1
|
Çapan İ, Hawash M, Jaradat N, Sert Y, Servi R, Koca İ. Design, synthesis, molecular docking and biological evaluation of new carbazole derivatives as anticancer, and antioxidant agents. BMC Chem 2023; 17:60. [PMID: 37328860 DOI: 10.1186/s13065-023-00961-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/25/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND The carbazole skeleton is an important structural motif occurring naturally or synthesized chemically and has antihistaminic, antioxidant, antitumor, antimicrobial, and anti-inflammatory activities. OBJECTIVES This study aimed to design and synthesize a novel series of carbazole derivatives and evaluate their antiproliferative and antioxidant activities. METHODS The synthesized compounds were characterized utilizing HRMS, 1H-, and 13CAPT-NMR, and assessed for their anticancer, antifibrotic, and antioxidant effects utilizing reference biomedical procedures. In addition, the AutoDock Vina application was used to perform in-silico docking computations. RESULTS A series of carbazole derivatives were synthesized and characterized in the current study. Compounds 10 and 11 were found to have a stronger antiproliferative effect than compounds 2-5 against HepG2, HeLa, and MCF7 cancer cell lines with IC50 values of 7.68, 10.09, and 6.44 µM, respectively. Moreover, compound 9 showed potent antiproliferative activity against HeLa cancer cell lines with an IC50 value of 7.59 µM. However, except for compound 5, all of the synthesized compounds showed moderate antiproliferative activities against CaCo-2 with IC50 values in the range of 43.7-187.23 µM. All of these values were compared with the positive control anticancer drug 5-Fluorouracil (5-FU). In addition, compound 9 showed the most potent anti-fibrotic compound, and the cellular viability of LX-2 was found 57.96% at 1 µM concentration in comparison with the positive control 5-FU. Moreover, 4 and 9 compounds showed potent antioxidant activities with IC50 values of 1.05 ± 0.77 and 5.15 ± 1.01 µM, respectively. CONCLUSION Most of the synthesized carbazole derivatives showed promising antiproliferative, antioxidant, and antifibrotic biological effects, and further in-vivo investigations are needed to approve or disapprove these results.
Collapse
Affiliation(s)
- İrfan Çapan
- Department of Material and Material Processing Technologies, Gazi University, Technical Sciences Vocational College, 06560, Ankara, Turkey.
| | - Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, 00970, Nablus, Palestine.
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, 00970, Nablus, Palestine
| | - Yusuf Sert
- Yozgat Bozok University, Sorgun Vocational School, Yozgat, Turkey
| | - Refik Servi
- Department of Anatomy, Faculty of Medicine, Firat University, Elazig, Turkey
| | - İrfan Koca
- Department of Chemistry, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
2
|
Liu W, He M, Li Y, Peng Z, Wang G. A review on synthetic chalcone derivatives as tubulin polymerisation inhibitors. J Enzyme Inhib Med Chem 2021; 37:9-38. [PMID: 34894980 PMCID: PMC8667932 DOI: 10.1080/14756366.2021.1976772] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microtubules play an important role in the process of cell mitosis and can form a spindle in the mitotic prophase of the cell, which can pull chromosomes to the ends of the cell and then divide into two daughter cells to complete the process of mitosis. Tubulin inhibitors suppress cell proliferation by inhibiting microtubule dynamics and disrupting microtubule homeostasis. Thereby inducing a cell cycle arrest at the G2/M phase and interfering with the mitotic process. It has been found that a variety of chalcone derivatives can bind to microtubule proteins and disrupt the dynamic balance of microtubules, inhibit the proliferation of tumour cells, and exert anti-tumour effects. Consequently, a great number of studies have been conducted on chalcone derivatives targeting microtubule proteins. In this review, synthetic or natural chalcone microtubule inhibitors in recent years are described, along with their structure-activity relationship (SAR) for anticancer activity.
Collapse
Affiliation(s)
- Wenjing Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,Teaching and Research Section of Natural Medicinal Chemistry, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Min He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,Teaching and Research Section of Natural Medicinal Chemistry, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| |
Collapse
|
3
|
Rahimzadeh Oskuei S, Mirzaei S, Reza Jafari-Nik M, Hadizadeh F, Eisvand F, Mosaffa F, Ghodsi R. Design, synthesis and biological evaluation of novel imidazole-chalcone derivatives as potential anticancer agents and tubulin polymerization inhibitors. Bioorg Chem 2021; 112:104904. [PMID: 33933802 DOI: 10.1016/j.bioorg.2021.104904] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 12/30/2022]
Abstract
Novel imidazole-chalcone derivatives were designed and synthesized as tubulin polymerization inhibitors and anticancer agents. The antiproliferative activity of the imidazole-chalcone was assessed on some human cancer cell lines including A549 (adenocarcinoma human alveolar basal epithelial cells), MCF-7 (human breast cancer cells), MCF-7/MX (mitoxantrone resistant human breast cancer cells), and HEPG2 (human hepatocellular carcinoma cells). Generally, the imidazole-chalcone derivatives exhibited more cytotoxicity on A549 cancer cells in comparison to the other three cell lines, among them compounds 9j' and 9g showed significant cytotoxicity with IC50 values ranging from 7.05 to 63.43 μM against all the four human cancer cells. The flow cytometry analysis of A549 cancer cells treated with 9g and 9j' displayed that these compounds induced cell cycle arrest at the G2/M phase at low concentrations and increased the number of apoptotic cells (cells in subG1 phase) at higher concentrations. They have also inhibited tubulin polymerization similar to combretastatin A-4 (CA-4). Annexin V binding staining assay in A549 cancer cells revealed that compound 9j' induced apoptosis (early and late). Finally, molecular docking studies of 9j' into the colchicine-binding site of tubulin presented the probable interactions of these compounds with tubulin.
Collapse
Affiliation(s)
- Sara Rahimzadeh Oskuei
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Salimeh Mirzaei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad Reza Jafari-Nik
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhad Eisvand
- Department of Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Recent advances in research of colchicine binding site inhibitors and their interaction modes with tubulin. Future Med Chem 2021; 13:839-858. [PMID: 33821673 DOI: 10.4155/fmc-2020-0376] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Microtubules have been a concerning target of cancer chemotherapeutics for decades, and several tubulin-targeted agents, such as paclitaxel, vincristine and vinorelbine, have been approved. The colchicine binding site is one of the primary targets on microtubules and possesses advantages compared with other tubulin-targeted agents, such as inhibitors of tumor vessels and overcoming P-glycoprotein overexpression-mediated multidrug resistance. This study reviews and summarizes colchicine binding site inhibitors reported in recent years with structural studies via the crystal structures of complexes or computer simulations to discover new lead compounds. We are attempting to resolve the challenge of colchicine site agent research.
Collapse
|
5
|
Jayalakshmi A, Keerthika N, Santhanagopal R. Polychalcones based on triphenylamine and carbazole building blocks via
Claisen–Schmidt
route. J Appl Polym Sci 2021. [DOI: 10.1002/app.50679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Arumugam Jayalakshmi
- Department of Chemistry Central University of Tamil Nadu Thiruvarur Tamil Nadu India
| | - Nagarajan Keerthika
- Department of Chemistry Central University of Tamil Nadu Thiruvarur Tamil Nadu India
| | | |
Collapse
|
6
|
Mohamed MFA, Abuo-Rahma GEDA. Molecular targets and anticancer activity of quinoline-chalcone hybrids: literature review. RSC Adv 2020; 10:31139-31155. [PMID: 35520674 PMCID: PMC9056499 DOI: 10.1039/d0ra05594h] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/30/2020] [Indexed: 01/01/2023] Open
Abstract
α,β-Unsaturated chalcone moieties and quinoline scaffolds play an important role in medicinal chemistry, especially in the identification and development of potential anticancer agents. The multi-target approach or hybridization is considered as a promising strategy in drug design and discovery. Hybridization may improve the affinity and potency while simultaneously decreasing the resistance and/or side effects. The conjugation of quinolines with chalcones has been a promising approach to the identification of potential anticancer agents. Most of these hybrids showed anticancer activities through the inhibition of tubulin polymerization, different kinases, topoisomerases, or by affecting DNA cleavage activity. Accordingly, this class of compounds can be classified based on their molecular modes of action. In this article, the quinolone-chalcone hybrids with potential anticancer activity have been reviewed. This class of compounds might be helpful for the design, discovery and development of new and potential multi-target anticancer agents or drugs.
Collapse
Affiliation(s)
- Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University 82524 Sohag Egypt (+20)-1018384461
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University Minia 61519 Egypt +201003069431
| |
Collapse
|
7
|
Mirzaei S, Eisvand F, Hadizadeh F, Mosaffa F, Ghasemi A, Ghodsi R. Design, synthesis and biological evaluation of novel 5,6,7-trimethoxy-N-aryl-2-styrylquinolin-4-amines as potential anticancer agents and tubulin polymerization inhibitors. Bioorg Chem 2020; 98:103711. [PMID: 32179282 DOI: 10.1016/j.bioorg.2020.103711] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 01/17/2023]
Abstract
A new series of styrylquinolines was designed and synthesized as anticancer agents and tubulin polymerization inhibitors. The in vitro anticancer activity of the synthesized quinolines was evaluated against four human cancer cell lines including A-2780 (human ovarian carcinoma), A-2780/RCIS (cisplatin resistant human ovarian carcinoma), MCF-7 (human breast cancer cells), MCF-7/MX (mitoxantrone resistant human breast cancer cells) and normal Huvec cells. Generally, among the forty-eight newly synthesized quinolines, compounds possessing N-trimethoxy phenyl showed stronger cytotoxic activity with IC50 values ranging from 0.38 to 5.01 μM against all four cancer cell lines. Compounds 9VII-c and 9IV-c showed significant cytotoxic activity on A-2780 cancer cells, stronger than the other compounds and comparable to reference drug CA-4. Compound 9IV-c possessing 3,4-dimethoxystyryl and N-trimethoxy phenyl groups demonstrated potent cytotoxic effects with IC50 values ranging from 0.5 to 1.66 µM on resistant cancer cells as well as their parental cells. Annexin V binding staining assay in A-2780 and MCF-7/MX cancer cells, revealed that compound 9IV-c induced early and late apoptosis. Compounds 9IV-c and 9VII-b, inhibited tubulin polymerization similar to CA4. Finally, molecular docking studies of 9IV-c and 9VII-b into the colchicine-binding site of tubulin displayed the possible interactions of these compounds with tubulin.
Collapse
Affiliation(s)
- Salimeh Mirzaei
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhad Eisvand
- Department of Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Ghasemi
- Department of Pediatric Oncology-Hematology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Mirzaei S, Hadizadeh F, Eisvand F, Mosaffa F, Ghodsi R. Synthesis, structure-activity relationship and molecular docking studies of novel quinoline-chalcone hybrids as potential anticancer agents and tubulin inhibitors. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127310] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Wang G, Liu W, Gong Z, Huang Y, Li Y, Peng Z. Synthesis, biological evaluation, and molecular modelling of new naphthalene-chalcone derivatives as potential anticancer agents on MCF-7 breast cancer cells by targeting tubulin colchicine binding site. J Enzyme Inhib Med Chem 2020; 35:139-144. [PMID: 31724435 PMCID: PMC6882462 DOI: 10.1080/14756366.2019.1690479] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A series of naphthalene-chalcone derivatives (3a–3t) were prepared and evaluated as tubulin polymerisation inhibitor for the treatment of breast cancer. All compounds were evaluated for their antiproliferative activity against MCF-7 cell line. The most of compounds displayed potent antiproliferative activity. Among them, compound 3a displayed the most potent antiproliferative activity with an IC50 value of 1.42 ± 0.15 µM, as compared to cisplatin (IC50 = 15.24 ± 1.27 µM). Additionally, the promising compound 3a demonstrated relatively lower cytotoxicity on normal cell line (HEK293) compared to tumour cell line. Furthermore, compound 3a was found to induce significant cell cycle arrest at the G2/M phase and cell apoptosis. Compound 3a displayed potent tubulin polymerisation inhibitory activity with an IC50 value of 8.4 µM, which was slightly more active than the reference compound colchicine (IC50 = 10.6 µM). Molecular docking analysis suggested that 3a interact and bind at the colchicine binding site of the tubulin.
Collapse
Affiliation(s)
- Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,College of Chemistry and Chemical Engineering, Jishou University, Jishou, China
| | - Wenjing Liu
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China.,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- College of Chemistry and Chemical Engineering, Jishou University, Jishou, China.,College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
10
|
Lu S, Obianom ON, Ai Y. Novel hybrids derived from aspirin and chalcones potently suppress colorectal cancer in vitro and in vivo. MEDCHEMCOMM 2018; 9:1722-1732. [PMID: 30429977 DOI: 10.1039/c8md00284c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/23/2018] [Indexed: 01/06/2023]
Abstract
Colorectal cancer (CRC) remains the fourth leading cause of cancer deaths around the world despite the availability of many approved small molecules for treatment. The issues lie in the potency, selectivity and targeting of these compounds. Therefore, new strategies and targets are needed to optimize and develop novel treatments for CRC. Here, a group of novel hybrids derived from aspirin and chalcones were designed and synthesized based on recent reports of their individual benefits to CRC targeting and selectivity. The most active compound 7h inhibited proliferation of CRC cell lines with better potency compared to 5-fluorouracil, a currently used therapeutic agent for CRC. Importantly, 7h had 8-fold less inhibitory activity against non-cancer CCD841 cells. In addition, 7h inhibited CRC growth via the inhibition of the cell cycle in the G1 phase. Furthermore, 7h induced apoptosis by activating caspase 3 and PARP cleavage, as well as increasing ROS in CRC cells. Finally, 7h significantly retarded the CRC cell growth in a mouse xenograft model. These findings suggest that 7h may have potential to treat CRC.
Collapse
Affiliation(s)
- Shan Lu
- College of Pharmacy , Hubei University of Chinese Medicine , Hubei 430065 , PR China .
| | - Obinna N Obianom
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , MD 21201 , USA .
| | - Yong Ai
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , MD 21201 , USA .
| |
Collapse
|
11
|
Castillo JC, Tigreros A, Portilla J. 3-Formylpyrazolo[1,5- a]pyrimidines as Key Intermediates for the Preparation of Functional Fluorophores. J Org Chem 2018; 83:10887-10897. [PMID: 30051714 DOI: 10.1021/acs.joc.8b01571] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A one-pot route for the regioselective synthesis of 3-formylpyrazolo[1,5- a]pyrimidines 4a-k in good yields through a microwave-assisted process is provided. The synthesis proceeds via a cyclocondensation reaction between β-enaminones 1 with NH-3-aminopyrazoles 2, followed by formylation with an iminium salt moiety (Vilsmeyer-Haack reagent). These N-heteroaryl aldehydes 4 were successfully used as strategic intermediates for the preparation of novel functional fluorophores with yields up to 98%. The structures of the products obtained and regioselectivity of the reactions were determined on the basis of NMR measurements and X-ray diffraction analysis. Since pyrazolo[1,5- a]pyrimidines (PPs) 3 have shown an important fluorescence, photophysical properties of four 2-methylderivatives substituted at position 7 with different acceptor (A) or donor (D) groups were investigated. The compounds evaluated exhibited large Stokes shift in different solvents, but only the substituted p-methoxyphenyl (4-An) showed a strong fluorescence intensity with quantum yields up to 44% due to its greater ICT. Therefore, hybrid systems based on pyrazolo[1,5- a]pyrimidines could be used as fluorescent probes to detect biologically or environmentally relevant species.
Collapse
Affiliation(s)
- Juan-Carlos Castillo
- Bioorganic Compounds Research Group, Department of Chemistry , Universidad de los Andes , Carrera 1 No. 18A-10 , Bogotá , Colombia
- Escuela de Ciencias Químicas, Facultad de Ciencias , Universidad Pedagógica y Tecnológica de Colombia UPTC , Avenida Central del Norte , Tunja , Colombia
| | - Alexis Tigreros
- Bioorganic Compounds Research Group, Department of Chemistry , Universidad de los Andes , Carrera 1 No. 18A-10 , Bogotá , Colombia
| | - Jaime Portilla
- Bioorganic Compounds Research Group, Department of Chemistry , Universidad de los Andes , Carrera 1 No. 18A-10 , Bogotá , Colombia
| |
Collapse
|
12
|
Okoniewska K, Konieczny MT, Lemke K, Grabowski T. Pharmacokinetic Studies of Oxathio-Heterocycle Fused Chalcones. Eur J Drug Metab Pharmacokinet 2017; 42:49-58. [PMID: 26815590 DOI: 10.1007/s13318-016-0320-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Chalcone constitutes one of the most used molecular frameworks in medicinal chemistry and its derivatives exhibit a broad spectrum of biological activities. Low absolute bioavailability, poor distribution, intensive metabolism and elimination of chalcones are the main problems in designing new drugs based on their structure. One of the fundamental steps in evaluation of drug candidates is a comparative analysis of pharmacokinetic parameters. The aim of the studies was the pharmacokinetic characterization of the selected oxathio-heterocycle fused chalcones. METHODS The pharmacokinetic parameters of 19 compounds were reported. The analyzed chalcones were examined after a single intravenous administration to forty 7-week-old mature male rats of Wistar stock. Pharmacokinetic analysis was performed independently using SHAM (slopes, highest, amounts, and moments) and the two-compartment model. Basic physiochemical parameters were calculated. The bioanalytical methods were validated in terms of repeatability, linearity, accuracy, precision, and selectivity. RESULTS The pharmacokinetics of the examined group of chalcones are compatible with the two-compartment model. The physicochemical characteristics of this group are quite homogeneous. The kinetics of the examined chalcones are indicative of a distribution to the tissue compartment with the predominance of a rate constant from central to peripheral compartments (k12) over the rate constant from peripheral to central compartments (k21). The elimination from the central compartment (k10) is higher than the transfer from the central compartment to the tissues (k10 > k12) in almost all examined cases. CONCLUSIONS The presented group of compounds may form a starting point for studies into drugs treating autoimmune diseases of the gastro-intestinal tract.
Collapse
Affiliation(s)
- Krystyna Okoniewska
- P.F.O. Vetos-Farma sp. z o. o., ul. Dzierżoniowska 21, 58-260, Bielawa, Poland.
| | - Marek T Konieczny
- Department of Chemical Technology of Drugs, Medical University of Gdansk, 80-416, Gdańsk, Poland
| | - Krzysztof Lemke
- Biovico sp. z o. o., ul. Hryniewickiego 6b/135, 81-340, Gdynia, Poland
| | | |
Collapse
|
13
|
Zhuang C, Zhang W, Sheng C, Zhang W, Xing C, Miao Z. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem Rev 2017; 117:7762-7810. [PMID: 28488435 PMCID: PMC6131713 DOI: 10.1021/acs.chemrev.7b00020] [Citation(s) in RCA: 856] [Impact Index Per Article: 107.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Privileged structures have been widely used as an effective template in medicinal chemistry for drug discovery. Chalcone is a common simple scaffold found in many naturally occurring compounds. Many chalcone derivatives have also been prepared due to their convenient synthesis. These natural products and synthetic compounds have shown numerous interesting biological activities with clinical potentials against various diseases. This review aims to highlight the recent evidence of chalcone as a privileged scaffold in medicinal chemistry. Multiple aspects of chalcone will be summarized herein, including the isolation of novel chalcone derivatives, the development of new synthetic methodologies, the evaluation of their biological properties, and the exploration of the mechanisms of action as well as target identification. This review is expected to be a comprehensive, authoritative, and critical review of the chalcone template to the chemistry community.
Collapse
Affiliation(s)
- Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Wen Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Wannian Zhang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Drive,
Gainesville, Florida 32610, United States
| | - Zhenyuan Miao
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
14
|
Sun B, Li L, Hu QW, Zheng HB, Tang H, Niu HM, Yuan HQ, Lou HX. Design, synthesis, biological evaluation and molecular modeling study of novel macrocyclic bisbibenzyl analogues as antitubulin agents. Eur J Med Chem 2017; 129:186-208. [DOI: 10.1016/j.ejmech.2017.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 11/17/2022]
|
15
|
Mirzaei H, Emami S. Recent advances of cytotoxic chalconoids targeting tubulin polymerization: Synthesis and biological activity. Eur J Med Chem 2016; 121:610-639. [PMID: 27318983 DOI: 10.1016/j.ejmech.2016.05.067] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/28/2016] [Accepted: 05/30/2016] [Indexed: 02/07/2023]
Abstract
Since microtubules have an important role in mitosis and other vital cellular functions, tubulin-targeting chemotherapy has been received growing attention in anticancer drug design and development. It was found that a number of naturally occurring compounds including distinct chalcones exert their effect by inhibition of tubulin polymerization. After the identification of tubulin polymerization as potential target for chalcone-type compounds, extensive researches have been made to design and synthesis of new anti-tubulin chalconoids. Although diverse chalcones have found to be potent anticancer agents but in the present review, we focused on the recently reported tubulin polymerization inhibitors from chalcone origin and related synthetic compounds, and their detailed synthetic methods and biological activities.
Collapse
Affiliation(s)
- Hassan Mirzaei
- Student Research Committee, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
16
|
Konieczny MT, Buɬakowska A, Pirska D, Konieczny W, Skladanowski A, Sabisz M, Wojciechowski M, Lemke K. Influence of S-Oxidation on Cytotoxic Activity of Oxathiole-Fused Chalcones. Chem Biol Drug Des 2016; 88:519-33. [DOI: 10.1111/cbdd.12776] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Marek T. Konieczny
- Department of Chemical Technology of Drugs; Medical University of Gdansk; Gen. J. Hallera Street 107 80-416 Gdansk Poland
| | - Anita Buɬakowska
- Department of Organic Chemistry; Medical University of Gdansk; 80-416 Gdansk Poland
| | - Danuta Pirska
- Department of Organic Chemistry; Medical University of Gdansk; 80-416 Gdansk Poland
| | - Wojciech Konieczny
- Department of Organic Chemistry; Medical University of Gdansk; 80-416 Gdansk Poland
| | - Andrzej Skladanowski
- Department of Pharmaceutical Technology and Biochemistry; Gdansk University of Technology; 80-233 Gdansk Poland
| | - Michal Sabisz
- Department of Pharmaceutical Technology and Biochemistry; Gdansk University of Technology; 80-233 Gdansk Poland
| | - Marek Wojciechowski
- Department of Pharmaceutical Technology and Biochemistry; Gdansk University of Technology; 80-233 Gdansk Poland
| | - Krzysztof Lemke
- Drug Discovery Department; Adamed Group; 05-152 Czosnow Poland
| |
Collapse
|
17
|
Zhou B, Yu X, Zhuang C, Villalta P, Lin Y, Lu J, Xing C. Unambiguous Identification of β-Tubulin as the Direct Cellular Target Responsible for the Cytotoxicity of Chalcone by Photoaffinity Labeling. ChemMedChem 2016; 11:1436-45. [PMID: 27203512 DOI: 10.1002/cmdc.201600150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/12/2016] [Indexed: 12/25/2022]
Abstract
Chalcone is a simple and potentially privileged structure in medicinal chemistry with a diverse repertoire of biological activities, among which cytotoxicity is of particular interest. The sharp structure-activity relationship (SAR) for chalcone's cytotoxicity suggests structure-specific target interactions. Despite the numerous putative targets proposed, evidence for direct target interactions in cells is unavailable. In this study, guided by the sharp cytotoxic SAR, we developed a cytotoxic chalcone-based photoaffinity labeling (PAL) probe, (E)-3-(3-azidophenyl)-1-[3,5-dimethoxy-4-(prop-2-yn-1-yloxy)phenyl]-2-methylprop-2-en-1-one (C95; IC50 : 0.38±0.01 μm), along with two structurally similar non-cytotoxic probes. These probes were used to search for the direct cellular target responsible for chalcone's cytotoxicity through intact cell-based PAL experiments, in which β-tubulin was identified to specifically interact with the cytotoxic probe (i.e., C95) but not the non-cytotoxic probes. A set of phenotypical and biochemical assays further reinforced β-tubulin as the cytotoxic target of chalcones. Peptide mass quantitation by mass spectrometric analysis revealed one peptide potentially labeled by C95, providing information on chalcone's binding site on β-tubulin.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, 2231 6th Street SE, Minneapolis, MN, 55455, USA
| | - Xingxin Yu
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, 2231 6th Street SE, Minneapolis, MN, 55455, USA.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunlin Zhuang
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, 2231 6th Street SE, Minneapolis, MN, 55455, USA. .,Research Center for Marine Drugs, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Peter Villalta
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, Minneapolis, MN, 55455, USA
| | - Yong Lin
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA
| | - Junxuan Lu
- Department of Pharmacology and Cancer Institute, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, 2231 6th Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
18
|
Abstract
Natural or synthetic chalcones with different substituents have revealed a variety of biological activities that may benefit human health. The underlying mechanisms of action, particularly with respect to the direct cellular targets and the modes of interaction with the targets, have not been rigorously characterized, which imposes challenges to structure-guided rational development of therapeutic agents or chemical probes with acceptable target-selectivity profile. This review summarizes literature evidence on chalcones’ direct molecular targets in the context of their biological activities.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, USA
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, USA
| |
Collapse
|
19
|
Mahapatra DK, Bharti SK, Asati V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur J Med Chem 2015; 98:69-114. [PMID: 26005917 DOI: 10.1016/j.ejmech.2015.05.004] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/16/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022]
Abstract
Chalcone or (E)-1,3-diphenyl-2-propene-1-one scaffold remained a fascination among researchers in the 21st century due to its simple chemistry, ease of synthesis and a wide variety of promising biological activities. Several natural and (semi) synthetic chalcones have shown anti-cancer activity due to their inhibitory potential against various targets namely ABCG2/P-gp/BCRP, 5α-reductase, aromatase, 17-β-hydroxysteroid dehydrogenase, HDAC/Situin-1, proteasome, VEGF, VEGFR-2 kinase, MMP-2/9, JAK/STAT signaling pathways, CDC25B, tubulin, cathepsin-K, topoisomerase-II, Wnt, NF-κB, B-Raf and mTOR etc. In this review, a comprehensive study on molecular targets/pathways involved in carcinogenesis, mechanism of actions (MOAs), structure activity relationships (SARs) and patents granted have been highlighted. With the knowledge of molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective anti-cancer chalcones.
Collapse
Affiliation(s)
- Debarshi Kar Mahapatra
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Sanjay Kumar Bharti
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India.
| | - Vivek Asati
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| |
Collapse
|