1
|
Troeira Henriques S, Lawrence N, Kan MW, Malins LR, Craik DJ. Cell-Penetrating Cyclic and Disulfide-Rich Peptides Are Privileged Molecular Scaffolds for Intracellular Targeting. Biochemistry 2025; 64:1437-1449. [PMID: 40082248 DOI: 10.1021/acs.biochem.4c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Peptides that have a head-to-tail cyclic backbone tend to be more stable than linear peptides, as do peptides that contain one or more cross-linking disulfide bond. Some of these cyclic and/or disulfide rich peptides have been reported to penetrate cells. These include peptides from a wide range of natural sources, including plants, spiders, crabs, and humans. In this review we describe the structures and biophysical properties of a selected set of such peptides that have been studied in our laboratories. We further describe how they can be engineered to enhance their stability and cellular uptake, and to fine-tune selective cell entry and activity toward intracellular therapeutic targets. Examples of targets described include intracellular protein-protein interactions implicated in cancer, intracellular malarial parasites and intracellular bacterial targets. In addition to the important advances being made with these nature-inspired peptides, the rapid strides in machine learning and artificial intelligence seen over recent years promise to accelerate the use of de novo design methods to produce peptides that are able to pass through biological membranes. We describe examples where such approaches have been used to design macrocyclic peptides and peptide-drug conjugates that can penetrate cell membranes and even have significant oral bioavailability in some cases.
Collapse
Affiliation(s)
- Sónia Troeira Henriques
- School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nicole Lawrence
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Meng-Wei Kan
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lara R Malins
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
- The Australian National University, Canberra, ACT 2601, Australia
| | - David J Craik
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
Philippe GJB, Huang YH, Mittermeier A, Brown CJ, Kaas Q, Ramlan SR, Wang CK, Lane D, Loewer A, Troeira Henriques S, Craik DJ. Delivery to, and Reactivation of, the p53 Pathway in Cancer Cells Using a Grafted Cyclotide Conjugated with a Cell-Penetrating Peptide. J Med Chem 2024; 67:1197-1208. [PMID: 38174919 DOI: 10.1021/acs.jmedchem.3c01682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Peptides are promising drug modalities that can modulate protein-protein interactions, but their application is hampered by their limited ability to reach intracellular targets. Here, we improved the cytosolic delivery of a peptide blocking p53:MDM2/X interactions using a cyclotide as a stabilizing scaffold. We applied several design strategies to improve intracellular delivery and found that the conjugation of the lead cyclotide to the cyclic cell-penetrating peptide cR10 was the most effective. Conjugation allowed cell internalization at micromolar concentration and led to elevated intracellular p53 levels in A549, MCF7, and MCF10A cells, as well as inducing apoptosis in A549 cells without causing membrane disruption. The lead peptide had >35-fold improvement in inhibitory activity and increased cellular uptake compared to a previously reported cyclotide p53 activator. In summary, we demonstrated the delivery of a large polar cyclic peptide in the cytosol and confirmed its ability to modulate intracellular protein-protein interactions involved in cancer.
Collapse
Affiliation(s)
- Grégoire Jean-Baptiste Philippe
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Anna Mittermeier
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
| | - Christopher J Brown
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Siti Radhiah Ramlan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David Lane
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Alexander Loewer
- Department of Biology, Technical University Darmstadt, 64287 Darmstadt, Germany
| | - Sónia Troeira Henriques
- School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
3
|
Melander E, Eriksson C, Wellens S, Hosseini K, Fredriksson R, Gosselet F, Culot M, Göransson U, Hammarlund-Udenaes M, Loryan I. Differential Blood-Brain Barrier Transport and Cell Uptake of Cyclic Peptides In Vivo and In Vitro. Pharmaceutics 2023; 15:pharmaceutics15051507. [PMID: 37242750 DOI: 10.3390/pharmaceutics15051507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The blood-brain barrier (BBB) poses major challenges to drug delivery to the CNS. SFTI-1 and kalata B1 are cyclic cell-penetrating peptides (cCPPs) with high potential to be used as scaffolds for drug delivery. We here studied their transport across the BBB and distribution within the brain to gauge the potential of these two cCPPs as scaffolds for CNS drugs. In a rat model, SFTI-1 exhibited, for a peptide, high extent of BBB transport with a partitioning of unbound SFTI-1 across the BBB, Kp,uu,brain, of 13%, while only 0.5% of kalata B1 equilibrated across the BBB. By contrast, kalata B1, but not SFTI-1, readily entered neural cells. SFTI-1, but not kalata B1, could be a potential CNS delivery scaffold for drugs directed to extracellular targets. These findings indicate that differences between the BBB transport and cellular uptake abilities of CPPs are crucial in the development of peptide scaffolds.
Collapse
Affiliation(s)
- Erik Melander
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| | - Camilla Eriksson
- Department of Pharmaceutical Biosciences, Uppsala University, 75123 Uppsala, Sweden
| | - Sara Wellens
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des Sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz SP18, F-62300 Lens, France
| | - Kimia Hosseini
- Department of Pharmaceutical Biosciences, Uppsala University, 75123 Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Uppsala University, 75123 Uppsala, Sweden
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des Sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz SP18, F-62300 Lens, France
| | - Maxime Culot
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des Sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz SP18, F-62300 Lens, France
| | - Ulf Göransson
- Department of Pharmaceutical Biosciences, Uppsala University, 75123 Uppsala, Sweden
| | | | - Irena Loryan
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
4
|
Ciulla MG, Gelain F. Structure-activity relationships of antibacterial peptides. Microb Biotechnol 2023; 16:757-777. [PMID: 36705032 PMCID: PMC10034643 DOI: 10.1111/1751-7915.14213] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/08/2022] [Accepted: 01/01/2023] [Indexed: 01/28/2023] Open
Abstract
Antimicrobial peptides play a crucial role in innate immunity, whose components are mainly peptide-based molecules with antibacterial properties. Indeed, the exploration of the immune system over the past 40 years has revealed a number of natural peptides playing a pivotal role in the defence mechanisms of vertebrates and invertebrates, including amphibians, insects, and mammalians. This review provides a discussion regarding the antibacterial mechanisms of peptide-based agents and their structure-activity relationships (SARs) with the aim of describing a topic that is not yet fully explored. Some growing evidence suggests that innate immunity should be strongly considered for the development of novel antibiotic peptide-based libraries. Also, due to the constantly rising concern of antibiotic resistance, the development of new antibiotic drugs is becoming a priority of global importance. Hence, the study and the understanding of defence phenomena occurring in the immune system may inspire the development of novel antibiotic compound libraries and set the stage to overcome drug-resistant pathogens. Here, we provide an overview of the importance of peptide-based antibacterial sources, focusing on accurately selected molecular structures, their SARs including recently introduced modifications, their latest biotechnology applications, and their potential against multi-drug resistant pathogens. Last, we provide cues to describe how antibacterial peptides show a better scope of action selectivity than several anti-infective agents, which are characterized by non-selective activities and non-targeted actions toward pathogens.
Collapse
Affiliation(s)
- Maria Gessica Ciulla
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Fabrizio Gelain
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
5
|
Zhang Q, Liu N, Wang J, Liu Y, Wang K, Zhang J, Pan X. The Recent Advance of Cell-Penetrating and Tumor-Targeting Peptides as Drug Delivery Systems Based on Tumor Microenvironment. Mol Pharm 2023; 20:789-809. [PMID: 36598861 DOI: 10.1021/acs.molpharmaceut.2c00629] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cancer has become the primary reason for industrial countries death. Although first-line treatments have achieved remarkable results in inhibiting tumors, they could have serious side effects because of insufficient selectivity. Therefore, specific localization of tumor cells is currently the main desire for cancer treatment. In recent years, cell-penetrating peptides (CPPs), as a kind of promising delivery vehicle, have attracted much attention because they mediate the high-efficiency import of large quantities of cargos in vivo and vitro. Unfortunately, the poor targeting of CPPs is still a barrier to their clinical application. In order to solve this problem, researchers use the various characteristics of tumor microenvironment and multiple receptors to improve the specificity toward tumors. This review focuses on the characteristics of the tumor microenvironment, and introduces the development of strategies and peptides based on these characteristics as drug delivery system in the tumor-targeted therapy.
Collapse
Affiliation(s)
- Qingqing Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Nanxin Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuying Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Kai Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
6
|
Dang TT, Harvey PJ, Chan LY, Huang Y, Kaas Q, Craik DJ. Mutagenesis of cyclotide Cter 27 exemplifies a robust folding strategy for bracelet cyclotides. Pept Sci (Hoboken) 2022. [DOI: 10.1002/pep2.24284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tien T. Dang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland
- Institute of Applied Materials Science Vietnam Academy of Science and Technology Ho Chi Minh City Australia
| | - Peta J. Harvey
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland
| | - Lai Yue Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland
| | - Yen‐Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland
| | - David J. Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science The University of Queensland Brisbane Queensland
| |
Collapse
|
7
|
Abstract
AbstractBiophysical studies have a very high impact on the understanding of internalization, molecular mechanisms, interactions, and localization of CPPs and CPP/cargo conjugates in live cells or in vivo. Biophysical studies are often first carried out in test-tube set-ups or in vitro, leading to the complicated in vivo systems. This review describes recent studies of CPP internalization, mechanisms, and localization. The multiple methods in these studies reveal different novel and important aspects and define the rules for CPP mechanisms, hopefully leading to their improved applicability to novel and safe therapies.
Collapse
Affiliation(s)
- Matjaž Zorko
- University of Ljubljana, Medical Faculty, Institute of Biochemistry and Molecular Genetics, Vrazov trg 2, 1000Ljubljana, Slovenia,
| | - Ülo Langel
- University of Stockholm, Department of Biochemistry and Biophysics, Svante Arrhenius väg 16, 106 91 Stockholm, Sweden, , and Institute of Technology, University of Tartu, Nooruse 1, Tartu, Estonia, 50411
| |
Collapse
|
8
|
Buyanova M, Pei D. Targeting intracellular protein-protein interactions with macrocyclic peptides. Trends Pharmacol Sci 2022; 43:234-248. [PMID: 34911657 PMCID: PMC8840965 DOI: 10.1016/j.tips.2021.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/23/2021] [Accepted: 11/09/2021] [Indexed: 01/07/2023]
Abstract
Intracellular protein-protein interactions (PPIs) are challenging targets for traditional drug modalities. Macrocyclic peptides (MPs) prove highly effective PPI inhibitors in vitro and can be rapidly discovered against PPI targets by rational design or screening combinatorial libraries but are generally impermeable to the cell membrane. Recent advances in MP science and technology are allowing for the development of 'drug-like' MPs that potently and specifically modulate intracellular PPI targets in cell culture and animal models. In this review, we highlight recent progress in generating cell-permeable MPs that enter the mammalian cell by passive diffusion, endocytosis followed by endosomal escape, or as-yet unknown mechanisms.
Collapse
Affiliation(s)
- Marina Buyanova
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
9
|
Sajid MI, Moazzam M, Stueber R, Park SE, Cho Y, Malik NUA, Tiwari RK. Applications of amphipathic and cationic cyclic cell-penetrating peptides: Significant therapeutic delivery tool. Peptides 2021; 141:170542. [PMID: 33794283 DOI: 10.1016/j.peptides.2021.170542] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/16/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
A new class of peptides, cyclic cell-penetrating peptides (CPPs), has great potential for delivering a vast variety of therapeutics intracellularly for treating diverse ailments. CPPs have been used previously; however, their further use is limited due to instability, toxicity, endosomal degradation, and insufficient cellular penetration. Cyclic CPPs are being investigated in delivering therapeutics to treat various ailments, including multi-drug resistant microbial infections, HIV, and cancer. They can act as a carrier for a variety of cargos and target intracellularly. Approximately 40 cyclic peptides-based therapeutics are available in the market, and annually one cyclic peptide-based drug enters the market. Numerous research and review articles have been published in the last decade about linear and cyclic peptides separately. This review is the first to provide a comprehensive deliberation about cationic and amphipathic cyclic CPPs. Herein, we highlights their structures, significant advantages, translocation mechanisms, and delivery application in the area of biomedical sciences.
Collapse
Affiliation(s)
- Muhammad Imran Sajid
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA; Faculty of Pharmacy, University of Central Punjab, Lahore, 54000, Pakistan
| | - Muhammad Moazzam
- Faculty of Pharmacy, University of Central Punjab, Lahore, 54000, Pakistan
| | - Ryan Stueber
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - Shang Eun Park
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - Yeseom Cho
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - Noor Ul Ain Malik
- Faculty of Pharmacy, University of Central Punjab, Lahore, 54000, Pakistan
| | - Rakesh K Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA.
| |
Collapse
|
10
|
Laurent Q, Martinent R, Lim B, Pham AT, Kato T, López-Andarias J, Sakai N, Matile S. Thiol-Mediated Uptake. JACS AU 2021; 1:710-728. [PMID: 34467328 PMCID: PMC8395643 DOI: 10.1021/jacsau.1c00128] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 05/19/2023]
Abstract
This Perspective focuses on thiol-mediated uptake, that is, the entry of substrates into cells enabled by oligochalcogenides or mimics, often disulfides, and inhibited by thiol-reactive agents. A short chronology from the initial observations in 1990 until today is followed by a summary of cell-penetrating poly(disulfide)s (CPDs) and cyclic oligochalcogenides (COCs) as privileged scaffolds in thiol-mediated uptake and inhibitors of thiol-mediated uptake as potential antivirals. In the spirit of a Perspective, the main part brings together topics that possibly could help to explain how thiol-mediated uptake really works. Extreme sulfur chemistry mostly related to COCs and their mimics, cyclic disulfides, thiosulfinates/-onates, diselenolanes, benzopolysulfanes, but also arsenics and Michael acceptors, is viewed in the context of acidity, ring tension, exchange cascades, adaptive networks, exchange affinity columns, molecular walkers, ring-opening polymerizations, and templated polymerizations. Micellar pores (or lipid ion channels) are considered, from cell-penetrating peptides and natural antibiotics to voltage sensors, and a concise gallery of membrane proteins, as possible targets of thiol-mediated uptake, is provided, including CLIC1, a thiol-reactive chloride channel; TMEM16F, a Ca-activated scramblase; EGFR, the epithelial growth factor receptor; and protein-disulfide isomerase, known from HIV entry or the transferrin receptor, a top hit in proteomics and recently identified in the cellular entry of SARS-CoV-2.
Collapse
Affiliation(s)
- Quentin Laurent
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Rémi Martinent
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Bumhee Lim
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Anh-Tuan Pham
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Takehiro Kato
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | | | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
11
|
Dang TT, Chan LY, Tombling BJ, Harvey PJ, Gilding EK, Craik DJ. In Planta Discovery and Chemical Synthesis of Bracelet Cystine Knot Peptides from Rinorea bengalensis. JOURNAL OF NATURAL PRODUCTS 2021; 84:395-407. [PMID: 33570395 DOI: 10.1021/acs.jnatprod.0c01065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cyclotides are plant-derived peptides that have attracted interest as biocides and scaffolds for the development of stable peptide therapeutics. Cyclotides are characterized by their cyclic backbone and cystine knot framework, which engenders them with remarkably high stability. This study reports the cystine knot-related peptidome of Rinorea bengalensis, a small rainforest tree in the Violaceae family that is distributed from Australia westward to India. Surprisingly, many more acyclic knotted peptides (acyclotides) were discovered than cyclic counterparts (cyclotides), with 32 acyclotides and 1 cyclotide sequenced using combined transcriptome and proteomic analyses. Nine acyclotides were isolated and screened against a panel of mammalian cell lines, showing they had the cytotoxic properties normally associated with cyclotide-like peptides. NMR analysis of the acyclotide ribes 21 and 22 and the cyclotide ribe 33 confirmed that these peptides contained the cystine knot structural motif. The bracelet-subfamily cyclotide ribe 33 was amenable to chemical synthesis in reasonable yield, an achievement that has long eluded previous attempts to synthetically produce bracelet cyclotides. Accordingly, ribe 33 represents an exciting new bracelet cyclotide scaffold that can be subject to chemical modification for future molecular engineering applications.
Collapse
Affiliation(s)
- Tien T Dang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lai Y Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Benjamin J Tombling
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peta J Harvey
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Edward K Gilding
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
12
|
Li Y, Zhao Z, Lin CY, Liu Y, Staveley-OCarroll KF, Li G, Cheng K. Silencing PCBP2 normalizes desmoplastic stroma and improves the antitumor activity of chemotherapy in pancreatic cancer. Am J Cancer Res 2021; 11:2182-2200. [PMID: 33500719 PMCID: PMC7797682 DOI: 10.7150/thno.53102] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Dense desmoplastic stroma is a fundamental characteristic of pancreatic ductal adenocarcinoma (PDAC) and comprises up to 80% of the tumor mass. Type I collagen is the major component of the extracellular matrix (ECM), which acts as a barrier to impede the delivery of drugs into the tumor microenvironment. While the strategy to deplete PDAC stroma has failed in clinical trials, normalization of the stroma to allow chemotherapy to kill the tumor cells in the “nest” could be a promising strategy for PDAC therapy. We hypothesize that silencing the poly(rC)-binding protein 2 (αCP2, encoded by the PCBP2 gene) leads to the destabilization and normalization of type I collagen in the PDAC stroma. Methods: We develop a micro-flow mixing method to fabricate a peptide-based core-stabilized PCBP2 siRNA nanocomplex to reverse the accumulation of type I collagen in PDAC tumor stroma. Various in vitro studies were performed to evaluate the silencing activity, cellular uptake, serum stability, and tumor penetration of the PCBP2 siRNA nanocomplex. We also investigated the penetration of small molecules in stroma-rich pancreatic cancer spheroids after the treatment with the PCBP2 siRNA nanocomplex. The anti-tumor activity of the PCBP2 siRNA nanocomplex and its combination with gemcitabine was evaluated in an orthotopic stroma-rich pancreatic cancer mouse model. Results: Silencing the PCBP2 gene using siRNA reverses the accumulation of type I collagen in human pancreatic stellate cells (PSCs) and mouse NIH 3T3 fibroblast cells. The siRNA nanocomplex significantly reduces ECM production and enhances drug penetration through desmoplastic tumor stroma. The combination of gemcitabine with the PCBP2 siRNA nanocomplex markedly suppresses the tumor progression in a desmoplastic PDAC orthotopic mouse model. Conclusion: This approach provides a new therapeutic avenue to improve the antitumor efficacy of PDAC therapies by normalizing tumor stroma using the PCBP2 siRNA nanocomplex.
Collapse
|
13
|
Cyclic gomesin, a stable redesigned spider peptide able to enter cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183480. [PMID: 32979382 DOI: 10.1016/j.bbamem.2020.183480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/08/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022]
Abstract
Anticancer chemo- and targeted therapies are limited in some cases due to strong side effects and/or drug resistance. Peptides have received renascent interest as anticancer therapeutics and are currently being considered as alternatives and/or as complementary to biologics and small-molecule drugs. Gomesin, a disulfide-rich host defense peptide expressed in the Brazilian spider Acanthoscurria gomesiana selectively targets and disrupts cancer cell membranes. In the current study, we employed a range of biophysical methodologies with model membranes and bioassays to investigate the use of a cyclic analogue of gomesin as a drug scaffold to internalize cancer cells. We found that cyclic gomesin can internalize cancer cells via endocytosis and direct membrane permeation. In addition, we designed an improved non-disruptive and non-toxic cyclic gomesin analogue by incorporating D-amino acids within the scaffold. This improved analogue retained the ability to enter cancer cells and can be used as a scaffold to deliver drugs. Efforts to investigate the internalization mechanism used by host defense peptides, and to improve their stability, potency, selectivity and ability to permeate cancer cell membranes will increase the opportunities to repurpose peptides as templates for designing alternative anticancer therapeutic leads.
Collapse
|
14
|
Dang TT, Chan LY, Huang YH, Nguyen LTT, Kaas Q, Huynh T, Craik DJ. Exploring the Sequence Diversity of Cyclotides from Vietnamese Viola Species. JOURNAL OF NATURAL PRODUCTS 2020; 83:1817-1828. [PMID: 32437150 DOI: 10.1021/acs.jnatprod.9b01218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Viola is the largest genus in the Violaceae plant family and is known for its ubiquitous natural production of cyclotides. Many Viola species are used as medicinal herbs across Asia and are often consumed by humans in teas for the treatment of diseases, including ulcers and asthma. Previous studies reported the isolation of cyclotides from Viola species in many countries in the hope of discovering novel compounds with anti-cancer activities; however, Viola species from Vietnam have not been investigated to date. Here, the discovery of cyclotides from three Viola species (V. arcuata, V. tonkinensis, and V. austrosinensis) collected in the northern mountainous region of Vietnam is reported. Ten cyclotides were isolated from these three Viola species: four are novel and six were previously reported to be expressed in other plants. The structures of three of the new bracelet cyclotides are similar to that of cycloviolacin O2. Because cycloviolacin O2 has previously been shown to have potent activity against a wide range of cancer cell lines including HeLa (human cervical cancer cells) and PC-3 (human prostate cancer cells), the cancer cytotoxicity of the cyclotides isolated from V. arcuata was assessed. All tested cyclotides were cytotoxic against cancer cells, albeit to varying degrees. The sequences discovered in this study significantly expand the understanding of cyclotide diversity, especially in comparison with other cyclotides found in plants from the Asian region.
Collapse
Affiliation(s)
- Tien T Dang
- The Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lai Y Chan
- The Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yen-Hua Huang
- The Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Linh T T Nguyen
- The Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Quentin Kaas
- The Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tien Huynh
- Department of Biosciences and Food Technology, RMIT University, Victoria 3001, Australia
| | - David J Craik
- The Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
15
|
Yin H, Huang YH, Deprey K, Condon ND, Kritzer JA, Craik DJ, Wang CK. Cellular Uptake and Cytosolic Delivery of a Cyclic Cystine Knot Scaffold. ACS Chem Biol 2020; 15:1650-1661. [PMID: 32315152 DOI: 10.1021/acschembio.0c00297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclotides are macrocyclic peptides with exceptionally stable structures and have been reported to penetrate cells, making them promising scaffolds for the delivery of inhibitory peptides to target intracellular proteins. However, their cellular uptake and cytosolic localization have been poorly understood until now, which has limited their therapeutic potential. In this study, the recently developed chloroalkane penetration assay was combined with established assays to characterize the cellular uptake and cytosolic delivery of the prototypic cyclotide, kalata B1. We show that kalata B1 enters the cytosol at low efficiency. A structure-activity study of residues in loop 6 showed that some modifications, such as increasing cationic residue content, did not affect delivery efficiency, whereas others, including introducing a single hydrophobic amino acid, did significantly improve cytosolic delivery. Our results provide a foundation for the further development of a structurally unique class of scaffolds for the delivery of therapeutic cargoes into cells.
Collapse
Affiliation(s)
- Huawu Yin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kirsten Deprey
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Nicholas D. Condon
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Joshua A. Kritzer
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Conan K. Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
16
|
Vernen F, Craik DJ, Lawrence N, Troeira Henriques S. Cyclic Analogues of Horseshoe Crab Peptide Tachyplesin I with Anticancer and Cell Penetrating Properties. ACS Chem Biol 2019; 14:2895-2908. [PMID: 31714739 DOI: 10.1021/acschembio.9b00782] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Tachyplesin-I (TI) is a host defense peptide from the horseshoe crab Tachypleus tridentatus that has outstanding potential as an anticancer therapeutic lead. Backbone cyclized TI (cTI) has similar anticancer properties to TI but has higher stability and lower hemolytic activity. We designed and synthesized cTI analogues to further improve anticancer potential and investigated structure-activity relationships based on peptide-membrane interactions, cellular uptake, and anticancer activity. The membrane-binding affinity and cytotoxic activity of cTI were found to be highly dependent on peptide hydrophobicity and charge. We describe two analogues with increased selectivity toward melanoma cells and one analogue with the ability to enter cells with high efficacy and low toxicity. Overall, the structure-activity relationship study shows that cTI can be developed as a membrane-active antimelanoma lead, or be employed as a cell penetrating peptide scaffold that can target and enter cells without damaging their integrity.
Collapse
Affiliation(s)
- Felicitas Vernen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Queensland 4102, Australia
| |
Collapse
|
17
|
Abstract
This Review explores the class of plant-derived macrocyclic peptides called cyclotides. We include an account of their discovery, characterization, and distribution in the plant kingdom as well as a detailed analysis of their sequences and structures, biosynthesis and chemical synthesis, biological functions, and applications. These macrocyclic peptides are around 30 amino acids in size and are characterized by their head-to-tail cyclic backbone and cystine knot motif, which render them to be exceptionally stable, with resistance to thermal or enzymatic degradation. Routes to their chemical synthesis have been developed over the past two decades, and this capability has facilitated a wide range of mutagenesis and structure-activity relationship studies. In turn, these studies have both led to an increased understanding of their mechanisms of action as well as facilitated a range of applications in agriculture and medicine, as ecofriendly crop protection agents, and as drug leads or scaffolds for pharmaceutical design. Our overall objective in this Review is to provide readers with a comprehensive overview of cyclotides that we hope will stimulate further work on this fascinating family of peptides.
Collapse
Affiliation(s)
- Simon J de Veer
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Meng-Wei Kan
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland 4072 , Australia
| |
Collapse
|
18
|
Jing X, Jin K. A gold mine for drug discovery: Strategies to develop cyclic peptides into therapies. Med Res Rev 2019; 40:753-810. [PMID: 31599007 DOI: 10.1002/med.21639] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/05/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
As a versatile therapeutic modality, peptides attract much attention because of their great binding affinity, low toxicity, and the capability of targeting traditionally "undruggable" protein surfaces. However, the deficiency of cell permeability and metabolic stability always limits the success of in vitro bioactive peptides as drug candidates. Peptide macrocyclization is one of the most established strategies to overcome these limitations. Over the past decades, more than 40 cyclic peptide drugs have been clinically approved, the vast majority of which are derived from natural products. The de novo discovered cyclic peptides on the basis of rational design and in vitro evolution, have also enabled the binding with targets for which nature provides no solutions. The current review summarizes different classes of cyclic peptides with diverse biological activities, and presents an overview of various approaches to develop cyclic peptide-based drug candidates, drawing upon series of examples to illustrate each strategy.
Collapse
Affiliation(s)
- Xiaoshu Jing
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Kang Jin
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, Shandong, China
| |
Collapse
|
19
|
Philippe GJB, Gaspar D, Sheng C, Huang YH, Benfield AH, Condon ND, Weidmann J, Lawrence N, Löwer A, Castanho MARB, Craik DJ, Troeira Henriques S. Cell Membrane Composition Drives Selectivity and Toxicity of Designed Cyclic Helix-Loop-Helix Peptides with Cell Penetrating and Tumor Suppressor Properties. ACS Chem Biol 2019; 14:2071-2087. [PMID: 31390185 DOI: 10.1021/acschembio.9b00593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The tumor suppressor protein p53 is inactive in a large number of cancers, including some forms of sarcoma, breast cancer, and leukemia, due to overexpression of its intrinsic inhibitors MDM2 and MDMX. Reactivation of p53 tumor suppressor activity, via disruption of interactions between MDM2/X and p53 in the cytosol, is a promising strategy to treat cancer. Peptides able to bind MDM2 and/or MDMX were shown to prevent MDM2/X:p53 interactions, but most possess low cell penetrability, low stability, and/or high toxicity to healthy cells. Recently, the designed peptide cHLH-p53-R was reported to possess high affinity for MDM2, resistance toward proteases, cell-penetrating properties, and toxicity toward cancer cells. This peptide uses a stable cyclic helix-loop-helix (cHLH) scaffold, which includes two helices connected with a Gly loop and cyclized to improve stability. In the current study, we were interested in examining the cell selectivity of cHLH-p53-R, its cellular internalization, and ability to reactivate the p53 pathway. We designed analogues of cHLH-p53-R and employed biochemical and biophysical methodologies using in vitro model membranes and cell-based assays to compare their structure, activity, and mode-of-action. Our studies show that cHLH is an excellent scaffold to stabilize and constrain p53-mimetic peptides with helical conformation, and reveal that anticancer properties of cHLH-p53-R are mediated by its ability to selectively target, cross, and disrupt cancer cell membranes, and not by activation of the p53 pathway. These findings highlight the importance of examining the mode-of-action of designed peptides to fully exploit their potential to develop targeted therapies.
Collapse
Affiliation(s)
- Grégoire J.-B. Philippe
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, QLD 4072, Australia
| | - Diana Gaspar
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Caibin Sheng
- Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, QLD 4072, Australia
| | - Aurélie H. Benfield
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, QLD 4072, Australia
- School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Nicholas D. Condon
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, QLD 4072, Australia
| | - Joachim Weidmann
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, QLD 4072, Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, QLD 4072, Australia
| | | | - Miguel A. R. B. Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - David J. Craik
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, QLD 4072, Australia
- School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, QLD 4102, Australia
| |
Collapse
|
20
|
Abstract
Approximately 75% of all disease-relevant human proteins, including those involved in intracellular protein-protein interactions (PPIs), are undruggable with the current drug modalities (i.e., small molecules and biologics). Macrocyclic peptides provide a potential solution to these undruggable targets because their larger sizes (relative to conventional small molecules) endow them the capability of binding to flat PPI interfaces with antibody-like affinity and specificity. Powerful combinatorial library technologies have been developed to routinely identify cyclic peptides as potent, specific inhibitors against proteins including PPI targets. However, with the exception of a very small set of sequences, the vast majority of cyclic peptides are impermeable to the cell membrane, preventing their application against intracellular targets. This Review examines common structural features that render most cyclic peptides membrane impermeable, as well as the unique features that allow the minority of sequences to enter the cell interior by passive diffusion, endocytosis/endosomal escape, or other mechanisms. We also present the current state of knowledge about the molecular mechanisms of cell penetration, the various strategies for designing cell-permeable, biologically active cyclic peptides against intracellular targets, and the assay methods available to quantify their cell-permeability.
Collapse
Affiliation(s)
- Patrick G. Dougherty
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| | - Ashweta Sahni
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
21
|
Park SE, Sajid MI, Parang K, Tiwari RK. Cyclic Cell-Penetrating Peptides as Efficient Intracellular Drug Delivery Tools. Mol Pharm 2019; 16:3727-3743. [PMID: 31329448 DOI: 10.1021/acs.molpharmaceut.9b00633] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cyclic cell-penetrating peptides are relatively a newer class of peptides that have a huge potential for the intracellular delivery of therapeutic agents aimed at treating challenging ailments like multidrug-resistant bacterial diseases, cancer, and HIV infection. Cell-penetrating peptides (CPPs) have been extensively explored as intracellular delivery vehicles; however, they have some inherent limitations like poor stability, endosomal entrapment, toxicity, and suboptimal cell penetration. Owing to their favorable properties that avoid these limitations, cyclic CPPs can provide a good alternative to linear CPPs. Several Reviews have been published in the past decade that cover CPPs and cyclic peptides independently. To the best of our knowledge, this is one of the first Reviews that covers cyclic CPPs comprehensively in the light of studies published so far. In this Review, we have detailed examples of cyclic CPPs, their structures, and cyclization strategies followed by a detailed account of their advantages over their linear counterparts. A hot area in cyclic CPPs is the exploration of cell-penetration mechanisms; this Review highlights this topic in detail. Finally, we will review the applications of cyclic CPPs, followed by conclusions and future prospects.
Collapse
Affiliation(s)
- Shang Eun Park
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences , Chapman University School of Pharmacy , Harry and Diane Rinker Health Science Campus, Irvine , California 92618 , United States
| | - Muhammad Imran Sajid
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences , Chapman University School of Pharmacy , Harry and Diane Rinker Health Science Campus, Irvine , California 92618 , United States
- Faculty of Pharmacy , University of Central Punjab , Lahore 54000 , Pakistan
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences , Chapman University School of Pharmacy , Harry and Diane Rinker Health Science Campus, Irvine , California 92618 , United States
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences , Chapman University School of Pharmacy , Harry and Diane Rinker Health Science Campus, Irvine , California 92618 , United States
| |
Collapse
|
22
|
Koehbach J, Craik DJ. The Vast Structural Diversity of Antimicrobial Peptides. Trends Pharmacol Sci 2019; 40:517-528. [DOI: 10.1016/j.tips.2019.04.012] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 01/08/2023]
|
23
|
Ojeda PG, Henriques ST, Pan Y, Nicolazzo JA, Craik DJ, Wang CK. Lysine to arginine mutagenesis of chlorotoxin enhances its cellular uptake. Biopolymers 2018; 108. [PMID: 28459137 DOI: 10.1002/bip.23025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/31/2017] [Accepted: 04/10/2017] [Indexed: 12/14/2022]
Abstract
Chlorotoxin (CTX), a disulfide-rich peptide from the scorpion Leiurus quinquestriatus, has several promising biopharmaceutical properties, including preferential affinity for certain cancer cells, high serum stability, and cell penetration. These properties underpin its potential for use as a drug design scaffold, especially for the treatment of cancer; indeed, several analogs of CTX have reached clinical trials. Here, we focus on its ability to internalize into cells-a trait associated with a privileged subclass of peptides called cell-penetrating peptides-and whether it can be improved through conservative substitutions. Mutants of CTX were made using solid-phase peptide synthesis and internalization into human cervical carcinoma (HeLa) cells was monitored by fluorescence and confocal microscopy. CTX_M1 (ie, [K15R/K23R]CTX) and CTX_M2 (ie, [K15R/K23R/Y29W]CTX) mutants showed at least a twofold improvement in uptake compared to CTX. We further showed that these mutants internalize into HeLa cells largely via an energy-dependent mechanism. Importantly, the mutants have high stability, remaining intact in serum for over 24 h; thus, retaining the characteristic stability of their parent peptide. Overall, we have shown that simple conservative substitutions can enhance the cellular uptake of CTX, suggesting that such type of mutations might be useful for improving uptake of other peptide toxins.
Collapse
Affiliation(s)
- Paola G Ojeda
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
24
|
Swedberg JE, Ghani HA, Harris JM, de Veer SJ, Craik DJ. Potent, Selective, and Cell-Penetrating Inhibitors of Kallikrein-Related Peptidase 4 Based on the Cyclic Peptide MCoTI-II. ACS Med Chem Lett 2018; 9:1258-1262. [PMID: 30613336 DOI: 10.1021/acsmedchemlett.8b00422] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022] Open
Abstract
Kallikrein-related peptidase 4 (KLK4) is a serine protease that has putative intracellular and extracellular functions in prostate cancer progression. Here we show that MCoTI-II, a 34-amino acid cyclic peptide found in the seeds of red gac (Momordica cochinchinensis), is an inhibitor of KLK4. By grafting a preferred KLK4 cleavage sequence into MCoTI-II, we produced a highly potent KLK4 inhibitor (K i = 0.1 nM) that displayed 100,000-fold selectivity over related KLKs and the ability to penetrate cells. Additionally, by substituting positively charged noncontact residues in this compound, we produced a potent and selective KLK4 inhibitor that does not penetrate cells. The inhibitors were shown to be nontoxic to human cells and stable in human serum. These KLK4 inhibitors provide useful chemical tools to further define the role(s) of both intracellular and extracellular KLK4 in prostate cancer cell lines and disease models.
Collapse
Affiliation(s)
- Joakim E. Swedberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hafiza Abdul Ghani
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jonathan M. Harris
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Simon J. de Veer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
25
|
Designing macrocyclic disulfide-rich peptides for biotechnological applications. Nat Chem Biol 2018; 14:417-427. [DOI: 10.1038/s41589-018-0039-y] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022]
|
26
|
Bode SA, Löwik DWPM. Constrained cell penetrating peptides. DRUG DISCOVERY TODAY. TECHNOLOGIES 2017; 26:33-42. [PMID: 29249241 DOI: 10.1016/j.ddtec.2017.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
In this review we provide an overview of recent developments in the field of cell penetrating peptides (CPPs) on research that aims to achieve better control over their transduction properties - one of the big challenges - by means of restraining them. Three different constraining strategies are presented: triggerable activation, backbone rigidification and macrocyclization. Each of these methods have their opportunities in gaining control over CPP activity and selectivity.
Collapse
Affiliation(s)
- S A Bode
- Radboud University Nijmegen, Institute for Molecules and Materials, Bio-organic Chemistry, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - D W P M Löwik
- Radboud University Nijmegen, Institute for Molecules and Materials, Bio-organic Chemistry, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
27
|
Identification of cyclic peptides for facilitation of transcellular transport of phages across intestinal epithelium in vitro and in vivo. J Control Release 2017; 262:232-238. [DOI: 10.1016/j.jconrel.2017.07.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/28/2017] [Accepted: 07/26/2017] [Indexed: 11/22/2022]
|
28
|
Abdul Ghani H, Henriques ST, Huang YH, Swedberg JE, Schroeder CI, Craik DJ. Structural and functional characterization of chimeric cyclotides from the Möbius and trypsin inhibitor subfamilies. Biopolymers 2017; 108. [DOI: 10.1002/bip.22927] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Hafiza Abdul Ghani
- Institute for Molecular Bioscience, The University of Queensland; Brisbane Queensland 4072 Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland; Brisbane Queensland 4072 Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, The University of Queensland; Brisbane Queensland 4072 Australia
| | - Joakim E. Swedberg
- Institute for Molecular Bioscience, The University of Queensland; Brisbane Queensland 4072 Australia
| | - Christina I. Schroeder
- Institute for Molecular Bioscience, The University of Queensland; Brisbane Queensland 4072 Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland; Brisbane Queensland 4072 Australia
| |
Collapse
|
29
|
Troeira Henriques S, Craik DJ. Cyclotide Structure and Function: The Role of Membrane Binding and Permeation. Biochemistry 2017; 56:669-682. [DOI: 10.1021/acs.biochem.6b01212] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 QLD, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072 QLD, Australia
| |
Collapse
|
30
|
Philippe G, Huang Y, Cheneval O, Lawrence N, Zhang Z, Fairlie DP, Craik DJ, de Araujo AD, Henriques ST. Development of cell‐penetrating peptide‐based drug leads to inhibit MDMX:p53 and MDM2:p53 interactions. Pept Sci (Hoboken) 2016; 106:853-863. [DOI: 10.1002/bip.22893] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/23/2016] [Accepted: 05/31/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Grégoire Philippe
- Institute for Molecular Biosciencethe University of Queensland QLD4072 Australia
| | - Yen‐Hua Huang
- Institute for Molecular Biosciencethe University of Queensland QLD4072 Australia
| | - Olivier Cheneval
- Institute for Molecular Biosciencethe University of Queensland QLD4072 Australia
| | - Nicole Lawrence
- Institute for Molecular Biosciencethe University of Queensland QLD4072 Australia
| | - Zhen Zhang
- Institute for Molecular Biosciencethe University of Queensland QLD4072 Australia
| | - David P Fairlie
- Institute for Molecular Biosciencethe University of Queensland QLD4072 Australia
| | - David J. Craik
- Institute for Molecular Biosciencethe University of Queensland QLD4072 Australia
| | | | | |
Collapse
|
31
|
Mahatmanto T. Review seed biopharmaceutical cyclic peptides: From discovery to applications. Biopolymers 2016; 104:804-14. [PMID: 26385189 DOI: 10.1002/bip.22741] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/17/2015] [Accepted: 09/16/2015] [Indexed: 02/02/2023]
Abstract
Mini-proteins (or peptides) with disulfide bond/s and a cyclic backbone offer exciting opportunities for applications in medicine, as these ribosomally synthesized and posttranslationally modified peptides are exceptionally stable and amenable to grafting epitopes with desirable activities. Here I discuss important aspects of the discovery and applications of disulfide-bonded cyclic peptides from seeds, i.e., the trypsin inhibitor cyclotides and the preproalbumin with sunflower trypsin inhibitor-derived peptides, focusing on bioanalytical methods for and insights generated from their discovery as well as their potential use as engineering scaffolds for peptide-based drug design. The recent discovery of their precursors and processing enzymes could potentially enable in planta production of designer disulfide-bonded cyclic peptides, preferably in edible seeds, and address the demand for new biopharmaceutical peptides in a cost-effective manner.
Collapse
Affiliation(s)
- Tunjung Mahatmanto
- Department of Agricultural Product Technology, Faculty of Agricultural Technology, Brawijaya University, Malang, East Java, 65145, Indonesia
| |
Collapse
|
32
|
|
33
|
Verbandt S, Henriques ST, Spincemaille P, Harvey PJ, Chandhok G, Sauer V, De Coninck B, Cassiman D, Craik DJ, Cammue BPA, De Cremer K, Thevissen K. Identification of survival-promoting OSIP108 peptide variants and their internalization in human cells. Mech Ageing Dev 2016; 161:247-254. [PMID: 27491841 DOI: 10.1016/j.mad.2016.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/30/2016] [Accepted: 07/30/2016] [Indexed: 11/19/2022]
Abstract
The plant-derived decapeptide OSIP108 increases tolerance of yeast and human cells to apoptosis-inducing agents, such as copper and cisplatin. We performed a whole amino acid scan of OSIP108 and conducted structure-activity relationship studies on the induction of cisplatin tolerance (CT) in yeast. The use of cisplatin as apoptosis-inducing trigger in this study should be considered as a tool to better understand the survival-promoting nature of OSIP108 and not for purposes related to anti-cancer treatment. We found that charged residues (Arg, His, Lys, Glu or Asp) or a Pro on positions 4-7 improved OSIP108 activity by 10% or more. The variant OSIP108[G7P] induced the most pronounced tolerance to toxic concentrations of copper and cisplatin in yeast and/or HepG2 cells. Both OSIP108 and OSIP108[G7P] were shown to internalize equally into HeLa cells, but at a higher rate than the inactive OSIP108[E10A], suggesting that the peptides can internalize into cells and that OSIP108 activity is dependent on subsequent intracellular interactions. In conclusion, our studies demonstrated that tolerance/survival-promoting properties of OSIP108 can be significantly improved by single amino acid substitutions, and that these properties are dependent on (an) intracellular target(s), yet to be determined.
Collapse
Affiliation(s)
- Sara Verbandt
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | | | - Pieter Spincemaille
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium; Department of Laboratory Medicine, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - Peta J Harvey
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Gursimran Chandhok
- Clinic for Transplantation Medicine, Münster University Hospital, Albert-Schweitzer-Campus 1, Building A14, D-48149 Münster, Germany
| | - Vanessa Sauer
- Clinic for Transplantation Medicine, Münster University Hospital, Albert-Schweitzer-Campus 1, Building A14, D-48149 Münster, Germany
| | - Barbara De Coninck
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
| | - David Cassiman
- Department of Hepatology and Metabolic Center, University Hospital Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - David J Craik
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Kaat De Cremer
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, CMPG, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| |
Collapse
|
34
|
Zhang D, Wang J, Xu D. Cell-penetrating peptides as noninvasive transmembrane vectors for the development of novel multifunctional drug-delivery systems. J Control Release 2016; 229:130-139. [PMID: 26993425 DOI: 10.1016/j.jconrel.2016.03.020] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 12/30/2022]
Abstract
Unique characteristics, such as nontoxicity and rapid cellular internalization, allow the cell-penetrating peptides (CPPs) to transport hydrophilic macromolecules into cells, thus, enabling them to execute biological functions. However, some CPPs have limitations due to nonspecificity and easy proteolysis. To overcome such defects, the CPP amino acid sequence can be modified, replaced, and reconstructed for optimization. CPPs can also be used in combination with other drug vectors, fused with their preponderances to create novel multifunctional drug-delivery systems that increase the stability during blood circulation, and also develop novel preparations capable of targeted delivery, along with sustainable and controllable release. Further improvements in CPP structure can facilitate the penetration of macromolecules into diverse biomembrane structures, such as the blood brain barrier, gastroenteric mucosa, and skin dermis. The ability of CPP to act as transmembrane vectors improves the clinical application of some biomolecules to treat central nervous system diseases, increase oral bioavailability, and develop percutaneous-delivery dosage form.
Collapse
Affiliation(s)
- Dongdong Zhang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PR China; Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China
| | - Jiaxi Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PR China
| | - Donggang Xu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, PR China; Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China.
| |
Collapse
|
35
|
Wang CK, Stalmans S, De Spiegeleer B, Craik DJ. Biodistribution of the cyclotide MCoTI-II, a cyclic disulfide-rich peptide drug scaffold. J Pept Sci 2016; 22:305-10. [PMID: 26929247 DOI: 10.1002/psc.2862] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 12/28/2022]
Abstract
Disulfide-rich macrocyclic peptides are promising templates for drug design because of their unique topology and remarkable stability. However, little is known about their pharmacokinetics. In this study, we characterize the biodistribution in mice of Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II), a cyclic three-disulfide-containing peptide that has been used in a number of studies as a drug scaffold. The distribution of MCoTI-II was compared with that of chlorotoxin, which is a four-disulfide-containing peptide that has been used to develop brain tumor imaging agents; dermorphin, which is a disulfide-less peptide; and bovine serum albumin, a large protein. Both MCoTI-II and chlorotoxin distributed predominantly to the serum and kidneys, confirming that they are stable in serum and suggesting that they are eliminated from the blood through renal clearance. Although cell-penetrating peptides have been reported to be able to transport across the blood-brain barrier, MCoTI-II, which is a cell-penetrating peptide, showed no uptake into the brain. The uptake of chlorotoxin was higher than that of MCoTI-II but lower than that of dermorphin, which is considered to have low uptake into the brain. This study provides insight into the behavior of disulfide-rich peptides in vivo. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Conan K Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Sofie Stalmans
- Drug Quality and Registration (DruQuaR) Group, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
36
|
D’Souza C, Henriques ST, Wang CK, Cheneval O, Chan LY, Bokil NJ, Sweet MJ, Craik DJ. Using the MCoTI-II Cyclotide Scaffold To Design a Stable Cyclic Peptide Antagonist of SET, a Protein Overexpressed in Human Cancer. Biochemistry 2016; 55:396-405. [DOI: 10.1021/acs.biochem.5b00529] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Charlotte D’Souza
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland Australia, 4072
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland Australia, 4072
| | - Conan K. Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland Australia, 4072
| | - Olivier Cheneval
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland Australia, 4072
| | - Lai Yue Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland Australia, 4072
| | - Nilesh J. Bokil
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland Australia, 4072
| | - Matthew J. Sweet
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland Australia, 4072
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland Australia, 4072
| |
Collapse
|
37
|
Nevola L, Giralt E. Modulating protein-protein interactions: the potential of peptides. Chem Commun (Camb) 2015; 51:3302-15. [PMID: 25578807 DOI: 10.1039/c4cc08565e] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein-protein interactions (PPIs) have emerged as important and challenging targets in chemical biology and medicinal chemistry. The main difficulty encountered in the discovery of small molecule modulators derives from the large contact surfaces involved in PPIs when compared with those that participate in protein-small molecule interactions. Because of their intrinsic features, peptides can explore larger surfaces and therefore represent a useful alternative to modulate PPIs. The use of peptides as therapeutics has been held back by their instability in vivo and poor cell internalization. However, more than 200 peptide drugs and homologous compounds (proteins or antibodies) containing peptide bonds are (or have been) on the market, and many alternatives are now available to tackle these limitations. This review will focus on the latest progress in the field, spanning from "lead" identification methods to binding evaluation techniques, through an update of the most successful examples described in the literature.
Collapse
Affiliation(s)
- Laura Nevola
- Institute for Research in Biomedicine (IRB Barcelona), C/Baldiri Reixac 10, 08028 Barcelona, Spain.
| | | |
Collapse
|
38
|
Cyclic thrombospondin-1 mimetics: grafting of a thrombospondin sequence into circular disulfide-rich frameworks to inhibit endothelial cell migration. Biosci Rep 2015; 35:BSR20150210. [PMID: 26464514 PMCID: PMC4660582 DOI: 10.1042/bsr20150210] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/12/2015] [Indexed: 12/22/2022] Open
Abstract
The findings suggest re-engineered cyclic TSP-1 mimetics are non-toxic, highly stable, and possess potent anti-angiogenesis activity without altering the native fold of the cyclic frameworks. This provides an alternative approach for cancer drug development particularly in the thrombospondin field. Tumour formation is dependent on nutrient and oxygen supply from adjacent blood vessels. Angiogenesis inhibitors can play a vital role in controlling blood vessel formation and consequently tumour progression by inhibiting endothelial cell proliferation, sprouting and migration. The primary aim of the present study was to design cyclic thrombospondin-1 (TSP-1) mimetics using disulfide-rich frameworks for anti-angiogenesis therapies and to determine whether these peptides have better potency than the linear parent peptide. A short anti-angiogenic heptapeptide fragment from TSP-1 (GVITRIR) was incorporated into two cyclic disulfide-rich frameworks, namely MCoTI-II (Momordica cochinchinensis trypsin inhibitor-II) and SFTI-1 (sunflower trypsin inhibitor-1). The cyclic peptides were chemically synthesized and folded in oxidation buffers, before being tested in a series of in vitro evaluations. Incorporation of the bioactive heptapeptide fragment into the cyclic frameworks resulted in peptides that inhibited microvascular endothelial cell migration, and had no toxicity against normal primary human endothelial cells or cancer cells. Importantly, all of the designed cyclic TSP-1 mimetics were far more stable than the linear heptapeptide in human serum. The present study has demonstrated a novel approach to stabilize the active region of TSP-1. The anti-angiogenic activity of the native TSP-1 active fragment was maintained in the new TSP-1 mimetics and the results provide a new chemical approach for the design of TSP-1 mimetics.
Collapse
|
39
|
Abstract
In the era of biomedicines and engineered carrier systems, cell penetrating peptides (CPPs) have been established as a promising tool for therapeutic application. Likewise, other therapeutic peptides, successful in vivo application of CPPs will strongly depend on peptide stability, the bottleneck for this type of biodegradable molecules. In this review, the authors describe the current knowledge of the in vivo degradation for known CPPs and the different strategies available to provide a higher resistance to metabolic degradation while preserving cell penetration efficiency. Peptide stability can be improved by different means, either modifying the structure to make it unrecognizable to proteases, or preventing access of proteolytic enzymes by applying conformation restriction or shielding strategies.
Collapse
|
40
|
Design of substrate-based BCR-ABL kinase inhibitors using the cyclotide scaffold. Sci Rep 2015; 5:12974. [PMID: 26264857 PMCID: PMC4532999 DOI: 10.1038/srep12974] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/15/2015] [Indexed: 12/20/2022] Open
Abstract
The constitutively active tyrosine kinase BCR-ABL is the underlying cause of chronic myeloid leukemia (CML). Current CML treatments rely on the long-term use of tyrosine kinase inhibitors (TKIs), which target the ATP binding site of BCR-ABL. Over the course of treatment, 20–30% of CML patients develop TKI resistance, which is commonly attributed to point mutations in the drug-binding region. We design a new class of peptide inhibitors that target the substrate-binding site of BCR-ABL by grafting sequences derived from abltide, the optimal substrate of Abl kinase, onto a cell-penetrating cyclotide MCoTI-II. Three grafted cyclotides show significant Abl kinase inhibition in vitro in the low micromolar range using a novel kinase inhibition assay. Our work also demonstrates that a reengineered MCoTI-II with abltide sequences grafted in both loop 1 and 6 inhibits the activity of [T315I]Abl in vitro, a mutant Abl kinase harboring the “gatekeeper” mutation which is notorious for being multidrug resistant. Results from serum stability and cell internalization studies confirm that the MCoTI-II scaffold provides enzymatic stability and cell-penetrating properties to the lead molecules. Taken together, our study highlights that reengineered cyclotides incorporating abltide-derived sequences are promising substrate-competitive inhibitors for Abl kinase and the T315I mutant.
Collapse
|
41
|
Henriques S, Huang YH, Chaousis S, Sani MA, Poth A, Separovic F, Craik D. The Prototypic Cyclotide Kalata B1 Has a Unique Mechanism of Entering Cells. ACTA ACUST UNITED AC 2015; 22:1087-97. [DOI: 10.1016/j.chembiol.2015.07.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 06/20/2015] [Accepted: 07/08/2015] [Indexed: 12/29/2022]
|
42
|
Maaß F, Wüstehube-Lausch J, Dickgießer S, Valldorf B, Reinwarth M, Schmoldt HU, Daneschdar M, Avrutina O, Sahin U, Kolmar H. Cystine-knot peptides targeting cancer-relevant human cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). J Pept Sci 2015; 21:651-60. [PMID: 25964162 DOI: 10.1002/psc.2782] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/15/2015] [Accepted: 03/16/2015] [Indexed: 11/09/2022]
Abstract
Cystine-knot peptides sharing a common fold but displaying a notably large diversity within the primary structure of flanking loops have shown great potential as scaffolds for the development of therapeutic and diagnostic agents. In this study, we demonstrated that the cystine-knot peptide MCoTI-II, a trypsin inhibitor from Momordica cochinchinensis, can be engineered to bind to cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), an inhibitory receptor expressed by T lymphocytes, that has emerged as a target for the treatment of metastatic melanoma. Directed evolution was used to convert a cystine-knot trypsin inhibitor into a CTLA-4 binder by screening a library of variants using yeast surface display. A set of cystine-knot peptides possessing dissociation constants in the micromolar range was obtained; the most potent variant was synthesized chemically. Successive conjugation with neutravidin, fusion to antibody Fc domain or the oligomerization domain of C4b binding protein resulted in oligovalent variants that possessed enhanced (up to 400-fold) dissociation constants in the nanomolar range. Our data indicate that display of multiple knottin peptides on an oligomeric scaffold protein is a valid strategy to improve their functional affinity with ramifications for applications in diagnostics and therapy.
Collapse
Affiliation(s)
- Franziska Maaß
- Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | | | - Stephan Dickgießer
- Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Bernhard Valldorf
- Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Michael Reinwarth
- Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | | | | | - Olga Avrutina
- Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | | | - Harald Kolmar
- Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
43
|
Mazzio E, Georges B, McTier O, Soliman KFA. Neurotrophic Effects of Mu Bie Zi (Momordica cochinchinensis) Seed Elucidated by High-Throughput Screening of Natural Products for NGF Mimetic Effects in PC-12 Cells. Neurochem Res 2015; 40:2102-12. [PMID: 25862192 DOI: 10.1007/s11064-015-1560-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 12/22/2022]
Abstract
Post-mitotic central nervous system (CNS) neurons have limited capacity for regeneration, creating a challenge in the development of effective therapeutics for spinal cord injury or neurodegenerative diseases. Furthermore, therapeutic use of human neurotrophic agents such as nerve growth factor (NGF) are limited due to hampered transport across the blood brain barrier (BBB) and a large number of peripheral side effects (e.g. neuro-inflammatory pain/tissue degeneration etc.). Therefore, there is a continued need for discovery of small molecule NGF mimetics that can penetrate the BBB and initiate CNS neuronal outgrowth/regeneration. In the current study, we conduct an exploratory high-through-put (HTP) screening of 1144 predominantly natural/herb products (947 natural herbs/plants/spices, 29 polyphenolics and 168 synthetic drugs) for ability to induce neurite outgrowth in PC12 dopaminergic cells grown on rat tail collagen, over 7 days. The data indicate a remarkably rare event-low hit ratio with only 1/1144 tested substances (<111.25 µg/mL) being capable of inducing neurite outgrowth in a dose dependent manner, identified as; Mu Bie Zi, Momordica cochinchinensis seed extract (MCS). To quantify the neurotrophic effects of MCS, 36 images (n = 6) (average of 340 cells per image), were numerically assessed for neurite length, neurite count/cell and min/max neurite length in microns (µm) using Image J software. The data show neurite elongation from 0.07 ± 0.02 µm (controls) to 5.5 ± 0.62 µm (NGF 0.5 μg/mL) and 3.39 ± 0.45 µm (138 μg/mL) in MCS, where the average maximum length per group extended from 3.58 ± 0.42 µm (controls) to 41.93 ± 3.14 µm (NGF) and 40.20 ± 2.72 µm (MCS). Imaging analysis using immunocytochemistry (ICC) confirmed that NGF and MCS had similar influence on 3-D orientation/expression of 160/200 kD neurofilament, tubulin and F-actin. These latent changes were associated with early rise in phosphorylated extracellular signal-regulated kinase (ERK) p-Erk1 (T202/Y204)/p-Erk2 (T185/Y187) at 60 min with mild changes in pAKT peaking at 5 min, and no indication of pMEK involvement. These findings demonstrate a remarkable infrequency of natural products or polyphenolic constituents to exert neurotrophic effects at low concentrations, and elucidate a unique property of MCS extract to do so. Future research will be required to delineate in depth mechanism of action of MCS, constituents responsible and potential for therapeutic application in CNS degenerative disease or injury.
Collapse
Affiliation(s)
- E Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Room 104, Dyson Pharmacy Building, 1520 ML King Blvd, Tallahassee, FL, 32307, USA
| | - B Georges
- Department of Biology, Florida A&M University, Tallahassee, FL, 32307, USA
| | - O McTier
- Department of Biology, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Room 104, Dyson Pharmacy Building, 1520 ML King Blvd, Tallahassee, FL, 32307, USA.
| |
Collapse
|
44
|
Huang YH, Chaousis S, Cheneval O, Craik DJ, Henriques ST. Optimization of the cyclotide framework to improve cell penetration properties. Front Pharmacol 2015; 6:17. [PMID: 25709580 PMCID: PMC4321561 DOI: 10.3389/fphar.2015.00017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/20/2015] [Indexed: 12/11/2022] Open
Abstract
Cell penetrating peptides have been regarded as promising vectors to deliver hydrophilic molecules inside cells. Although they are great tools for research and have high potential as drug delivery systems, their application as drugs is impaired by their low stability in serum. Cyclotides, cyclic disulfide-rich peptides from plants, are ultra-stable molecules that have inspired applications in drug design as they can be used as scaffolds to stabilize linear bioactive sequences. Recently, they have also been shown to possess cell-penetrating properties. The combination of their remarkable stability and cell-penetrating properties opens new avenues for the application of peptides to bind to and inhibit intracellular proteins. Nevertheless, for a broader application of these molecules as vectors is of utmost importance to improve their cellular internalization efficiency. In this study we successfully modified MCoTI-II, one of the most widely studied cyclotide scaffolds in drug design, and improved its internalization properties. The internalization of the newly designed MCoTI-II is as efficient as the gold standard cell-penetrating peptide (CPP) TAT and maintains all the required features as a template to graft desired bioactivities.
Collapse
Affiliation(s)
- Yen-Hua Huang
- Institute for Molecular Bioscience, The University of Queensland Brisbane, QLD, Australia
| | - Stephanie Chaousis
- Institute for Molecular Bioscience, The University of Queensland Brisbane, QLD, Australia
| | - Olivier Cheneval
- Institute for Molecular Bioscience, The University of Queensland Brisbane, QLD, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland Brisbane, QLD, Australia
| | - Sónia T Henriques
- Institute for Molecular Bioscience, The University of Queensland Brisbane, QLD, Australia
| |
Collapse
|
45
|
Aboye T, Kuang Y, Neamati N, Camarero JA. Rapid parallel synthesis of bioactive folded cyclotides by using a tea-bag approach. Chembiochem 2015; 16:827-33. [PMID: 25663016 DOI: 10.1002/cbic.201402691] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Indexed: 11/07/2022]
Abstract
We report here the first rapid parallel production of bioactive folded cyclotides by using Fmoc-based solid-phase peptide synthesis in combination with a "tea-bag" approach. Using this approach, we efficiently synthesized 15 analogues of the CXCR4 antagonist cyclotide MCo-CVX-5c. Cyclotides were synthesized in a single-pot, cyclization/folding reaction in the presence of reduced glutathione. Natively folded cyclotides were quickly purified from the cyclization/folding crude mixture by activated thiol Sepharose-based chromatography. The different folded cyclotide analogues were then tested for their ability to inhibit the CXCR4 receptor in a cell-based assay. The results indicated that this approach can be used for the efficient chemical synthesis of libraries of cyclotides with improved biological properties that can be easily interfaced with solution or cell-based assays for rapid screening.
Collapse
Affiliation(s)
- Teshome Aboye
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089-9121 (USA)
| | | | | | | |
Collapse
|
46
|
Jones LH, Heinis C. Chemical biology & drug discovery. Eur J Med Chem 2014; 88:1-2. [PMID: 25307206 DOI: 10.1016/j.ejmech.2014.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Lyn H Jones
- Worldwide Medicinal Chemistry, Pfizer BioTherapeutics Chemistry, Cambridge, MA, USA.
| | - Christian Heinis
- Laboratory of Therapeutic Proteins and Peptides (LPPT), École Polytechnique Fédérale de Lausanne (EPFL), BCH 5305 (Bâtochime), Lausanne CH-1015, Switzerland.
| |
Collapse
|
47
|
Mahatmanto T, Mylne JS, Poth AG, Swedberg JE, Kaas Q, Schaefer H, Craik DJ. The evolution of Momordica cyclic peptides. Mol Biol Evol 2014; 32:392-405. [PMID: 25376175 DOI: 10.1093/molbev/msu307] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cyclic proteins have evolved for millions of years across all kingdoms of life to confer structural stability over their acyclic counterparts while maintaining intrinsic functional properties. Here, we show that cyclic miniproteins (or peptides) from Momordica (Cucurbitaceae) seeds evolved in species that diverged from an African ancestor around 19 Ma. The ability to achieve head-to-tail cyclization of Momordica cyclic peptides appears to have been acquired through a series of mutations in their acyclic precursor coding sequences following recent and independent gene expansion event(s). Evolutionary analysis of Momordica cyclic peptides reveals sites that are under selection, highlighting residues that are presumably constrained for maintaining their function as potent trypsin inhibitors. Molecular dynamics of Momordica cyclic peptides in complex with trypsin reveals site-specific residues involved in target binding. In a broader context, this study provides a basis for selecting Momordica species to further investigate the biosynthesis of the cyclic peptides and for constructing libraries that may be screened against evolutionarily related serine proteases implicated in human diseases.
Collapse
Affiliation(s)
- Tunjung Mahatmanto
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Joshua S Mylne
- The University of Western Australia, School of Chemistry and Biochemistry & The ARC Centre of Excellence in Plant Energy Biology, Crawley, Perth, WA, Australia
| | - Aaron G Poth
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Joakim E Swedberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| | - Hanno Schaefer
- Plant Biodiversity Research, Technische Universität München, Freising, Germany
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|