1
|
Ahmad G, Sohail M, Bilal M, Rasool N, Qamar MU, Ciurea C, Marceanu LG, Misarca C. N-Heterocycles as Promising Antiviral Agents: A Comprehensive Overview. Molecules 2024; 29:2232. [PMID: 38792094 PMCID: PMC11123935 DOI: 10.3390/molecules29102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Viruses are a real threat to every organism at any stage of life leading to extensive infections and casualties. N-heterocycles can affect the viral life cycle at many points, including viral entrance into host cells, viral genome replication, and the production of novel viral species. Certain N-heterocycles can also stimulate the host's immune system, producing antiviral cytokines and chemokines that can stop the reproduction of viruses. This review focused on recent five- or six-membered synthetic N-heterocyclic molecules showing antiviral activity through SAR analyses. The review will assist in identifying robust scaffolds that might be utilized to create effective antiviral drugs with either no or few side effects.
Collapse
Affiliation(s)
- Gulraiz Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Maria Sohail
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (G.A.); (M.S.)
| | - Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan;
- Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Codrut Ciurea
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Luigi Geo Marceanu
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| | - Catalin Misarca
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (L.G.M.)
| |
Collapse
|
2
|
Abdelrahman KS, Hassan HA, Abdel-Aziz SA, Marzouk AA, Shams R, Osawa K, Abdel-Aziz M, Konno H. Development and Assessment of 1,5-Diarylpyrazole/Oxime Hybrids Targeting EGFR and JNK-2 as Antiproliferative Agents: A Comprehensive Study through Synthesis, Molecular Docking, and Evaluation. Molecules 2023; 28:6521. [PMID: 37764297 PMCID: PMC10537604 DOI: 10.3390/molecules28186521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
New 1,5-diarylpyrazole oxime hybrid derivatives (scaffolds A and B) were designed, synthesized, and then their purity was verified using a variety of spectroscopic methods. A panel of five cancer cell lines known to express EGFR and JNK-2, including human colorectal adenocarcinoma cell line DLD-1, human cervical cancer cell line Hela, human leukemia cell line K562, human pancreatic cell line SUIT-2, and human hepatocellular carcinoma cell line HepG2, were used to biologically evaluate for their in vitro cytotoxicity for all the synthesized compounds 7a-j, 8a-j, 9a-c, and 10a-c. The oxime containing compounds 8a-j and 10a-c were more active as antiproliferative agents than their non-oxime congeners 7a-j and 9a-c. Compounds 8d, 8g, 8i, and 10c inhibited EGFR with IC50 values ranging from 8 to 21 µM when compared with sorafenib. Compound 8i inhibited JNK-2 as effectively as sorafenib, with an IC50 of 1.0 µM. Furthermore, compound 8g showed cell cycle arrest at the G2/M phase in the cell cycle analysis of the Hela cell line, whereas compound 8i showed combined S phase and G2 phase arrest. According to docking studies, oxime hybrid compounds 8d, 8g, 8i, and 10c exhibited binding free energies ranging from -12.98 to 32.30 kcal/mol at the EGFR binding site whereas compounds 8d and 8i had binding free energies ranging from -9.16 to -12.00 kcal/mol at the JNK-2 binding site.
Collapse
Affiliation(s)
- Kamal S. Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt; (S.A.A.-A.); (A.A.M.)
| | - Heba A. Hassan
- Department of Medicinal Chemistry Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (H.A.H.); (M.A.-A.)
| | - Salah A. Abdel-Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt; (S.A.A.-A.); (A.A.M.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia 61768, Egypt
| | - Adel A. Marzouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt; (S.A.A.-A.); (A.A.M.)
- National Center for Natural Products Research, School of Pharmacy, University of Missippi, Oxford, MS 38677, USA
| | - Raef Shams
- Emergent Bioengineering Materials Research Team, RIKEN Centre for Emergent Matter Science, RIKEN, Wako 351-0198, Saitama, Japan;
| | - Keima Osawa
- Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510, Yamagata, Japan;
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (H.A.H.); (M.A.-A.)
| | - Hiroyuki Konno
- Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510, Yamagata, Japan;
| |
Collapse
|
3
|
Chahal M, Dhillon S, Rani P, Kumari G, Aneja DK, Kinger M. Unravelling the synthetic and therapeutic aspects of five, six and fused heterocycles using Vilsmeier-Haack reagent. RSC Adv 2023; 13:26604-26629. [PMID: 37674485 PMCID: PMC10478505 DOI: 10.1039/d3ra04309f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
The aim of this review is to encapsulate the synthetic protocols and medicinal aspects of a wide range of heterocyclic compounds using the Vilsmeier-Haack (V. H.) reagent. These derivatives act as excellent precursors having different aryl ring functionalities and could be used for the synthesis of a variety of heterocyclic scaffolds. The V. H. reagent, a versatile reagent in organic chemistry, is used to formylate various heterocyclic compounds of medicinal interest. Due to the different chemical interactions, efficacy, and potency of V. H. reagents, plenty of heterocyclic compounds can be synthesized which serve as a constituent in various novel medications and acts as a bridge between biology and chemistry. These carboxylate moieties can effectively cooperate as precursors for several multi-component reactions (MCR) including Strecker synthesis, Bucherer-Berg reaction and post-MCR cyclization, modified variants with various pharmaceutical applications such as anti-tumor, anti-convulsant, anti-chitosomal and so on.
Collapse
Affiliation(s)
- Mamta Chahal
- Department of Chemistry, Chaudhary Bansi Lal University Bhiwani 127021 Haryana India
| | - Sudeep Dhillon
- Department of Chemistry, Chaudhary Bansi Lal University Bhiwani 127021 Haryana India
| | - Priyanka Rani
- Department of Chemistry, Chaudhary Bansi Lal University Bhiwani 127021 Haryana India
| | - Ginna Kumari
- Department of Chemistry, Chaudhary Bansi Lal University Bhiwani 127021 Haryana India
| | - Deepak Kumar Aneja
- Department of Chemistry, Chaudhary Bansi Lal University Bhiwani 127021 Haryana India
| | - Mayank Kinger
- Department of Chemistry, Chaudhary Bansi Lal University Bhiwani 127021 Haryana India
| |
Collapse
|
4
|
Chahal S, Rani P, Kiran, Sindhu J, Joshi G, Ganesan A, Kalyaanamoorthy S, Mayank, Kumar P, Singh R, Negi A. Design and Development of COX-II Inhibitors: Current Scenario and Future Perspective. ACS OMEGA 2023; 8:17446-17498. [PMID: 37251190 PMCID: PMC10210234 DOI: 10.1021/acsomega.3c00692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/21/2023] [Indexed: 09/29/2023]
Abstract
Innate inflammation beyond a threshold is a significant problem involved in cardiovascular diseases, cancer, and many other chronic conditions. Cyclooxygenase (COX) enzymes are key inflammatory markers as they catalyze prostaglandins production and are crucial for inflammation processes. While COX-I is constitutively expressed and is generally involved in "housekeeping" roles, the expression of the COX-II isoform is induced by the stimulation of different inflammatory cytokines and also promotes the further generation of pro-inflammatory cytokines and chemokines, which affect the prognosis of various diseases. Hence, COX-II is considered an important therapeutic target for drug development against inflammation-related illnesses. Several selective COX-II inhibitors with safe gastric safety profiles features that do not cause gastrointestinal complications associated with classic anti-inflammatory drugs have been developed. Nevertheless, there is mounting evidence of cardiovascular side effects from COX-II inhibitors that resulted in the withdrawal of market-approved anti-COX-II drugs. This necessitates the development of COX-II inhibitors that not only exhibit inhibit potency but also are free of side effects. Probing the scaffold diversity of known inhibitors is vital to achieving this goal. A systematic review and discussion on the scaffold diversity of COX inhibitors are still limited. To address this gap, herein we present an overview of chemical structures and inhibitory activity of different scaffolds of known COX-II inhibitors. The insights from this article could be helpful in seeding the development of next-generation COX-II inhibitors.
Collapse
Affiliation(s)
- Sandhya Chahal
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Payal Rani
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Kiran
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Jayant Sindhu
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Gaurav Joshi
- Department
of Pharmaceutical Sciences, Hemvati Nandan
Bahuguna Garhwal (A Central) University, Chauras Campus, Tehri Garhwal, Uttarakhand 249161, India
- Adjunct
Faculty at Department of Biotechnology, Graphic Era (Deemed to be) University, 566/6, Bell Road, Clement Town, Dehradun, Uttarakhand 248002, India
| | - Aravindhan Ganesan
- ArGan’sLab,
School of Pharmacy, University of Waterloo, Waterloo, Ontario N2G 1C5, Canada
| | | | - Mayank
- University
College of Pharmacy, Guru Kashi University, Talwandi Sabo, Punjab 151302, India
| | - Parvin Kumar
- Department
of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Rajvir Singh
- Department
of Chemistry, COBS&H, CCS Haryana Agricultural
University, Hisar 125004, India
| | - Arvind Negi
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo 02150, Finland
| |
Collapse
|
5
|
Kabi AK, Sravani S, Gujjarappa R, Garg A, Vodnala N, Tyagi U, Kaldhi D, Singh V, Gupta S, Malakar CC. Overview on Biological Activities of Pyrazole Derivatives. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2022:229-306. [DOI: 10.1007/978-981-16-8399-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Ghasempour L, Asghari S, Tajbakhsh M, Mohseni M. Preparation of New Spiropyrazole, Pyrazole and Hydantoin Derivatives and Investigation of Their Antioxidant and Antibacterial Activities. Chem Biodivers 2021; 18:e2100197. [PMID: 34272925 DOI: 10.1002/cbdv.202100197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/16/2021] [Indexed: 11/07/2022]
Abstract
In this study, the synthesis of new spiropyrazoles, pyrazole and hydantoin heterocycles is reported by three component reactions of parabanic acids, hydrazine derivatives, and phenacyl bromides in the presence of triphenylphosphine as a nucleophile and triethylamine as a base in good to high yields (69-91 %). Evaluation of the synthesized compounds revealed a good to excellent antioxidant activities (37.6-96.2 %) using DPPH inhibitory potency. Among these compounds, hydantoin derivatives displayed higher antioxidant activities (93.7-96.2 %) comparing with spiropyrazoles and pyrazoles. The obtained results showed that Cl and Br substituents on the phenyl ring increased antioxidant activities of the related heterocycles. The antibacterial activities of the synthesized compounds were examined against two Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and two Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria. Among the synthesized heterocycles, 2-[1,3-dimethyl-2,5-dioxo-4-(2-oxo-2-phenylethyl)imidazolidin-4-yl]hydrazine-1-carbothioamide exhibited the excellent antibacterial activity against both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Leila Ghasempour
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Sakineh Asghari
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
- Nano and Biotechnology Research Group, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Mahmood Tajbakhsh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Mojtaba Mohseni
- Nano and Biotechnology Research Group, University of Mazandaran, Babolsar, 47416-95447, Iran
- Department of Microbiology, Faculty of Science, University of Mazandaran, Babolsar, 47416-95447, Iran
| |
Collapse
|
7
|
Li S, Xu A, Li Y, Tan C, La Regina G, Silvestri R, Wang H, Qi W. RS4651 suppresses lung fibroblast activation via the TGF-β1/SMAD signalling pathway. Eur J Pharmacol 2021; 903:174135. [PMID: 33940030 DOI: 10.1016/j.ejphar.2021.174135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive disease resulting in respiratory failure with no efficient treatment options. We investigated the protective effect of RS4651 on pulmonary fibrosis in mice and the mechanism. METHODS Intratracheal injection of bleomycin (BLM) was used to induce pulmonary fibrosis in mice. RS4561 was administered intraperitoneally at different doses. Histopathological changes were observed. The level of alpha-smooth muscle actin (α-SMA) were also tested. In vitro, the proliferation and migratory effects of RS4651 treatment on MRC-5 cells pre-treated with transforming growth factor (TGF-β1) were examined. RNA-sequencing was used to detect differentially expressed target genes. Then, the expression of α-SMA, pSMAD2 and SMAD7 were analysed during RS4651 treatment of MRC-5 cells with or without silencing by SMAD7 siRNA. RESULTS Histopathological staining results showed decreased collagen deposition in RS4651 administered mice. Additionally, a lower level of α-SMA was also observed compared to the BLM group. The results of in vitro studies confirmed that RS4651 can inhibit the proliferation and migration, as well as α-SMA and pSMAD2 expression in MRC-5 cells treated with TGF-β1. RNA-sequencing data identified the target gene SMAD7. We found that RS4651 could upregulate SMAD7 expression and inhibit the proliferation and migration of MRC-5 cells via SMAD7, and RS4651 inhibition of α-SMA and pSMAD2 expression was blocked in SMAD7-siRNA MRC-5 cells. In vivo studies further confirmed that RS4651 could upregulate SMAD7 expression in BLM-induced lung fibrosis in mice. CONCLUSIONS Our data suggest that RS4651 alleviates BLM-induced pulmonary fibrosis in mice by inhibiting the TGF-β1/SMAD signalling pathway.
Collapse
Affiliation(s)
- Shirong Li
- Department of Infectious Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Anjian Xu
- Experimental Center, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing 100050, PR China
| | - Yanmeng Li
- Experimental Center, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing 100050, PR China
| | - Chunting Tan
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Giuseppe La Regina
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Roma, Italy.
| | - Haoyan Wang
- Department of Respiratory Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Wenjie Qi
- Department of Infectious Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
8
|
Azimi F, Azizian H, Najafi M, Hassanzadeh F, Sadeghi-Aliabadi H, Ghasemi JB, Ali Faramarzi M, Mojtabavi S, Larijani B, Saghaei L, Mahdavi M. Design and synthesis of novel quinazolinone-pyrazole derivatives as potential α-glucosidase inhibitors: Structure-activity relationship, molecular modeling and kinetic study. Bioorg Chem 2021; 114:105127. [PMID: 34246971 DOI: 10.1016/j.bioorg.2021.105127] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 01/11/2023]
Abstract
In this study, a new series of quinazolinone-pyrazole hybrids were designed, synthesized and screened for their α-glucosidase inhibitory activity. The results of the in vitro screening indicated that all the molecular hybrids exhibited more inhibitory activity (IC50 values ranging from 60.5 ± 0.3 µM-186.6 ± 20 μM) in comparison to standard acarbose (IC50 = 750.0 ± 10.0 µM). Limited structure-activity relationship suggested that the variation in the inhibitory activities of the compounds affected by different substitutions on phenyl rings of diphenyl pyrazole moiety. The enzyme kinetic studies of the most potent compound 9i revealed that it inhibited α-glucosidase in a competitive mode with a Ki of 56 μM. Molecular docking study was performed to predict the putative binding interaction. As expected, all pharmacophoric moieties used in the initial structure design playing a pivotal role in the interaction with the binding site of the enzyme. In addition, by performing molecular dynamic investigation and MM-GBSA calculation, we investigated the difference in structural perturbation and dynamic behavior that is observed over α-glycosidase in complex with the most active compound and acarbose relative to unbound α-glycosidase enzyme.
Collapse
Affiliation(s)
- Fateme Azimi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Najafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran
| | - Hojjat Sadeghi-Aliabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran
| | - Jahan B Ghasemi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461 Isfahan, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Tripathi G, Singh AK, Kumar A. Arylpyrazoles: Heterocyclic Scaffold of Immense Therapeutic Application. CURR ORG CHEM 2020. [DOI: 10.2174/1570179417999200628035645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Among the major class of heterocycles, the N-heterocycles, such as pyrazoles,
are scaffolds of vast medicinal values. Various drugs and other biologically active molecules
are known to contain these N-heterocycles as core motifs. Specifically, arylpyrazoles
have exhibited a diverse range of biological activities, including anti-inflammatory, anticancerous,
antimicrobial and various others. For instance, arylpyrazoles are present as
core moieties in various insecticides, fungicides and drugs such as Celebrex and Trocoxil.
The present review will be highlighting the significant therapeutic importance of pyrazole
derivatives developed in the last few years.
Collapse
Affiliation(s)
- Garima Tripathi
- Department of Chemistry, T. N. B. College, Tilka Manjhi Bhagalpur University, Bhagalpur, Bihar, India
| | - Anil Kumar Singh
- Department of Chemistry, School of Physical Sciences, Mahatma Gandhi Central University, Bihar, India
| | - Abhijeet Kumar
- Department of Chemistry, School of Physical Sciences, Mahatma Gandhi Central University, Bihar, India
| |
Collapse
|
10
|
Padmini T, Bhikshapathi D, Suresh K, Kulkarni R, Kamal BR. Novel Aminopyrazole Tagged Hydrazones as Anti-Tubercular Agents: Synthesis and Molecular Docking Studies. Med Chem 2020; 17:344-351. [PMID: 32407282 DOI: 10.2174/1573406416666200514084747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pyrazole derivatives have been reported to possess numerous pharmacological activities viz., anti-inflammatory, antipsychotic, etc. Our group has disclosed that pyrazole benzamides display potent antibacterial and anti-tubercular activities. OBJECTIVE Synthesis of new pyrazole acetamides which possess hydrazone group to be evaluated for antitubercular activity. METHODS The key intermediate 5-aminopyrazole was synthesized with the known procedure, which is then converted into chloroacetamide. This compound than resulted in hydrazine derivative and finally converted into aromatic hydrazones. All the compounds were screened for antitubercular activity. RESULTS All the synthesized compounds have been characterized by their spectral data obtained and subjected to anti-tubercular activity. Among all the twenty tested compounds, three compounds, 5a5, 5b5 and 5b7 have demonstrated MIC value of 3.12 μg/mL against MTB H37Rv. Docking studies revealed important hydrogen bonding interactions with InhA. CONCLUSION Three compounds 5a5, 5b5 and 5b7 were found to be most potent among the series of compounds. Docking studies of compounds explained the presence of hydrogen bonding and π- π stacking interactions with InhA. Further synthesis of more such derivatives with optimized groups would produce compounds with more potent anti-tubercular activity.
Collapse
Affiliation(s)
| | - Darna Bhikshapathi
- Teegala Ram Reddy College of Pharmacy, Pragathi Colony, Meerpet, Hyderabad- 500097, Telangana, India
| | - Kandagatla Suresh
- Vijaya College of Pharmacy, Hayatnagar, Hyderabad-501511, Telangana, Hyderabad, India
| | - Ravindra Kulkarni
- Bharati Vidyapeeth's Poona College of Pharmacy, Erandwane, Pune-411038, Maharashtra, India
| | - Bigala R Kamal
- Research Supervisor, Mewar University, Chittorgarh, Rajasthan, India
| |
Collapse
|
11
|
Nithyabalaji R, Krishnan H, Sribalan R. Synthesis, molecular structure and multiple biological activities of N-(3-methoxyphenyl)-3-(pyridin-4-yl)-1H-pyrazole-5-carboxamide. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.02.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Cyclosporine-A induces apoptosis in human prostate cancer cells PC3 and DU145 via downregulation of COX-2 and upregulation of TGFβ. ACTA ACUST UNITED AC 2019. [DOI: 10.1515/tjb-2017-0355] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Background
Potential targets for prostate cancer therapy are urgently needed for curative of patients. Cyclosporine-A (CsA), an immunosuppressive and a selective cyclooxygenase-2 (COX-2) inhibitor, exerts antitumor activity. However, the molecular effects of CsA is not fully understood in prostate cancer. In this research, we sought to determine role and mechanism of CsA in prostate cancer.
Materials and methods
PC3 and DU145 cells were treated with CsA time (12, 24, 48 h) and dose dependent (2.5, 10, 25 μM) and cell survival, migration, colony formation, expression of apoptosis related proteins/genes using MTT assay, scratch assay, Western blotting/qPCR. At the same time, cells treated with CsA to test on the effects of COX-2 promoter activity using luciferase reporter plasmid. Lastly, functional role in the CsA treatment prostate cancer cells were interrogated for relationship of TGFβ, Akt, caspases and COX-2.
Results
These study findings provided direct evidences that the CsA induced apoptosis and downregulated migration.
Conclusions
CsA downregulated Akt as well as COX-2 and upregulated TGFβ, resulting in the suppression of cell migration which was augmented a potential therapeutic of CsA in prostate cancer cells.
Collapse
|
13
|
Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018; 23:molecules23010134. [PMID: 29329257 PMCID: PMC6017056 DOI: 10.3390/molecules23010134] [Citation(s) in RCA: 494] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 12/31/2022] Open
Abstract
Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.
Collapse
Affiliation(s)
- Khalid Karrouchi
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
- Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco.
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
| | - Youssef Ramli
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Jamal Taoufik
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Faiz A Al-Aizari
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - M'hammed Ansar
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| |
Collapse
|
14
|
Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018. [PMID: 29329257 DOI: 10.3390/molecules23010134k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.
Collapse
Affiliation(s)
- Khalid Karrouchi
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
- Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco.
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
| | - Youssef Ramli
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Jamal Taoufik
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Faiz A Al-Aizari
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - M'hammed Ansar
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| |
Collapse
|
15
|
Pelliccia S, Wu YH, Coluccia A, La Regina G, Tseng CK, Famiglini V, Masci D, Hiscott J, Lee JC, Silvestri R. Inhibition of dengue virus replication by novel inhibitors of RNA-dependent RNA polymerase and protease activities. J Enzyme Inhib Med Chem 2017; 32:1091-1101. [PMID: 28776445 PMCID: PMC6010079 DOI: 10.1080/14756366.2017.1355791] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/01/2017] [Accepted: 07/12/2017] [Indexed: 11/26/2022] Open
Abstract
Dengue virus (DENV) is the leading mosquito-transmitted viral infection in the world. With more than 390 million new infections annually, and up to 1 million clinical cases with severe disease manifestations, there continues to be a need to develop new antiviral agents against dengue infection. In addition, there is no approved anti-DENV agents for treating DENV-infected patients. In the present study, we identified new compounds with anti-DENV replication activity by targeting viral replication enzymes - NS5, RNA-dependent RNA polymerase (RdRp) and NS3 protease, using cell-based reporter assay. Subsequently, we performed an enzyme-based assay to clarify the action of these compounds against DENV RdRp or NS3 protease activity. Moreover, these compounds exhibited anti-DENV activity in vivo in the ICR-suckling DENV-infected mouse model. Combination drug treatment exhibited a synergistic inhibition of DENV replication. These results describe novel prototypical small anti-DENV molecules for further development through compound modification and provide potential antivirals for treating DENV infection and DENV-related diseases.
Collapse
Affiliation(s)
- Sveva Pelliccia
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Roma, Italy
| | - Yu-Hsuan Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Antonio Coluccia
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Roma, Italy
| | - Giuseppe La Regina
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Roma, Italy
| | - Chin-Kai Tseng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Valeria Famiglini
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Roma, Italy
| | - Domiziana Masci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Roma, Italy
| | - John Hiscott
- Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Roma, Italy
| | - Jin-Ching Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Romano Silvestri
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia – Fondazione Cenci Bolognetti, Roma, Italy
| |
Collapse
|
16
|
Ghasemi Z, Azizi S, Salehi R, Kafil HS. Synthesis of azo dyes possessing N-heterocycles and evaluation of their anticancer and antibacterial properties. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-2073-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Xu Z, Gao C, Ren QC, Song XF, Feng LS, Lv ZS. Recent advances of pyrazole-containing derivatives as anti-tubercular agents. Eur J Med Chem 2017; 139:429-440. [PMID: 28818767 DOI: 10.1016/j.ejmech.2017.07.059] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/23/2017] [Accepted: 07/24/2017] [Indexed: 01/18/2023]
Abstract
One-third of the world's population infected tuberculosis (TB), and more than 1 million deaths annually. The co-infection between the mainly pathogen Mycobacterium tuberculosis (MTB) and HIV, and the incidence of drug-resistant TB, multi-drug resistant TB, extensively drug-resistant TB as well as totally drug-resistant TB have further aggravated the mortality and spread of this disease. Thus, there is an urgent need to develop novel anti-TB agents against both drug-susceptible and drug-resistant TB. The wide spectrum of biological activities and successful utilization of pyrazole-containing drugs in clinic have inspired more and more attention towards this kind of heterocycles. Numerous of pyrazole-containing derivatives have been synthesized for searching new anti-TB agents, and some of them showed promising potency and may have novel mechanism of action. This review aims to outline the recent achievements in pyrazole-containing derivatives as anti-TB agents and their structure-activity relationship.
Collapse
Affiliation(s)
- Zhi Xu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Hubei, PR China
| | - Chuan Gao
- WuXi AppTec (Wuhan), Hubei, PR China
| | | | - Xu-Feng Song
- Beijing University of Technology, Beijing, PR China
| | | | - Zao-Sheng Lv
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Hubei, PR China.
| |
Collapse
|
18
|
Multiple biological activities and molecular docking studies of newly synthesized 3-(pyridin-4-yl)-1H-pyrazole-5-carboxamide chalcone hybrids. Bioorg Med Chem Lett 2016; 26:5624-5630. [DOI: 10.1016/j.bmcl.2016.10.075] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 09/17/2016] [Accepted: 10/25/2016] [Indexed: 12/23/2022]
|
19
|
The therapeutic voyage of pyrazole and its analogs: A review. Eur J Med Chem 2016; 120:170-201. [DOI: 10.1016/j.ejmech.2016.04.077] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 02/05/2023]
|
20
|
Kaushik-Basu N, Ratmanova NK, Manvar D, Belov DS, Cevik O, Basu A, Yerukhimovich MM, Lukyanenko ER, Andreev IA, Belov GM, Manfroni G, Cecchetti V, Frick DN, Kurkin AV, Altieri A, Barreca ML. Bicyclic octahydrocyclohepta[b]pyrrol-4(1H)one derivatives as novel selective anti-hepatitis C virus agents. Eur J Med Chem 2016; 122:319-325. [PMID: 27376494 DOI: 10.1016/j.ejmech.2016.06.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/01/2016] [Accepted: 06/21/2016] [Indexed: 01/27/2023]
Abstract
We report the discovery of the bicyclic octahydrocyclohepta[b]pyrrol-4(1H)-one scaffold as a new chemotype with anti-HCV activity on genotype 1b and 2a subgenomic replicons. The most potent compound 34 displayed EC50 values of 1.8 μM and 4.5 μM in genotype 1b and 2a, respectively, coupled with the absence of any antimetabolic effect (gt 1b SI = 112.4; gt 2a SI = 44.2) in a cell-based assay. Compound 34 did not target HCV NS5B, IRES, NS3 helicase, or selected host factors, and thus future work will involve the unique mechanism of action of these new antiviral compounds.
Collapse
Affiliation(s)
- Neerja Kaushik-Basu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, NJ 07103, USA.
| | - Nina K Ratmanova
- Chemistry Department of Lomonosov Moscow State University, Moscow 119991, GSP-2, Leninskie gory, 1/3, Russia
| | - Dinesh Manvar
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, NJ 07103, USA
| | - Dmitry S Belov
- Chemistry Department of Lomonosov Moscow State University, Moscow 119991, GSP-2, Leninskie gory, 1/3, Russia; EDASA Scientific srls., Via Stingi, 37, 66050 San Salvo, CH, Italy
| | - Ozge Cevik
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, NJ 07103, USA
| | - Amartya Basu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, NJ 07103, USA
| | - Mark M Yerukhimovich
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer St., Milwaukee, WI 53211, USA
| | - Evgeny R Lukyanenko
- Chemistry Department of Lomonosov Moscow State University, Moscow 119991, GSP-2, Leninskie gory, 1/3, Russia; EDASA Scientific srls., Via Stingi, 37, 66050 San Salvo, CH, Italy
| | - Ivan A Andreev
- Chemistry Department of Lomonosov Moscow State University, Moscow 119991, GSP-2, Leninskie gory, 1/3, Russia; EDASA Scientific srls., Via Stingi, 37, 66050 San Salvo, CH, Italy
| | - Grigory M Belov
- Chemistry Department of Lomonosov Moscow State University, Moscow 119991, GSP-2, Leninskie gory, 1/3, Russia; EDASA Scientific srls., Via Stingi, 37, 66050 San Salvo, CH, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti, 48, 06123 Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti, 48, 06123 Perugia, Italy
| | - David N Frick
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer St., Milwaukee, WI 53211, USA
| | - Alexander V Kurkin
- Chemistry Department of Lomonosov Moscow State University, Moscow 119991, GSP-2, Leninskie gory, 1/3, Russia.
| | - Andrea Altieri
- EDASA Scientific srls., Via Stingi, 37, 66050 San Salvo, CH, Italy.
| | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti, 48, 06123 Perugia, Italy.
| |
Collapse
|
21
|
Botta G, Bizzarri BM, Garozzo A, Timpanaro R, Bisignano B, Amatore D, Palamara AT, Nencioni L, Saladino R. Carbon nanotubes supported tyrosinase in the synthesis of lipophilic hydroxytyrosol and dihydrocaffeoyl catechols with antiviral activity against DNA and RNA viruses. Bioorg Med Chem 2015; 23:5345-51. [PMID: 26260341 PMCID: PMC7125559 DOI: 10.1016/j.bmc.2015.07.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/24/2015] [Accepted: 07/27/2015] [Indexed: 12/16/2022]
Abstract
Hydroxytyrosol and dihydrocaffeoyl catechols with lipophilic properties have been synthesized in high yield using tyrosinase immobilized on multi-walled carbon nanotubes by the Layer-by-Layer technique. All synthesized catechols were evaluated against a large panel of DNA and RNA viruses, including Poliovirus type 1, Echovirus type 9, Herpes simplex virus type 1 (HSV-1), Herpes simplex virus type 2 (HSV-2), Coxsackievirus type B3 (Cox B3), Adenovirus type 2 and type 5 and Cytomegalovirus (CMV). A significant antiviral activity was observed in the inhibition of HSV-1, HSV-2, Cox B3 and CMV. The mechanism of action of the most active dihydrocaffeoyl derivative was investigated against a model of HSV-1 infection.
Collapse
Affiliation(s)
- Giorgia Botta
- Department of Ecology and Biology, University of Tuscia, Largo dell’Università, 01100 Viterbo (VT), Italy
| | - Bruno Mattia Bizzarri
- Department of Ecology and Biology, University of Tuscia, Largo dell’Università, 01100 Viterbo (VT), Italy
| | - Adriana Garozzo
- Department of Biomedical and Biotechnological Sciences, Microbiological Section, University of Catania (CT), Via Androne, 81 95124 Catania, Italy
| | - Rossella Timpanaro
- Department of Biomedical and Biotechnological Sciences, Microbiological Section, University of Catania (CT), Via Androne, 81 95124 Catania, Italy
| | - Benedetta Bisignano
- Department of Biomedical and Biotechnological Sciences, Microbiological Section, University of Catania (CT), Via Androne, 81 95124 Catania, Italy
| | - Donatella Amatore
- Department of Public Health and Infectious Diseases, ‘Sapienza’ University, 00185 Rome, Italy
- IRCCS San Raffaele Pisana, Telematic University, 00166 Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, ‘Sapienza’ University, 00185 Rome, Italy
- IRCCS San Raffaele Pisana, Telematic University, 00166 Rome, Italy
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, ‘Sapienza’ University, 00185 Rome, Italy
| | - Raffaele Saladino
- Department of Ecology and Biology, University of Tuscia, Largo dell’Università, 01100 Viterbo (VT), Italy
| |
Collapse
|
22
|
Tian M, He Y, Zhang X, Fan X. Synthesis of Pyrazolo[5,1-a]isoindoles and Pyrazolo[5,1-a]isoindole-3-carboxamides through One-Pot Cascade Reactions of 1-(2-Bromophenyl)buta-2,3-dien-1-ones with Isocyanide and Hydrazine or Acetohydrazide. J Org Chem 2015; 80:7447-55. [DOI: 10.1021/acs.joc.5b00997] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Miaomiao Tian
- School of Chemistry and Chemical
Engineering, Collaborative Innovation Center of Henan Province for
Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical
Media and Reactions, Ministry of Education, Henan Key Laboratory for
Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yan He
- School of Chemistry and Chemical
Engineering, Collaborative Innovation Center of Henan Province for
Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical
Media and Reactions, Ministry of Education, Henan Key Laboratory for
Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- School of Chemistry and Chemical
Engineering, Collaborative Innovation Center of Henan Province for
Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical
Media and Reactions, Ministry of Education, Henan Key Laboratory for
Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- School of Chemistry and Chemical
Engineering, Collaborative Innovation Center of Henan Province for
Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical
Media and Reactions, Ministry of Education, Henan Key Laboratory for
Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
23
|
Discovery of the 2-phenyl-4,5,6,7-Tetrahydro-1H-indole as a novel anti-hepatitis C virus targeting scaffold. Eur J Med Chem 2015; 96:250-8. [PMID: 25890075 DOI: 10.1016/j.ejmech.2015.04.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 01/12/2023]
Abstract
Although all-oral direct-acting antiviral (DAA) therapy for hepatitis C virus (HCV) treatment is now a reality, today's HCV drugs are expensive, and more affordable drugs are still urgently needed. In this work, we report the identification of the 2-phenyl-4,5,6,7-Tetrahydro-1H-indole chemical scaffold that inhibits cellular replication of HCV genotype 1b and 2a subgenomic replicons. The anti-HCV genotype 1b and 2a profiling and effects on cell viability of a selected representative set of derivatives as well as their chemical synthesis are described herein. The most potent compound 39 displayed EC50 values of 7.9 and 2.6 μM in genotype 1b and 2a, respectively. Biochemical assays showed that derivative 39 had no effect on HCV NS5B polymerase, NS3 helicase, IRES mediated translation and selected host factors. Thus, future work will involve both the chemical optimization and target identification of 2-phenyl-4,5,6,7-Tetrahydro-1H-indoles as new anti-HCV agents.
Collapse
|