCA from other 29 tumor types.
Collapse
Affiliation(s)
- Francesca Zalfa
- Predictive Molecular Diagnostic Unit, Pathology Department, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy;
- Microscopic and Ultrastructural Anatomy Unit, CIR, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Maria Grazia Perrone
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (M.G.P.); (S.F.)
| | - Savina Ferorelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (M.G.P.); (S.F.)
| | - Luna Laera
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari “Aldo Moro”, 70125 Bari, Italy; (L.L.); (C.L.P.)
| | - Ciro Leonardo Pierri
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari “Aldo Moro”, 70125 Bari, Italy; (L.L.); (C.L.P.)
| | - Anna Tolomeo
- Department of ITELPHARMA, ITEL Telecomunicazioni S.R.L., 70037 Ruvo di Puglia, Italy; (A.T.); (V.D.)
| | - Vincenzo Dimiccoli
- Department of ITELPHARMA, ITEL Telecomunicazioni S.R.L., 70037 Ruvo di Puglia, Italy; (A.T.); (V.D.)
| | - Giuseppe Perrone
- Pathology Department, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy;
- Pathology Research Unit, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Anna De Grassi
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari “Aldo Moro”, 70125 Bari, Italy; (L.L.); (C.L.P.)
- Correspondence: (A.D.G.); (A.S.)
| | - Antonio Scilimati
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (M.G.P.); (S.F.)
- Correspondence: (A.D.G.); (A.S.)
| |
Collapse
|
5
|
Anti-Inflammatory Potentials of β-Ketoester Derivatives of N-Ary Succinimides: In Vitro, In Vivo, and Molecular Docking Studies. J CHEM-NY 2022. [DOI: 10.1155/2022/8040322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inflammation, being a well-known and complex pathological condition, is always a challenge to the human health. This research work was designed for a rationale-based anti-inflammatory study on β-ketoester derivatives of N-ary succinimides. The compounds (A–D) were synthesized by organocatalytic Michael addition. The compounds were initially screened for in vitro 5-lipoxygenase (5-LOX) and cyclooxygenase (COX-2) assays. For the in vivo activity, carrageenan-induced paw edema and arachidonic acid-induced ear edema tests were used. Furthermore, different in vivo pathways such as prostaglandins E2, histamine, leukotriene, and bradykinin were studied. The results were supported with molecular docking studies. Among the compounds, D (ethyl 1-(1-benzyl-2,5-dioxopyrrolidin-3-yl)-2-oxocyclohexane-1-carboxylate) at a concentration of 1000 μg/ml showed significant inhibitory effects of 83.67% and 78.12% against COX-2 and 5-LOX in comparison to celecoxib and zileuton, respectively. Similarly, compound D also showed excellent in vivo anti-inflammatory potential. Amongst all the compounds, D demonstrated excellent (55.92 ± 2.95%) anti-inflammatory potential at maximum tested dose (100 mg/kg) which accomplished the highest significance at 4 h following the carrageenan insertion and stayed considerable (
) till the 5th hour of test sample injection. Compound D also exhibited excellent percent inhibition (63.81 ± 2.24%) at the highest dose in arachidonic acid-induced ear inflammation. On the basis of in vivo and in vitro results, compound D was subjected to various inflammation-causing agents such as histamine, prostaglandins E2, bradykinin, and leukotriene via the mouse paw edema test. Compound D revealed moderate effect (28.10 ± 1.64%) against histamine-induced paw edema while nonsignificant result (9.72 ± 3.125%) was marked for the bradykinin pathway. Compound D showed significance against edematogenic consequence of prostaglandin E2 (56.28–72.03%) and leukotriene (55.13 ± 2.25%) induced inflammation. In summary, our findings recommended that compound D possesses double acting anti-inflammatory properties inhibiting both COX and LOX pathways. Binding orientations and energy values computed via docking simulations support the results of the experimental in vitro evaluation.
Collapse
|
6
|
Kaur J, Bhardwaj A, Wuest F. Fluorine-18 Labelled Radioligands for PET Imaging of Cyclooxygenase-2. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123722. [PMID: 35744851 PMCID: PMC9227202 DOI: 10.3390/molecules27123722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022]
Abstract
Molecular imaging probes enable the early and accurate detection of disease-specific biomarkers and facilitate personalized treatment of many chronic diseases, including cancer. Among current clinically used functional imaging modalities, positron emission tomography (PET) plays a significant role in cancer detection and in monitoring the response to therapeutic interventions. Several preclinical and clinical studies have demonstrated the crucial involvement of cyclooxygenase-2 (COX-2) isozyme in cancer development and progression, making COX-2 a promising cancer biomarker. A variety of COX-2-targeting PET radioligands has been developed based on anti-inflammatory drugs and selective COX-2 inhibitors. However, many of those suffer from non-specific binding and insufficient metabolic stability. This article highlights examples of COX-2-targeting PET radioligands labelled with the short-lived positron emitter 18F, including radiosynthesis and PET imaging studies published in the last decade (2012–2021).
Collapse
Affiliation(s)
- Jatinder Kaur
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
- Correspondence: (J.K.); (F.W.)
| | - Atul Bhardwaj
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada;
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Correspondence: (J.K.); (F.W.)
| |
Collapse
|
7
|
Fluorochrome Selection for Imaging Intraoperative Ovarian Cancer Probes. Pharmaceuticals (Basel) 2022; 15:ph15060668. [PMID: 35745587 PMCID: PMC9230671 DOI: 10.3390/ph15060668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022] Open
Abstract
The identification and removal of all gross and microscopic tumor to render the patient disease free represents a huge challenge in ovarian cancer treatment. The presence of residual disease is an independent negative prognostic factor. Herein, we describe the synthesis and the “in vitro” evaluation of compounds as cyclooxygenase (COX)-1 inhibitors, the COX-1 isoform being an ovarian cancer biomarker, each bearing fluorochromes with different fluorescence features. Two of these compounds N-[4-(9-dimethylimino-9H-benzo[a]phenoxazin-5-ylamino) butyl]-2-(3,4-bis(4-methoxyphenyl)isoxazol-5-yl)acetamide chloride (RR11) and 3-(6-(4-(2-(3,4-bis(4-methoxyphenyl)isoxazole-5-yl)acetamido)butyl)amino-6-oxohexyl)-2-[7-(1,3-dihydro-1,1-dimethyl-3-ethyl 2H-benz[e]indolin-2-yl-idene)-1,3,5-heptatrienyl]-1,1-dimethyl-3-(6-carboxilato-hexyl)-1H-benz[e]indolium chloride, 23 (MSA14) were found to be potent and selective inhibitors of cyclooxygenase (COX)-1 “in vitro”, and thus were further investigated “in vivo”. The IC50 values were 0.032 and 0.087 µM for RR11 and 23 (MSA 14), respectively, whereas the COX-2 IC50 for RR11 is 2.4 µM while 23 (MSA14) did not inhibit COX-2 even at a 50 µM concentration. Together, this represented selectivity index = 75 and 874, respectively. Structure-based virtual screening (SBVS) performed with the Fingerprints for Ligands and Proteins (FLAP) software allowed both to differentiate highly active compounds from less active and inactive structures and to define their interactions inside the substrate-binding cavity of hCOX1. Fluorescent probes RR11 and 23 (MSA14), were used for preliminary near-infrared (NIR) fluorescent imaging (FLI) in human ovarian cancer (OVCAR-3 and SKOV-3) xenograft models. Surprisingly, a tumor-specific signal was observed for both tested fluorescent probes, even though this signal is not linked to the presence of COX-1.
Collapse
|
8
|
Modulation of Secondary Cancer Risks from Radiation Exposure by Sex, Age and Gonadal Hormone Status: Progress, Opportunities and Challenges. J Pers Med 2022; 12:jpm12050725. [PMID: 35629147 PMCID: PMC9146871 DOI: 10.3390/jpm12050725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/18/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
Available data on cancer secondary to ionizing radiation consistently show an excess (2-fold amount) of radiation-attributable solid tumors in women relative to men. This excess risk varies by organ and age, with the largest sex differences (6- to more than 10-fold) found in female thyroid and breasts exposed between birth until menopause (~50 years old) relative to age-matched males. Studies in humans and animals also show large changes in cell proliferation rates, radiotracer accumulation and target density in female reproductive organs, breast, thyroid and brain in conjunction with physiological changes in gonadal hormones during the menstrual cycle, puberty, lactation and menopause. These sex differences and hormonal effects present challenges as well as opportunities to personalize radiation-based treatment and diagnostic paradigms so as to optimize the risk/benefit ratios in radiation-based cancer therapy and diagnosis. Specifically, Targeted Radionuclide Therapy (TRT) is a fast-expanding cancer treatment modality utilizing radiopharmaceuticals with high avidity to specific molecular tumor markers, many of which are influenced by sex and gonadal hormone status. However, past and present dosimetry studies of TRT agents do not stratify results by sex and hormonal environment. We conclude that cancer management using ionizing radiation should be personalized and informed by the patient sex, age and hormonal status.
Collapse
|
9
|
Miciaccia M, Belviso BD, Iaselli M, Cingolani G, Ferorelli S, Cappellari M, Loguercio Polosa P, Perrone MG, Caliandro R, Scilimati A. Three-dimensional structure of human cyclooxygenase (hCOX)-1. Sci Rep 2021; 11:4312. [PMID: 33619313 PMCID: PMC7900114 DOI: 10.1038/s41598-021-83438-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The beneficial effects of Cyclooxygenases (COX) inhibitors on human health have been known for thousands of years. Nevertheless, COXs, particularly COX-1, have been linked to a plethora of human diseases such as cancer, heart failure, neurological and neurodegenerative diseases only recently. COXs catalyze the first step in the biosynthesis of prostaglandins (PGs) and are among the most important mediators of inflammation. All published structural work on COX-1 deals with the ovine isoenzyme, which is easier to produce in milligram-quantities than the human enzyme and crystallizes readily. Here, we report the long-sought structure of the human cyclooxygenase-1 (hCOX-1) that we refined to an R/Rfree of 20.82/26.37, at 3.36 Å resolution. hCOX-1 structure provides a detailed picture of the enzyme active site and the residues crucial for inhibitor/substrate binding and catalytic activity. We compared hCOX-1 crystal structure with the ovine COX-1 and human COX-2 structures by using metrics based on Cartesian coordinates, backbone dihedral angles, and solvent accessibility coupled with multivariate methods. Differences and similarities among structures are discussed, with emphasis on the motifs responsible for the diversification of the various enzymes (primary structure, stability, catalytic activity, and specificity). The structure of hCOX-1 represents an essential step towards the development of new and more selective COX-1 inhibitors of enhanced therapeutic potential.
Collapse
Affiliation(s)
- Morena Miciaccia
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Benny Danilo Belviso
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Amendola 122/o, 70126, Bari, Italy
| | - Mariaclara Iaselli
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA
| | - Savina Ferorelli
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Marianna Cappellari
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Paola Loguercio Polosa
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Maria Grazia Perrone
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Rocco Caliandro
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Amendola 122/o, 70126, Bari, Italy.
| | - Antonio Scilimati
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
10
|
Vitale P, Cicco L, Perna FM, Capriati V. Introducing deep eutectic solvents in enolate chemistry: synthesis of 1-arylpropan-2-ones under aerobic conditions. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00297j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An environmentally friendly procedure for the generation of enolates from 1-arylpropan-2-ones, followed by functionalization with electrophiles and (hetero)aryl halides in deep eutectic solvents under aerobic conditions, is disclosed.
Collapse
Affiliation(s)
- Paola Vitale
- Dipartimento di Farmacia–Scienze del farmaco, Università di Bari “Aldo Moro”, Consorzio C.I.N.M.P.I.S, Via E. Orabona 4, I-70125, Bari, Italy
| | - Luciana Cicco
- Dipartimento di Farmacia–Scienze del farmaco, Università di Bari “Aldo Moro”, Consorzio C.I.N.M.P.I.S, Via E. Orabona 4, I-70125, Bari, Italy
| | - Filippo Maria Perna
- Dipartimento di Farmacia–Scienze del farmaco, Università di Bari “Aldo Moro”, Consorzio C.I.N.M.P.I.S, Via E. Orabona 4, I-70125, Bari, Italy
| | - Vito Capriati
- Dipartimento di Farmacia–Scienze del farmaco, Università di Bari “Aldo Moro”, Consorzio C.I.N.M.P.I.S, Via E. Orabona 4, I-70125, Bari, Italy
| |
Collapse
|
11
|
Perrone MG, Luisi O, De Grassi A, Ferorelli S, Cormio G, Scilimati A. Translational Theragnosis of Ovarian Cancer: where do we stand? Curr Med Chem 2020; 27:5675-5715. [PMID: 31419925 DOI: 10.2174/0929867326666190816232330] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/13/2019] [Accepted: 07/24/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ovarian cancer is the second most common gynecologic malignancy, accounting for approximately 220,000 deaths annually worldwide. Despite radical surgery and initial high response rates to platinum- and taxane-based chemotherapy, most patients experience a relapse, with a median progression-free survival of only 18 months. Overall survival is approximately 30% at 5 years from the diagnosis. In comparison, patients out from breast cancer are more than 80 % after ten years from the disease discovery. In spite of a large number of published fundamental and applied research, and clinical trials, novel therapies are urgently needed to improve outcomes of the ovarian cancer. The success of new drugs development in ovarian cancer will strongly depend on both fully genomic disease characterization and, then, availability of biomarkers able to identify women likely to benefit from a given new therapy. METHODS In this review, the focus is given to describe how complex is the diseases under the simple name of ovarian cancer, in terms of cell tumor types, histotypes, subtypes, and specific gene mutation or differently expressed in the tumor with respect the healthy ovary. The first- and second-line pharmacological treatment clinically used over the last fifty years are also described. Noteworthy achievements in vitro and in vivo tested new drugs are also summarized. Recent literature related to up to date ovarian cancer knowledge, its detection by biomarkers and chemotherapy was searched from several articles on Pubmed, Google Scholar, MEDLINE and various Governmental Agencies till April 2019. RESULTS The papers referenced by this review allow a deep analysis of status of the art in the classification of the several types of ovarian cancer, the present knowledge of diagnosis based on biomarkers and imaging techniques, and the therapies developed over the past five decades. CONCLUSION This review aims at stimulating more multi-disciplinary efforts to identify a panel of novel and more specific biomarkers to be used to screen patients for a very early diagnosis, to have prognosis and therapy efficacy indications. The desired final goal would be to have available tools allowing to reduce the recurrence rate, increase both the disease progression free interval and of course the overall survival at five years from the diagnosis that today is still very low.
Collapse
Affiliation(s)
- Maria Grazia Perrone
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| | - Oreste Luisi
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| | - Anna De Grassi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| | - Savina Ferorelli
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| | - Gennaro Cormio
- Gynecologic Oncology Unit, IRCCS Istituto Oncologico "Giovanni Paolo II" Bari, Italy
| | - Antonio Scilimati
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "A. Moro", Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
12
|
Perrone MG, Miciaccia M, Vitale P, Ferorelli S, Araújo CDCB, de Almeida GS, Souza Domingos TF, da Silva LCRP, de Pádula M, Cabral LM, Sathler PC, Bonaccorso C, Fortuna CG, Scilimati A. An attempt to chemically state the cross-talk between monomers of COX homodimers by double/hybrid inhibitors mofezolac-spacer-mofezolac and mofezolac-spacer-arachidonic acid. Eur J Med Chem 2020; 209:112919. [PMID: 33129592 DOI: 10.1016/j.ejmech.2020.112919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Cardiovascular diseases (CVDs) account for over 17 million death globally each year, including arterial thrombosis. Platelets are key components in the pathogenesis of this disease and modulating their activity is an effective strategy to treat such thrombotic events. Cyclooxygenase-1 (COX-1) isoenzyme is involved in platelet activation and is the main target of non-steroidal anti-inflammatory drugs (NSAIDs) and new selective inhibitor research. Inhibitors of general formula mofezolac-spacer-mofezolac (mof-spacer-mof) and mofezolac-spacer-arachidonic acid (mof-spacer-AA) were projected to investigate the possible cross-talk between the two monomers (Eallo and Ecat) forming the COX-1 homodimer. Mofezolac was chosen as either one or two moieties of these molecules being the known most potent and selective COX-1 inhibitor and administrated to humans as Disopain™, then arachidonic acid (AA) was used to develop molecules bearing, in the same compound, in addition to the inhibitor moiety (mofezolac) also the natural COX substrate. Depending on the nature of the spacer, COX-1 and COX-2 activity was differently inhibited by mof-spacer-mof set with a preferential COX-1 inhibition. The highest COX-1 selectivity was exhibited by the compound in which the spacer was the benzidine [N,N'-(biphenyl-4,4'-di-yl)bis (2-[3,4-bis(4-methoxyphenyl)isoxazol-5-yl]acetamide) (15): COX-1 IC50 = 0.08 μM, COX-2 IC50 > 50 μM, Selectivity Index (SI) > 625]. In the case of mof-spacer-AA set, the COX inhibitory potency and also the isoform preference changed. (5Z, 8Z, 11Z, 14Z)-N-(4-{2-[3,4-Bis(4-methoxyphenyl)isoxazol-5-yl]acetamido}butyl)icosa-5,8,11,14-tetraenamide (19) and (5Z, 8Z, 11Z, 14Z)-N-(4'-{2-[3,4-bis(4-methoxyphenyl)isoxazol-5-yl]acetamido}-[1,1'-biphenyl]-4-yl)icosa-5,8,11,14-tetraenamide (21), in which the spacer is the 1,2-diaminobutane or benzidine, respectively, selectively inhibited the COX-2, whereas when the spacer is the 1,4-phenylendiamine [(5Z, 8Z, 11Z, 14Z)-N-(4-{2-[3,4-bis(4-methoxyphenyl)isoxazol-5-yl]acetamido}phenyl)icosa-5,8,11,14-tetraenamide) (20) the COX preference is COX-1 (COX-1 IC50 = 0.05 μM, COX-2 IC50 > 50 μM, with a COX-1 selectivity > 1000). Molecular modelling by using FLAP algorithm shows fundamental interactions of the novel compounds at the entry channel of COX and inside its catalytic cavity. The effect of these mof-spacer-mof and mof-spacer-AA in inhibiting in vitro free arachidonic acid-induced platelet aggregation was also determined. A positive profile of hemocompatibility in relation to their influence on the blood coagulation cascade and erythrocyte toxicity was observed. Cytotoxicity and genotoxicity safety were also found for these two novel sets of compounds.
Collapse
Affiliation(s)
- Maria Grazia Perrone
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Morena Miciaccia
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Paola Vitale
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Savina Ferorelli
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Cristina da Costa Bernardes Araújo
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Center of Health Sciences, Carlos Chagas Filho Avenue, 373, 21941599, Rio de Janeiro, Brazil
| | - Gabriella Silva de Almeida
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Center of Health Sciences, Carlos Chagas Filho Avenue, 373, 21941599, Rio de Janeiro, Brazil
| | - Thaisa Francielle Souza Domingos
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Center of Health Sciences, Carlos Chagas Filho Avenue, 373, 21941599, Rio de Janeiro, Brazil
| | | | - Marcelo de Pádula
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Center of Health Sciences, Carlos Chagas Filho Avenue, 373, 21941599, Rio de Janeiro, Brazil
| | - Lucio Mendes Cabral
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Center of Health Sciences, Carlos Chagas Filho Avenue, 373, 21941599, Rio de Janeiro, Brazil
| | - Plínio Cunha Sathler
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Center of Health Sciences, Carlos Chagas Filho Avenue, 373, 21941599, Rio de Janeiro, Brazil
| | - Carmela Bonaccorso
- Department of Chemical Science, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Cosimo G Fortuna
- Department of Chemical Science, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Antonio Scilimati
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
13
|
Azizi M, Dianat-Moghadam H, Salehi R, Farshbaf M, Iyengar D, Sau S, Iyer AK, Valizadeh H, Mehrmohammadi M, Hamblin MR. Interactions Between Tumor Biology and Targeted Nanoplatforms for Imaging Applications. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910402. [PMID: 34093104 PMCID: PMC8174103 DOI: 10.1002/adfm.201910402] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Indexed: 05/04/2023]
Abstract
Although considerable efforts have been conducted to diagnose, improve, and treat cancer in the past few decades, existing therapeutic options are insufficient, as mortality and morbidity rates remain high. Perhaps the best hope for substantial improvement lies in early detection. Recent advances in nanotechnology are expected to increase the current understanding of tumor biology, and will allow nanomaterials to be used for targeting and imaging both in vitro and in vivo experimental models. Owing to their intrinsic physicochemical characteristics, nanostructures (NSs) are valuable tools that have received much attention in nanoimaging. Consequently, rationally designed NSs have been successfully employed in cancer imaging for targeting cancer-specific or cancer-associated molecules and pathways. This review categorizes imaging and targeting approaches according to cancer type, and also highlights some new safe approaches involving membrane-coated nanoparticles, tumor cell-derived extracellular vesicles, circulating tumor cells, cell-free DNAs, and cancer stem cells in the hope of developing more precise targeting and multifunctional nanotechnology-based imaging probes in the future.
Collapse
Affiliation(s)
- Mehdi Azizi
- Proteomics Research Centre, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Hassan Dianat-Moghadam
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5165665621, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz 516615731, Iran
| | - Masoud Farshbaf
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 6581151656, Iran
| | - Disha Iyengar
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Samaresh Sau
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Arun K Iyer
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Hadi Valizadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz 516615731, Iran
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
14
|
Intelligent Microarray Data Analysis through Non-negative Matrix Factorization to Study Human Multiple Myeloma Cell Lines. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9245552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Microarray data are a kind of numerical non-negative data used to collect gene expression profiles. Since the number of genes in DNA is huge, they are usually high dimensional, therefore they require dimensionality reduction and clustering techniques to extract useful information. In this paper we use NMF, non-negative matrix factorization, to analyze microarray data, and also develop “intelligent” results visualization with the aim to facilitate the analysis of the domain experts. For this purpose, a case study based on the analysis of the gene expression profiles (GEPs), representative of the human multiple myeloma diseases, was investigated in 40 human myeloma cell lines (HMCLs). The aim of the experiments was to study the genes involved in arachidonic acid metabolism in order to detect gene patterns that possibly could be connected to the different gene expression profiles of multiple myeloma. NMF results have been verified by western blotting analysis in six HMCLs of proteins expressed by some of the most abundantly expressed genes. The experiments showed the effectiveness of NMF in intelligently analyzing microarray data.
Collapse
|
15
|
Scilimati A, Ferorelli S, Iaselli MC, Miciaccia M, Pati ML, Fortuna CG, Aleem AM, Marnett LJ, Perrone MG. Targeting COX-1 by mofezolac-based fluorescent probes for ovarian cancer detection. Eur J Med Chem 2019; 179:16-25. [PMID: 31229884 DOI: 10.1016/j.ejmech.2019.06.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 01/17/2023]
Abstract
Biomarkers of specific targets are becoming an essential objective for clinical unmet clinical needs to improve diseases early detection and increase patient overall survival. Ovarian cancer is among the highest mortality gynecological cancers. It is asymptomatic and almost always diagnosed at advanced stage. At five years from the first diagnosis the survival rate of ovarian cancer patients is only 30%. Cyclooxygenase (COX)-1 as opposed to COX-2 is known to be overexpressed in ovarian cancer. Therefore, fluorescent probes targeting COX-1 were designed and prepared in fair to good yields for its quantitatively detection in human ovarian cancer cell lines (OVCAR-3 and SKOV-3). In particular, both cytofluorimetric and immunofluorescent experiments showed that N-[4-(9-dimethylimino-9H-benzo[a]phenoxazin-5-ylamino)butyl]-2-(3,4-bis(4-methoxyphenyl)isoxazol-5-yl)acetamide chloride (11) enters into OVCAR-3 cells and is mainly localized on the membrane containing the COX-1. Membrane fluorescence emission represents about 80% of the total fluorescence measured in the whole cell, while the non-specific labeling represents only 20%. This result indicates that the intensity of fluorescence emission is almost exclusively attributable to 11 bound to COX-1 located on the membrane. Furthermore, no diffusion inside the cell occurs. IC50hCOX-1 value of 11 determined by measuring the O2 consumption during the bis-oxygenation of the arachidonic acid catalysed by COX-1 was found to be equal to 1.8 nM. Furthermore, 11 inhibits oCOX-1 with IC50 = 6.85 nM and mCOX-2 with IC50 = 269.5 nM; the corresponding selectivity index SI is equal to 39.3 against oCOX-1. 11 inhibits oCOX-1 at 0 min of incubation with 91% inhibition, whereas in the same time it does not inhibit mCOX-2. Fingerprints for Ligands and Proteins (FLAP) software calculations were performed to justify 11 higher COX-1 inhibitory potency than mofezolac (COX-1 IC50 = 5.1 nM), which in turn is a moiety of 11. Specifically, the two compounds bind differently in the COX-1 active site.
Collapse
Affiliation(s)
- Antonio Scilimati
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy.
| | - Savina Ferorelli
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Maria Clara Iaselli
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Morena Miciaccia
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Maria Laura Pati
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Cosimo G Fortuna
- Department of Chemical Science, University of Catania, V.le Andrea Doria 6, 95125, Catania, Italy
| | - Ansari M Aleem
- Memorial Laboratory for Cancer Research, Department of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, Nashville, TN 37232-0146, USA
| | - Lawrence J Marnett
- Memorial Laboratory for Cancer Research, Department of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute of Chemical Biology, Nashville, TN 37232-0146, USA
| | - Maria Grazia Perrone
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
16
|
Uddin MJ, Wilson AJ, Crews BC, Malerba P, Uddin MI, Kingsley PJ, Ghebreselasie K, Daniel CK, Nickels ML, Tantawy MN, Jashim E, Manning HC, Khabele D, Marnett LJ. Discovery of Furanone-Based Radiopharmaceuticals for Diagnostic Targeting of COX-1 in Ovarian Cancer. ACS OMEGA 2019; 4:9251-9261. [PMID: 31172046 PMCID: PMC6545551 DOI: 10.1021/acsomega.9b01093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/09/2019] [Indexed: 05/03/2023]
Abstract
In vivo targeting and visualization of cyclooxygenase-1 (COX-1) using multimodal positron emission tomography/computed tomography imaging represents a unique opportunity for early detection and/or therapeutic evaluation of ovarian cancer because overexpression of COX-1 has been characterized as a pathologic hallmark of the initiation and progression of this disease. The furanone core is a common building block of many synthetic and natural products that exhibit a wide range of biological activities. We hypothesize that furanone-based COX-1 inhibitors can be designed as imaging agents for the early detection, delineation of tumor margin, and evaluation of treatment response of ovarian cancer. We report the discovery of 3-(4-fluorophenyl)-5,5-dimethyl-4-(p-tolyl)furan-2(5H)-one (FDF), a furanone-based novel COX-1-selective inhibitor that exhibits adequate in vivo stability, plasma half-life, and pharmacokinetic properties for use as an imaging agent. We describe a novel synthetic scheme in which a Lewis acid-catalyzed nucleophilic aromatic deiodo[18F]fluorination reaction is utilized for the radiosynthesis of [18F]FDF. [18F]FDF binds efficiently to COX-1 in vivo and enables sensitive detection of ovarian cancer in subcutaneous and peritoneal xenograft models in mice. These results provide the proof of principle for COX-1-targeted imaging of ovarian cancer and identify [18F]FDF as a promising lead compound for further preclinical and clinical development.
Collapse
Affiliation(s)
- Md. Jashim Uddin
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- E-mail: . Phone: 615-484-8674. Fax: 615.343-0704 (M.J.U.)
| | - Andrew J. Wilson
- Department of Obstetrics & Gynecology, Women’s
Reproductive
Health Research Center, and Department of Ophthalmology and Visual Sciences,
Vanderbilt Eye Institute, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
| | - Brenda C. Crews
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Paola Malerba
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department
of Pharmacy & Pharmaceutical Sciences, University of Bari “A. Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Md. Imam Uddin
- Department of Obstetrics & Gynecology, Women’s
Reproductive
Health Research Center, and Department of Ophthalmology and Visual Sciences,
Vanderbilt Eye Institute, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
| | - Philip J. Kingsley
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kebreab Ghebreselasie
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Cristina K. Daniel
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Michael L. Nickels
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Mohammed N. Tantawy
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Elma Jashim
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Martin Luther
King Jr. Academic Magnet School of Health Sciences and Engineering, 613 17th Avenue North, Nashville, Tennessee 37203, United States
| | - H. Charles Manning
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Dineo Khabele
- Department of Obstetrics & Gynecology, Women’s
Reproductive
Health Research Center, and Department of Ophthalmology and Visual Sciences,
Vanderbilt Eye Institute, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
- Department
of Obstetrics and Gynecology, University
of Kansas School of Medicine, Kansas
City, Kansas 66160, United States
| | - Lawrence J. Marnett
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- E-mail: (L.J.M.)
| |
Collapse
|
17
|
Pati ML, Vitale P, Ferorelli S, Iaselli M, Miciaccia M, Boccarelli A, Di Mauro GD, Fortuna CG, Souza Domingos TF, Rodrigues Pereira da Silva LC, de Pádula M, Cabral LM, Sathler PC, Vacca A, Scilimati A, Perrone MG. Translational impact of novel widely pharmacological characterized mofezolac-derived COX-1 inhibitors combined with bortezomib on human multiple myeloma cell lines viability. Eur J Med Chem 2019; 164:59-76. [DOI: 10.1016/j.ejmech.2018.12.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 01/07/2023]
|
18
|
Biegon A, Franceschi D, Schweitzer ME. Nuclear Medicine Procedures in Women: Unappreciated Risks to Reproductive Organs? Radiology 2018; 289:25-27. [PMID: 29989525 DOI: 10.1148/radiol.2018172344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Anat Biegon
- From the Department of Radiology, Stony Brook University School of Medicine, 100 Nicols Rd, HSC 4-106F, Psychology A 350, Stony Brook NY 11794-2565
| | - Dinko Franceschi
- From the Department of Radiology, Stony Brook University School of Medicine, 100 Nicols Rd, HSC 4-106F, Psychology A 350, Stony Brook NY 11794-2565
| | - Mark E Schweitzer
- From the Department of Radiology, Stony Brook University School of Medicine, 100 Nicols Rd, HSC 4-106F, Psychology A 350, Stony Brook NY 11794-2565
| |
Collapse
|
19
|
Cingolani G, Panella A, Perrone MG, Vitale P, Di Mauro G, Fortuna CG, Armen RS, Ferorelli S, Smith WL, Scilimati A. Structural basis for selective inhibition of Cyclooxygenase-1 (COX-1) by diarylisoxazoles mofezolac and 3-(5-chlorofuran-2-yl)-5-methyl-4-phenylisoxazole (P6). Eur J Med Chem 2017; 138:661-668. [PMID: 28710965 PMCID: PMC5992922 DOI: 10.1016/j.ejmech.2017.06.045] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 01/23/2023]
Abstract
The diarylisoxazole molecular scaffold is found in several NSAIDs, especially those with high selectivity for COX-1. Here, we have determined the structural basis for COX-1 binding to two diarylisoxazoles: mofezolac, which is polar and ionizable, and 3-(5-chlorofuran-2-yl)-5-methyl-4-phenylisoxazole (P6) that has very low polarity. X-ray analysis of the crystal structures of COX-1 bound to mofezolac and 3-(5-chlorofuran-2-yl)-5-methyl-4-phenylisoxazole allowed the identification of specific binding determinants within the enzyme active site, relevant to generate structure/activity relationships for diarylisoxazole NSAIDs.
Collapse
Affiliation(s)
- Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Institute of Biomembranes and Bioenergetics, National Research Council, Via Amendola 165/A, 70125 Bari, Italy
| | - Andrea Panella
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Maria Grazia Perrone
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Paola Vitale
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - Giuseppe Di Mauro
- Department of Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Cosimo G Fortuna
- Department of Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Roger S Armen
- Department of Pharmaceutical Sciences, College of Pharmacy, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Savina Ferorelli
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125 Bari, Italy
| | - William L Smith
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Antonio Scilimati
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
20
|
Gassner C, Neuber C, Laube M, Bergmann R, Kniess T, Pietzsch J. Development of a18F-labeled Diaryl-Substituted Dihydropyrrolo[3,2,1-hi]indole as Potential Probe for Functional Imaging of Cyclooxygenase-2 with PET. ChemistrySelect 2016. [DOI: 10.1002/slct.201601618] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Cemena Gassner
- Helmholtz-Zentrum Dresden-Rossendorf; Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research; Bautzner Landstrasse 400 01328 Dresden Germany
- Department of Chemistry and Food Chemistry; Technische Universität Dresden; 01062 Dresden Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf; Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research; Bautzner Landstrasse 400 01328 Dresden Germany
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf; Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research; Bautzner Landstrasse 400 01328 Dresden Germany
| | - Ralf Bergmann
- Helmholtz-Zentrum Dresden-Rossendorf; Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research; Bautzner Landstrasse 400 01328 Dresden Germany
| | - Torsten Kniess
- Helmholtz-Zentrum Dresden-Rossendorf; Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research; Bautzner Landstrasse 400 01328 Dresden Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf; Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research; Bautzner Landstrasse 400 01328 Dresden Germany
- Department of Chemistry and Food Chemistry; Technische Universität Dresden; 01062 Dresden Germany
| |
Collapse
|
21
|
Wilson AJ, Fadare O, Beeghly-Fadiel A, Son DS, Liu Q, Zhao S, Saskowski J, Uddin MJ, Daniel C, Crews B, Lehmann BD, Pietenpol JA, Crispens MA, Marnett LJ, Khabele D. Aberrant over-expression of COX-1 intersects multiple pro-tumorigenic pathways in high-grade serous ovarian cancer. Oncotarget 2016; 6:21353-68. [PMID: 25972361 PMCID: PMC4673270 DOI: 10.18632/oncotarget.3860] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/21/2015] [Indexed: 01/25/2023] Open
Abstract
Cyclooxygenase-1 (COX-1) is implicated in ovarian cancer. However, patterns of COX expression and function have been unclear and controversial. In this report, patterns of COX-1 and COX-2 gene expression were obtained from RNA-seq data through The Cancer Genome Atlas. Our analysis revealed markedly higher COX-1 mRNA expression than COX-2 in high-grade serous ovarian cancers (HGSOC) and higher COX-1 expression in HGSOC tumors than 10 other tumor types. High expression of COX-1 in HGSOC tumors was confirmed in an independent tissue microarray. In contrast, lower or similar expression of COX-1 compared to COX-2 was observed in endometrioid, mucinous and clear cell tumors. Stable COX-1 knockdown in HGSOC-representative OVCAR-3 ovarian cancer cells reduced gene expression in multiple pro-tumorigenic pathways. Functional cell viability, clonogenicity, and migration/invasion assays were consistent with transcriptomic changes. These effects were reversed by stable over-expression of COX-1 in SKOV-3 cells. Our results demonstrate a distinct pattern of COX-1 over-expression in HGSOC tumors and strong association of COX-1 with multiple pro-tumorigenic pathways in ovarian cancer cells. These findings provide additional insight into the role of COX-1 in human ovarian cancer and support further development of methods to selectively target COX-1 in the management of HGSOC tumors.
Collapse
Affiliation(s)
- Andrew J Wilson
- Department of Obstetrics & Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Oluwole Fadare
- Department of Pathology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Alicia Beeghly-Fadiel
- Department of Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Deok-Soo Son
- Department of Biochemistry & Cancer Biology, Meharry Medical College, Nashville, TN, USA
| | - Qi Liu
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shilin Zhao
- Vanderbilt Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jeanette Saskowski
- Department of Obstetrics & Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Md Jashim Uddin
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cristina Daniel
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brenda Crews
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brian D Lehmann
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer A Pietenpol
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marta A Crispens
- Department of Obstetrics & Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lawrence J Marnett
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dineo Khabele
- Department of Obstetrics & Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
22
|
Perrone MG, Vitale P, Panella A, Ferorelli S, Contino M, Lavecchia A, Scilimati A. Isoxazole-Based-Scaffold Inhibitors Targeting Cyclooxygenases (COXs). ChemMedChem 2016; 11:1172-87. [DOI: 10.1002/cmdc.201500439] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Maria Grazia Perrone
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “A. Moro”; Via E. Orabona 4 70125 Bari Italy
| | - Paola Vitale
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “A. Moro”; Via E. Orabona 4 70125 Bari Italy
| | - Andrea Panella
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “A. Moro”; Via E. Orabona 4 70125 Bari Italy
| | - Savina Ferorelli
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “A. Moro”; Via E. Orabona 4 70125 Bari Italy
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “A. Moro”; Via E. Orabona 4 70125 Bari Italy
| | - Antonio Lavecchia
- Dipartimento di Farmacia; “Drug Discovery” Laboratory; Università di Napoli “Federico II”; Via D. Montesano 49 80131 Napoli Italy
| | - Antonio Scilimati
- Dipartimento di Farmacia-Scienze del Farmaco; Università degli Studi di Bari “A. Moro”; Via E. Orabona 4 70125 Bari Italy
| |
Collapse
|
23
|
Vitale P, Panella A, Scilimati A, Perrone MG. COX-1 Inhibitors: Beyond Structure Toward Therapy. Med Res Rev 2016; 36:641-71. [DOI: 10.1002/med.21389] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/21/2016] [Accepted: 02/15/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Paola Vitale
- Department of Pharmacy - Pharmaceutical Sciences; University of Bari “A. Moro”; 70125 Bari Italy
| | - Andrea Panella
- Department of Pharmacy - Pharmaceutical Sciences; University of Bari “A. Moro”; 70125 Bari Italy
| | - Antonio Scilimati
- Department of Pharmacy - Pharmaceutical Sciences; University of Bari “A. Moro”; 70125 Bari Italy
| | - Maria Grazia Perrone
- Department of Pharmacy - Pharmaceutical Sciences; University of Bari “A. Moro”; 70125 Bari Italy
| |
Collapse
|
24
|
Abstract
INTRODUCTION The COX enzymes play a central role in the biosynthetic pathway of important biological mediators called prostanoids. Differences in regulation of gene expression, stability of transcripts and proteins determine the different biological functions of COX-1 and COX-2. While the COX-1 gene has been considered to be a 'housekeeping' gene expressed in many tissues and cells, COX-2 gene is upregulated during inflammation, hypoxia and in many cancers. AREAS COVERED The first part of this review provides a survey of the development of both modified traditional NSAIDs (tNSAIDs) and COX inhibitors (coxibs) with reduced side effects for the treatment of inflammation and cancer. The second part deals with patents reporting several dual inhibitors characterized by the conjugation of a COX-inhibitor scaffold to a molecule able to modulate a different target. Finally, two patents on novel COX inhibitor scaffolds are reported. EXPERT OPINION The most interesting branch of research concerns the conjugation of a COX-inhibitor scaffold to a molecule able to modulate a different target, in order to either enhance anti-inflammatory activity or to act as a dual inhibitor. Among the described compounds, selenium-containing coxibs inhibiting COX-2 and Akt, in addition to the multi-target biphenyl derivatives as dual inhibitors of COX and fatty acid amide hydrolase, are the most promising ones.
Collapse
Affiliation(s)
- Sara Consalvi
- a Sapienza University of Rome, Dipartimento di Chimica e Tecnologie del Farmaco , p.le A. Moro 5, I-00185 Rome, Italy
| | - Mariangela Biava
- a Sapienza University of Rome, Dipartimento di Chimica e Tecnologie del Farmaco , p.le A. Moro 5, I-00185 Rome, Italy
| | - Giovanna Poce
- a Sapienza University of Rome, Dipartimento di Chimica e Tecnologie del Farmaco , p.le A. Moro 5, I-00185 Rome, Italy
| |
Collapse
|
25
|
Perrone MG, Vitale P, Panella A, Fortuna CG, Scilimati A. General role of the amino and methylsulfamoyl groups in selective cyclooxygenase(COX)-1 inhibition by 1,4-diaryl-1,2,3-triazoles and validation of a predictive pharmacometric PLS model. Eur J Med Chem 2015; 94:252-64. [DOI: 10.1016/j.ejmech.2015.02.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
|
26
|
Perrone MG, Lofrumento DD, Vitale P, De Nuccio F, La Pesa V, Panella A, Calvello R, Cianciulli A, Panaro MA, Scilimati A. Selective Cyclooxygenase-1 Inhibition by P6 and Gastrotoxicity: Preliminary Investigation. Pharmacology 2015; 95:22-8. [DOI: 10.1159/000369826] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/11/2014] [Indexed: 11/19/2022]
|
27
|
Uddin MJ, Elleman AV, Ghebreselasie K, Daniel CK, Crews BC, Nance KD, Huda T, Marnett LJ. Design of Fluorine-Containing 3,4-Diarylfuran-2(5H)-ones as Selective COX-1 Inhibitors. ACS Med Chem Lett 2014; 5:1254-8. [PMID: 25408841 DOI: 10.1021/ml500344j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/12/2014] [Indexed: 01/29/2023] Open
Abstract
We report the design and synthesis of fluorine-containing cyclooxygenase-1 (COX-1)-selective inhibitors to serve as prototypes for the development of a COX-1-targeted imaging agent. Deletion of the SO2CH3 group of rofecoxib switches the compound from a COX-2- to a COX-1-selective inhibitor, providing a 3,4-diarylfuran-2(5H)-one scaffold for structure-activity relationship studies of COX-1 inhibition. A wide range of fluorine-containing 3,4-diarylfuran-2(5H)-ones were designed, synthesized, and tested for their ability to selectively inhibit COX-1 in purified protein and human cancer cell assays. Compounds containing a fluoro-substituent on the C-3 phenyl ring and a methoxy-substituent on the C-4 phenyl ring of the 3,4-diarylfuran-2(5H)-one scaffold were the best COX-1-selective agents of those evaluated, exhibiting IC50s in the submicromolar range. These compounds provide the foundation for development of an agent to facilitate radiologic imaging of ovarian cancer expressing elevated levels of COX-1.
Collapse
Affiliation(s)
- Md. Jashim Uddin
- A. B. Hancock, Jr., Memorial
Laboratory for Cancer Research, Department of Biochemistry, Chemistry
and Pharmacology, Vanderbilt Institute of Chemical Biology, Center
for Molecular Toxicology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Anna V. Elleman
- A. B. Hancock, Jr., Memorial
Laboratory for Cancer Research, Department of Biochemistry, Chemistry
and Pharmacology, Vanderbilt Institute of Chemical Biology, Center
for Molecular Toxicology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kebreab Ghebreselasie
- A. B. Hancock, Jr., Memorial
Laboratory for Cancer Research, Department of Biochemistry, Chemistry
and Pharmacology, Vanderbilt Institute of Chemical Biology, Center
for Molecular Toxicology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Cristina K. Daniel
- A. B. Hancock, Jr., Memorial
Laboratory for Cancer Research, Department of Biochemistry, Chemistry
and Pharmacology, Vanderbilt Institute of Chemical Biology, Center
for Molecular Toxicology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Brenda C. Crews
- A. B. Hancock, Jr., Memorial
Laboratory for Cancer Research, Department of Biochemistry, Chemistry
and Pharmacology, Vanderbilt Institute of Chemical Biology, Center
for Molecular Toxicology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kellie D. Nance
- A. B. Hancock, Jr., Memorial
Laboratory for Cancer Research, Department of Biochemistry, Chemistry
and Pharmacology, Vanderbilt Institute of Chemical Biology, Center
for Molecular Toxicology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Tamanna Huda
- A. B. Hancock, Jr., Memorial
Laboratory for Cancer Research, Department of Biochemistry, Chemistry
and Pharmacology, Vanderbilt Institute of Chemical Biology, Center
for Molecular Toxicology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Lawrence J. Marnett
- A. B. Hancock, Jr., Memorial
Laboratory for Cancer Research, Department of Biochemistry, Chemistry
and Pharmacology, Vanderbilt Institute of Chemical Biology, Center
for Molecular Toxicology and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|