1
|
Ghoneim MM, Abdelgawad MA, Elkanzi NAA, Parambi DGT, Alsalahat I, Farouk A, Bakr RB. A literature review on pharmacological aspects, docking studies, and synthetic approaches of quinazoline and quinazolinone derivatives. Arch Pharm (Weinheim) 2024; 357:e2400057. [PMID: 38775630 DOI: 10.1002/ardp.202400057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 08/06/2024]
Abstract
Quinazoline and quinazolinone derivatives piqued medicinal chemistry interest in developing novel drug candidates owing to their pharmacological potential. They are important chemicals for the synthesis of a variety of physiologically significant and pharmacologically useful molecules. Quinazoline and quinazolinone derivatives have anticancer, anti-inflammatory, antidiabetic, anticonvulsant, antiviral, and antimicrobial potential. The increased understanding of quinazoline and quinazolinone derivatives in biological activities provides opportunities for new medicinal products. The present review focuses on novel advances in the synthesis of these important scaffolds and other medicinal aspects involving drug design, structure-activity relationship, and action mechanisms of quinazoline and quinazolinone derivatives to help in the development of new quinazoline and quinazolinone derivatives.
Collapse
Affiliation(s)
- Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Nadia A A Elkanzi
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | | | - Izzeddin Alsalahat
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| | - Amr Farouk
- Flavour and Aroma Chemistry Department, National Research Centre, Cairo, Dokki, Egypt
| | - Rania B Bakr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
2
|
Guida M, Tammaro C, Quaranta M, Salvucci B, Biava M, Poce G, Consalvi S. Amino Acid Biosynthesis Inhibitors in Tuberculosis Drug Discovery. Pharmaceutics 2024; 16:725. [PMID: 38931847 PMCID: PMC11206623 DOI: 10.3390/pharmaceutics16060725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
According to the latest World Health Organization (WHO) report, an estimated 10.6 million people were diagnosed with tuberculosis (TB) in 2022, and 1.30 million died. A major concern is the emergence of multi-drug-resistant (MDR) and extensively drug-resistant (XDR) strains, fueled by the length of anti-TB treatment and HIV comorbidity. Innovative anti-TB agents acting with new modes of action are the only solution to counteract the spread of resistant infections. To escape starvation and survive inside macrophages, Mtb has evolved to become independent of the host by synthesizing its own amino acids. Therefore, targeting amino acid biosynthesis could subvert the ability of the mycobacterium to evade the host immune system, providing innovative avenues for drug discovery. The aim of this review is to give an overview of the most recent progress in the discovery of amino acid biosynthesis inhibitors. Among the hits discovered over the past five years, tryptophan (Trp) inhibitors stand out as the most advanced and have significantly contributed to demonstrating the feasibility of this approach for future TB drug discovery. Future efforts should be directed at prioritizing the chemical optimization of these hits to enrich the TB drug pipeline with high-quality leads.
Collapse
Affiliation(s)
| | | | | | | | | | - Giovanna Poce
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Piazzale A. Moro, 5, 00185 Rome, Italy; (M.G.); (C.T.); (M.Q.); (B.S.); (M.B.)
| | - Sara Consalvi
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Piazzale A. Moro, 5, 00185 Rome, Italy; (M.G.); (C.T.); (M.Q.); (B.S.); (M.B.)
| |
Collapse
|
3
|
Sun XW, Liu Y, Wang X, Li HR, Lin X, Tang JY, Xu Q, Agnew-Francis KA, Fraser JA, Sun ZJ, Guddat LW, Wang JG. Structure-activity relationships of bensulfuron methyl and its derivatives as novel agents against drug-resistant Candida auris. Chem Biol Drug Des 2024; 103:e14364. [PMID: 37806947 DOI: 10.1111/cbdd.14364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
With the emergence of the human pathogen Candida auris as a threat to human health, there is a strong demand to identify effective medicines to prevent the harm caused by such drug-tolerant human fungi. Herein, a series of 33 new derivatives of bensulfuron methyl (BSM) were synthesized and characterized by 1 H NMR, 13 C NMR, and HRMS. Among the target compounds, 8a possessed the best Ki value of 1.015 μM against C. auris acetohydroxyacid synthase (CauAHAS) and an MIC value of 6.25 μM against CBS10913, a clinically isolated strain of C. auris. Taken together the structures of BSM and the synthesized compounds, it was found that methoxy groups at both meta-position of pyrimidine ring are likely to provide desirable antifungal activities. Quantum calculations and molecular dockings were performed to understand the structure-activity relationships. The present study has hence provided some interesting clues for the discovery of novel antibiotics with this distinct mode of action.
Collapse
Affiliation(s)
- Xue-Wen Sun
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Yixuan Liu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Xiaofang Wang
- Newish Technology (Beijing) Co., Ltd., Beijing, China
| | - Hao-Ran Li
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Xin Lin
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jin-Yin Tang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Qing Xu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Kylie A Agnew-Francis
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - James A Fraser
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhi-Juan Sun
- Newish Technology (Beijing) Co., Ltd., Beijing, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jian-Guo Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Myakala N, Kandula K, Rayala N, Kuna S, Thumma V, Durga Bhavani Anagani K. Design, Synthesis of Novel 1,2,3-Triazole Pendent Quinazolinones and Their Cytotoxicity against MCF-7 Cell Line. Chem Biodivers 2023; 20:e202300800. [PMID: 37708234 DOI: 10.1002/cbdv.202300800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
A library of 6-(((1-(substitutedphenyl)-1H-1,2,3-triazol-4-yl)methyl) amino)-3-methylquinazolin-4(3H)-one analogues synthesized from Isatin precursor through a series of nitration, reduction, hydrolysis, cyclization and click reaction. The structures of compounds were characterized by spectral data including IR, 1 H-NMR, 13 C NMR and Mass. The novel quinazolinone - 1,2,3-triazoles were screened for their cytotoxicity against the human breast adenocarcinoma cell lines MCF-7 by MTT assay. 4-Isopropyl and 2-bromo substituted analogues executed high activity against MCF-7 cell line with IC50 value of 10.16±0.07 μM and 11.23±0.20 μM compared to the Doxorubicin whose IC50 value is 10.81±0.03 μM. The activity of remaining compounds is good to moderate. Further, the molecular docking studies against the crystal structure of Epidermal Growth Factor Receptor delivered the best binding energies and the interactions such as H-bond and hydrophobic are inevitable. The predicted pharmacokinetic properties results showed that these compounds have more drug likeness properties.
Collapse
Affiliation(s)
- Nagaraju Myakala
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, 500007, Telangana, India
| | - Kotaiah Kandula
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, 500007, Telangana, India
| | - Nagamani Rayala
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, 500007, Telangana, India
| | - Sateesh Kuna
- Geethanjali College of Engineering and Technology, Keesara, Ranga Reddy, 501301, Telangana, India
| | - Vishnu Thumma
- Department of Sciences and Humanities, Matrusri Engineering College, Hyderabad, 500059, Telangana, India
| | | |
Collapse
|
5
|
Men Y, Li Z, Wang H, Liu Y, Liu X, Chen B. Synthesis and antiproliferative evaluation of novel 1,3,4-thiadiazole-S-alkyl derivatives based on quinazolinone. PHOSPHORUS SULFUR 2023. [DOI: 10.1080/10426507.2023.2176500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Yanle Men
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Zijian Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Hongying Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Yuming Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Xuguang Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Baoquan Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
6
|
Antimicrobial, anticancer and immunomodulatory potential of new quinazolines bearing benzenesulfonamide moiety. Future Med Chem 2023; 15:275-290. [PMID: 36891994 DOI: 10.4155/fmc-2022-0297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Sulfonamides are privileged candidates with potent anti-methicillin-resistant Staphylococcus aureus (MRSA) activity and could replenish the MRSA antibiotic pipeline. The initial screening of a series of quinazolinone benzenesulfonamide derivatives 5-18 against multidrug-resistant bacterial and fungal strains revealed their potent activity. The promising compounds were conjugated with ZnONPs to study the effect of nanoparticle formation on the antimicrobial, cytotoxic and immunomodulatory activity. Compounds 5, 11, 16 and 18 revealed promising antimicrobial and cytotoxic activities with superior safety profiles and enhanced activity upon nanoformulation. The immunomodulatory potential of compounds 5, 11, 16 and 18 was assessed. Compounds 5 and 11 demonstrated an increase in spleen and thymus weight and boosted the activation of CD4+ and CD8+ T lymphocytes, confirming their promising antimicrobial, cytotoxic and immunomodulatory activity.
Collapse
|
7
|
Alsibaee AM, Al-Yousef HM, Al-Salem HS. Quinazolinones, the Winning Horse in Drug Discovery. Molecules 2023; 28:molecules28030978. [PMID: 36770645 PMCID: PMC9919317 DOI: 10.3390/molecules28030978] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
Quinazolines are nitrogen-containing heterocycles that consist of a benzene ring fused with a pyrimidine ring. Quinazolinones, oxidized quinazolines, are promising compounds with a wide range of biological activities. In the pharmaceutical field, quinazolinones are the building blocks of more than 150 naturally occurring alkaloids isolated from different plants, microorganisms, and animals. Scientists give a continuous interest in this moiety due to their stability and relatively easy methods for preparation. Their lipophilicity is another reason for this interest as it helps quinazolinones in penetration through the blood-brain barrier which makes them suitable for targeting different central nervous system diseases. Various modifications to the substitutions around the quinazolinone system changed their biological activity significantly due to changes in their physicochemical properties. Structure-activity relationship (SAR) studies of quinazolinone revealed that positions 2, 6, and 8 of the ring systems are significant for different pharmacological activities. In addition, it has been suggested that the addition of different heterocyclic moieties at position 3 could increase activity. In this review, we will highlight the chemical properties of quinazolinones, including their chemical reactions and different methods for their preparation. Moreover, we will try to modify some of the old SAR studies according to their updated biological activities in the last twelve years.
Collapse
Affiliation(s)
- Aishah M. Alsibaee
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11564, Saudi Arabia
| | - Hanan M. Al-Yousef
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11564, Saudi Arabia
| | - Huda S. Al-Salem
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11564, Saudi Arabia
- Correspondence: or
| |
Collapse
|
8
|
Bano K, Sharma J, Jain A, Tsurugi H, Panda TK. A binuclear aluminium complex as a single competent catalyst for efficient synthesis of urea, biuret, isourea, isothiourea, phosphorylguanidine, and quinazolinones. RSC Adv 2023; 13:3020-3032. [PMID: 36756451 PMCID: PMC9850453 DOI: 10.1039/d2ra07714k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/22/2022] [Indexed: 01/21/2023] Open
Abstract
The synthesis and characterisation of two mononuclear aluminium alkyl complexes with the general composition [Al(Me)2{Ph2P(E)N(CH2)2N(CH2CH2)2O}] (E = Se (2a); S (2b)), and two binuclear aluminium complexes, [Al(Me)2{Ph2P-(E)N(CH2)2N(CH2CH2)2O}(AlMe3)] (E = Se (3a) and S (3b)), are described. The binuclear aluminium alkyl complex 3a proved to be a proficient catalyst for the addition of simple nucleophiles to heterocumulenes, leading to the synthesis of a variety of products such as urea, biuret, isourea, isothiourea, phosphorylguanidine, and quinazolinone derivatives, in contrast to its mononuclear analogues. Complex 3a is the first example of a single competent catalyst, which is also low-cost and eco-friendly and derived from a main-group metal, under solvent-free conditions either at room temperature or mild temperatures. Complex 3a possessed a wide functional group tolerance including heteroatoms, yielding the corresponding insertion products in good quantities and with high selectivity.
Collapse
Affiliation(s)
- Kulsum Bano
- Department of Chemistry, Indian Institute of Technology Kandi-502 285, Sangareddy Hyderabad Telangana India https://sites.google.com/site/tkpandagroup/home
| | - Jyoti Sharma
- Department of Chemistry, Indian Institute of Technology Kandi-502 285, Sangareddy Hyderabad Telangana India https://sites.google.com/site/tkpandagroup/home
| | - Archana Jain
- Department of Physics and Chemistry, Mahatma Gandhi Institute of Technology Gandipet-500 075 Hyderabad Telangana India
| | - Hayato Tsurugi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Tarun K Panda
- Department of Chemistry, Indian Institute of Technology Kandi-502 285, Sangareddy Hyderabad Telangana India https://sites.google.com/site/tkpandagroup/home
| |
Collapse
|
9
|
Kushwaha N, Sahu A, Mishra J, Soni A, Dorwal D. An Insight on the Prospect of Quinazoline and Quinazolinone Derivatives as Anti-tubercular Agents. Curr Org Synth 2023; 20:838-869. [PMID: 36927421 DOI: 10.2174/1570179420666230316094435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/22/2023] [Accepted: 01/27/2023] [Indexed: 03/18/2023]
Abstract
Multiple potential drugs have been developed based on the heterocyclic molecules for the treatment of different symptoms. Among the existing heterocyclic molecules, quinazoline and quinazolinone derivatives have been found to exhibit extensive pharmacological and biological characteristics. One significant property of these molecules is their potency as anti-tubercular agents. Thus, both quinazoline and quinazolinone derivatives are modified using different functional groups as substituents for investigating their anti-tubercular activities. We present a summary of the reported anti-tubercular drugs, designed using quinazoline and quinazolinone derivatives, in this review.
Collapse
Affiliation(s)
| | - Adarsh Sahu
- Department of Pharmaceutical Sciences, Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Jyotika Mishra
- Department of Pharmaceutical Sciences, Harisingh Gour Vishwavidyalaya, Sagar, MP, India
| | - Ankit Soni
- Sri Aurobindo Institute of Pharmacy, Indore, MP, India
| | - Dhawal Dorwal
- Sri Aurobindo Institute of Pharmacy, Indore, MP, India
| |
Collapse
|
10
|
Sel S, Tunç T, Ortaakarsu AB, Mamaş S, Karacan N, Karacan MS. Acetohydroxyacid Synthase (AHAS) Inhibitor‐Based Commercial Sulfonylurea Herbicides as Glutathione Reductase Inhibitors: in Vitro and in Silico Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202202235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sedat Sel
- İstanbul University Pharmacy Faculty Analytic Chemistry 34116, Beyazıt İstanbul Turkey
| | - Turgay Tunç
- Department of Chemistry Engineering Faculty of Engineering University of Kırşehir Ahi Evran Kırsehir 40100 Turkey
| | | | - Serhat Mamaş
- Gazi University Science Faculty Chemistry Department 06500 Ankara Turkey
| | - Nurcan Karacan
- Gazi University Science Faculty Chemistry Department 06500 Ankara Turkey
| | | |
Collapse
|
11
|
Design and synthesis of novel quinazolinyl-bisspirooxindoles as potent anti-tubercular agents: an ultrasound-promoted methodology. Mol Divers 2022:10.1007/s11030-022-10500-x. [PMID: 35933454 DOI: 10.1007/s11030-022-10500-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/14/2022] [Indexed: 10/15/2022]
Abstract
The essential need for the potent anti-tubercular (anti-TB) agents with high selectivity and safety profile prompted us to synthesize a new series of quinazolinyl-bisspirooxindoles. The title compounds were synthesized by one-pot multicomponent [3 + 2] cycloaddition reaction under ultrasonication. Further, in vitro anti-TB activity was evaluated against Mycobacterium tuberculosis H37Rv. Among the screened compounds, two compounds (4q and 4x) showed potent activity with MIC value 1.56 µg/mL and four compounds exhibited significant activity (MIC = 3.125 µg/mL), and also cytotoxicity studies against RAW 264.7 cell lines reveal that most active compounds were less toxic to humans. In addition, in order to demonstrate the inhibitory properties, molecular docking studies were carried out and the results showed that the target compounds have good binding energy and better binding affinity within the active pocket, thus these compounds may consider to be as potent inhibitors toward selective targets.
Collapse
|
12
|
Shang MH, Zhang K, Zhang JS, Niu CW, Li YH, Song FH, Wang JG. Chemical synthesis, biological activities, and molecular simulations of novel sulfonylurea compounds bearing ortho-alkoxy substitutions. Chem Biol Drug Des 2022; 100:487-501. [PMID: 35792871 DOI: 10.1111/cbdd.14114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 11/27/2022]
Abstract
A series of 51 novel sulfonylurea compounds with ortho-alkoxy substituent at phenyl ring were chemically synthesized and spectroscopically characterized. The biological activities of the target compounds were evaluated using the enzyme inhibition against acetohydroxyacid synthase (AHAS; EC 2.2.1.6) from fungal or plant source, as well as cell-based antifungal assay and greenhouse pot herbicidal assay. Among the target compounds, 6e showed desirable antifungal activity against Candida albicans standard isolate sc5314 with minimum inhibition concentration (MIC) of 0.39 mg/L (0.98 μM) after 24 h, and 6a demonstrated promising pre-emergence herbicidal activity against Echinochloacrus-galli at 30 g/ha dosage. Representative compounds 6a, 6e, and 6i showed no cell cytotoxicity even at 40 mg/L concentration. Theoretical DFT calculations indicated HOMO maps should be considered to understand the structure-activity relationships. The present study has hence provided useful information for further discovery of novel antifungal agents or selective herbicides.
Collapse
Affiliation(s)
- Ming-Hao Shang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin, China
| | - Kai Zhang
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Jia-Shuang Zhang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin, China
| | - Cong-Wei Niu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin, China
| | - Yong-Hong Li
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin, China
| | - Fu-Hang Song
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Jian-Guo Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
13
|
Fang ZY, Zhang YH, Chen CH, Zheng Q, Lv PC, Ni LQ, Sun J, Wu YF. Design, Synthesis and Molecular Docking of Novel Quinazolinone Hydrazide Derivatives as EGFR Inhibitors. Chem Biodivers 2022; 19:e202200189. [PMID: 35510593 DOI: 10.1002/cbdv.202200189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/05/2022] [Indexed: 11/09/2022]
Abstract
A series of novel quinazolinone hydrazide derivatives were designed and synthesized as EGFR inhibitors. The results indicated that most of the aimed compounds had potential anti-tumor cell proliferation and EGFR inhibitory activities. In the comprehensive analysis of all the tested compounds, the target compound 9c showed the best anti-tumor cell proliferation activity, (IC50 =1.31 μM for MCF-7, IC50 =1.89 μM for HepG2, IC50 =2.10 μM for SGC), and IC50 =0.59 μM for the EGFR inhibitory activity. Docking results showed that compound 9c could ideally insert the active site and interact with the critical amino acid residues (Val702, Lys721, Met769, Asp831) in the active site.
Collapse
Affiliation(s)
- Ze-Yu Fang
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, China
| | - Yi-Heng Zhang
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, China
| | - Chong-Hao Chen
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, China
| | - Qi Zheng
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, China
| | - Peng-Cheng Lv
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, China
| | - Lei-Qiang Ni
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, China
| | - Juan Sun
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, China
| | - Yuan-Feng Wu
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, China
| |
Collapse
|
14
|
Dehbi O, Riadi Y, Geesi MH, Anouar EH, Ibnouf EO, Azzallou R. Synthesis, Characterization, Antibacterial Evaluation, and Molecular Docking of New Quinazolinone-Based Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2041053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Oussama Dehbi
- École Supérieure en Ingénierie D'information, Télécommunication, Management et Génie Civil (ESTEM), Casablanca, Morocco
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia 11942
| | - Mohammed H. Geesi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia 11942
| | - El Hassane Anouar
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia 11942
| | - Elmutasim O. Ibnouf
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia 11942
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, Omdurman Islamic University, Sudan
| | - Rachid Azzallou
- Equipe de Matériaux, Catalyse et Valorisation Des Ressources Naturelles, Faculté Des Sciences, Université Ibn Zohr, Agadir, BP, Maroc 8106
- Laboratoire de Biochimie, Environnement & Agroalimentaire, URAC 36, Faculté Des Sciences et Techniques de Mohammedia, Université Hassan II-Casablanca, Mohammedia, Maroc
| |
Collapse
|
15
|
Megahed SH, Rasheed S, Herrmann J, El-Hossary EM, El-Shabrawy YI, Abadi AH, Engel M, Müller R, Abdel-Halim M, Hamed MM. Novel 2,4-disubstituted quinazoline analogs as antibacterial agents with improved cytotoxicity profile: Modification of the benzenoid part. Bioorg Med Chem Lett 2022; 59:128531. [PMID: 35007723 DOI: 10.1016/j.bmcl.2022.128531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 11/19/2022]
Abstract
Bacterial resistance to currently used antibiotics demands the development of novel antibacterial agents with good safety margins and sufficient efficacy against multi-drug resistant isolates. We have previously described the synthesis of N-butyl-2-(butylthio)quinazolin-4-amine (I) as an optimized hit with broad-spectrum antibacterial activity and low cytotoxicity. In addition, we have identified a potential growing vector for this series of compounds. Herein, we describe further hit optimization which includes systematic diversifications of both the benzenoid part and the substituents at position 6 and 7 of compound I. Growing of the molecule beside the core modifications yielded several compounds with remarkable anti(myco)bacterial activity against a panel of pathogenic bacteria, including drug-resistant strains. Compound 12 showed a 2-4 fold improvement in activity than I against S. aureus Newman, S. pneumoniae DSM-20566 and E. faecalis DSM-20478. The compounds also showed a good safety profile towards human HepG2 cells.
Collapse
Affiliation(s)
- Sarah H Megahed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Sari Rasheed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
| | - Ebaa M El-Hossary
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Ahmed El-Zomor St. 3, El-Zohoor Dist., Nasr City, 11765 Cairo, Egypt
| | - Yahia I El-Shabrawy
- Department of Microbiology and Immunology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt.
| | - Mostafa M Hamed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany.
| |
Collapse
|
16
|
Zhang R, Ma R, Fu Q, Chen R, Wang Z, Wang L, Ma Y. Selective electrophilic di- and mono-fluorinations for the synthesis of 4-difluoromethyl and 4-fluoromethyl quinazolin(thi)ones by Selectfluor-triggered multi-component reaction. Org Chem Front 2022. [DOI: 10.1039/d1qo01728d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and efficient domino protocol for the selective synthesis of 4-difluoromethyl and 4-fluoromethyl quinazolin(thi)ones was established from readily available 2-aminoacetophenones and iso(thio)cyanates mediated by Selectfluor. The reaction outcomes are...
Collapse
|
17
|
Zheng Y, Dong M, Qu E, Bai J, Wu XF, Li W. Pd-Catalyzed Carbonylative Synthesis of 4H-Benzo[d][1,3]Oxazin-4-Ones Using Benzene-1,3,5-Triyl Triformate as the CO Source. Chemistry 2021; 27:16219-16224. [PMID: 34529291 DOI: 10.1002/chem.202103137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Indexed: 11/10/2022]
Abstract
A facile synthesis of 4H-benzo[d][1,3]oxazin-4-one derivatives by Pd-catalyzed carbonylative cross-coupling between N-(ortho-bromoaryl)amides and benzene-1,3,5-triyl triformate (TFBen) was developed. This procedure does not require the toxic and flammable gas CO as the carbonyl source and tolerates a wide scope of functional groups. Remarkably, 4H-benzo[d][1,3]oxazin-4-ones incorporated to natural products and drugs can be constructed by this method.
Collapse
Affiliation(s)
- Yan Zheng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Mengke Dong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Erdong Qu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Jin Bai
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 200093, Shanghai, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China.,Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straβe 29a, 18059, Rostock, Germany
| | - Wanfang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 200093, Shanghai, China
| |
Collapse
|
18
|
Aboushady D, Rasheed SS, Herrmann J, Maher A, El-Hossary EM, Ibrahim ES, Abadi AH, Engel M, Müller R, Abdel-Halim M, Hamed MM. Novel 2,4-disubstituted quinazoline analogs as antibacterial agents with improved cytotoxicity profile: Optimization of the 2,4-substituents. Bioorg Chem 2021; 117:105422. [PMID: 34700110 DOI: 10.1016/j.bioorg.2021.105422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/20/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022]
Abstract
The emergence of bacterial resistance has triggered a multitude of efforts to develop new antibacterial agents. There are many compounds in literature that were reported as potent antibacterial agents, however, they lacked the required safety to mammalian cells or no clear picture about their toxicity profile was presented. Inspired by discovered hit from our in-house library and by previously reported 2,4-diaminosubstituted quinazolines, we describe the design and synthesis of novel 2,4-disubstituted-thioquinazolines (3-13 and 36), 2-thio-4-amino substituted quinazolines (14-33) and 6-substituted 2,4-diamonsubstituted quinazolines (37-39). The synthesized compounds showed potent antibacterial activity against a panel of Gram-positive, efflux deficient E.coli and Mycobacterium smegmatis. The panel also involved resistant strains including methicillin-resistant Staphylococcus aureus, penicillin-resistant Streptococcus pneumoniae, vancomycin-resistant Enterococcus faecalis and vancomycin-resistant Enterococcus faecium, in addition to Mycobacterium smegmatis. The newly synthesized compounds revealed MIC values against the tested strains ranging from 1 to 64 µg/mL with a good safety profile. Most of the 2-thio-4-amino substituted-quinazolines showed significant antimycobacterial activity with the variations at position 2 and 4 offering additional antibacterial activity against the different strains. Compared to previously reported 2,4-diaminosubstituted quinazolines, the bioisosteric replacement of the 2-amino with sulfur offered a successful approach to keep the high antibacterial potency while substantially improving safety profile as indicated by the reduced activity on different cell lines and a lack of hemolytic activity.
Collapse
Affiliation(s)
- Dina Aboushady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Sari S Rasheed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
| | - Ahmed Maher
- Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), 6(th) of October City, Egypt; Department of Biology and Biochemistry, School of Life and Medical Sciences, University of Hertfordshire hosted by Global Academic Foundation, Cairo, Egypt
| | - Ebaa M El-Hossary
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Ahmed El-Zomor St. 3, El-Zohoor Dist., 11765 Cairo, Egypt
| | - Eslam S Ibrahim
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt; Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Strasse 2/Bau D15, 97080 Würzburg, Germany
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt.
| | - Mostafa M Hamed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany.
| |
Collapse
|
19
|
Wahan SK, Sharma B, Chawla PA. Medicinal perspective of quinazolinone derivatives: Recent developments and
structure–activity
relationship studies. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4382] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Bharti Sharma
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga India
| |
Collapse
|
20
|
Emam AM, Dahal A, Singh SS, Tosso RD, Ibrahim SM, El-Sadek M, Jois SD, Enriz RD, Kothayer H. Quinazoline-tethered hydrazone: A versatile scaffold toward dual anti-TB and EGFR inhibition activities in NSCLC. Arch Pharm (Weinheim) 2021; 354:e2100281. [PMID: 34585758 DOI: 10.1002/ardp.202100281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/07/2022]
Abstract
Globally, lung cancer and tuberculosis are considered to be very serious and complex diseases. Evidence suggests that chronic infection with tuberculosis (TB) can often lead to lung tumors; therefore, developing drugs that target both diseases is of great clinical significance. In our study, we designed and synthesized a suite of 14 new quinazolinones (5a-n) and performed biological investigations of these compounds in Mycobacterium tuberculosis (MTB) and cancer cell lines. In addition, we conducted a molecular modeling study to determine the mechanism of action of these compounds at the molecular level. Compounds that showed anticancer activity in the preliminary screening were further evaluated in three cancer cell lines (A549, Calu-3, and BT-474 cells) and characterized in an epidermal growth factor receptor (EGFR) binding assay. Cytotoxicity in noncancerous lung fibroblast cells was also evaluated to obtain safety data. Our theoretical and experimental studies indicated that our compounds showed a mechanism of action similar to that of erlotinib by inhibiting the EGFR tyrosine kinase. In turn, the antituberculosis activity of these compounds would be produced by the inhibition of enoyl-ACP-reductase. From our findings, we were able to identify two potential lead compounds (5i and 5l) with dual activity and elevated safety toward noncancerous lung fibroblast cells. In addition, our data identified three compounds with excellent anti-TB activities (compounds 5i, 5l, and 5n).
Collapse
Affiliation(s)
- Aya M Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Sitanshu S Singh
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Rodrigo D Tosso
- Pharmacy Department, Facultad de Química, Bioquímica y Farmacia, IMIBIO-CONICET, Universidad Nacional de San Luis, San Luis, Argentina
| | - Samy M Ibrahim
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed El-Sadek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Seetharama D Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
| | - Ricardo D Enriz
- Pharmacy Department, Facultad de Química, Bioquímica y Farmacia, IMIBIO-CONICET, Universidad Nacional de San Luis, San Luis, Argentina
| | - Hend Kothayer
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
21
|
Liang YF, Long ZX, Zhang YJ, Luo CY, Yan LT, Gao WY, Li H. The chemical mechanisms of the enzymes in the branched-chain amino acids biosynthetic pathway and their applications. Biochimie 2021; 184:72-87. [PMID: 33607240 DOI: 10.1016/j.biochi.2021.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/27/2022]
Abstract
l-Valine, l-isoleucine, and l-leucine are three key proteinogenic amino acids, and they are also the essential amino acids required for mammalian growth, possessing important and to some extent, special physiological and biological functions. Because of the branched structures in their carbon chains, they are also named as branched-chain amino acids (BCAAs). This review will highlight the advance in studies of the enzymes involved in the biosynthetic pathway of BCAAs, concentrating on their chemical mechanisms and applications in screening herbicides and antibacterial agents. The uses of some of these enzymes in lab scale organic synthesis are also discussed.
Collapse
Affiliation(s)
- Yan-Fei Liang
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Zi-Xian Long
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Ya-Jian Zhang
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Cai-Yun Luo
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Le-Tian Yan
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Wen-Yun Gao
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China.
| | - Heng Li
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
22
|
Dutta A, Sarma D. Recent advances in the synthesis of Quinazoline analogues as Anti-TB agents. Tuberculosis (Edinb) 2020; 124:101986. [PMID: 32942187 DOI: 10.1016/j.tube.2020.101986] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 11/29/2022]
Abstract
Quinazoline analogues are one of the important nitrogen containing heterocycles that have significant bioactivity as well as found in a plethora of natural products. Tuberculosis is one of the serious universal health threats caused by Mycobacteriumtuberculosis (MTB) and primarily affects the lungs. Due to their significant bioactivity and natural occurrences of quinazolines, researchers are trying to synthesize new quinazoline analogues which may have significant potency against tuberculosis. This particular review summarizes recent development of different types of quinazoline bearing analogues as anti-tubercular (anti-TB) agents and their synthesis with structure-activity relationship.
Collapse
Affiliation(s)
- Apurba Dutta
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Diganta Sarma
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India.
| |
Collapse
|
23
|
Salem MS, Al‐Mabrook SAM, El‐Hashash MAEM. Synthesis and antiproliferative evaluation of some novel quinazolin‐4(
3
H
)‐one derivatives. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Marwa Sayed Salem
- Chemistry Department, Faculty of Science Ain Shams University Cairo Egypt
| | - Selima Ali Mohamed Al‐Mabrook
- Chemistry Department, Faculty of Science Ain Shams University Cairo Egypt
- Chemistry Department Faculty of Science, El‐Margeb University Al Khums Libya
| | | |
Collapse
|
24
|
Makarov V, Salina E, Reynolds RC, Kyaw Zin PP, Ekins S. Molecule Property Analyses of Active Compounds for Mycobacterium tuberculosis. J Med Chem 2020; 63:8917-8955. [PMID: 32259446 DOI: 10.1021/acs.jmedchem.9b02075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) continues to claim the lives of around 1.7 million people per year. Most concerning are the reports of multidrug drug resistance. Paradoxically, this global health pandemic is demanding new therapies when resources and interest are waning. However, continued tuberculosis drug discovery is critical to address the global health need and burgeoning multidrug resistance. Many diverse classes of antitubercular compounds have been identified with activity in vitro and in vivo. Our analyses of over 100 active leads are representative of thousands of active compounds generated over the past decade, suggests that they come from few chemical classes or natural product sources. We are therefore repeatedly identifying compounds that are similar to those that preceded them. Our molecule-centered cheminformatics analyses point to the need to dramatically increase the diversity of chemical libraries tested and get outside of the historic Mtb property space if we are to generate novel improved antitubercular leads.
Collapse
Affiliation(s)
- Vadim Makarov
- FRC Fundamentals of Biotechnology, Russian Academy of Science, Moscow 119071, Russia
| | - Elena Salina
- FRC Fundamentals of Biotechnology, Russian Academy of Science, Moscow 119071, Russia
| | - Robert C Reynolds
- Department of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, NP 2540 J, 1720 Second Avenue South, Birmingham, Alabama 35294-3300, United States
| | - Phyo Phyo Kyaw Zin
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.,Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, North Carolina 27606, United States
| |
Collapse
|
25
|
|
26
|
Xie Y, Zhang C, Wang Z, Wei C, Liao N, Wen X, Niu C, Yi L, Wang Z, Xi Z. Fluorogenic Assay for Acetohydroxyacid Synthase: Design and Applications. Anal Chem 2019; 91:13582-13590. [PMID: 31603309 DOI: 10.1021/acs.analchem.9b02739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Acetohydroxyacid synthase (AHAS) exists in plants and many microorganisms (including gut flora) but not in mammals, making it an attractive drug target. Fluorescent-based methods should be practical for high-throughput screening of inhibitors. Herein, we describe the development of the first AHAS fluorogenic assay based on an intramolecular charge transfer (ICT)-based fluorescent probe. The assay is facile, sensitive, and continuous and can be applied toward various AHASs from different species, AHAS mutants, and crude cell lysates. The fluorogenic assay was successfully applied for (1) high-throughput screening of commerical herbicides toward different AHASs for choosing matching herbicides, (2) identification of a Soybean AHAS gene with broad-spectrum herbicide resistance, and (3) identification of selective inhibitors toward intestinal-bacterial AHASs. Among the AHAS inhibitors, an active agent was found for selective inhibition of obesity-associated Ruminococcus torques growth, implying the possibility of AHAS inhibitors for the ultimate goal toward antiobesity therapeutics. The fluorogenic assay opens the door for high-throughput programs in AHAS-related fields, and the design principle might be applied for development of fluorogenic assays of other synthases.
Collapse
Affiliation(s)
- Yonghui Xie
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Changyu Zhang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess , Beijing University of Chemical Technology (BUCT) , Beijing 100029 , P. R. China
| | - Zhihua Wang
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
| | - Chao Wei
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Ningjing Liao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Congwei Niu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess , Beijing University of Chemical Technology (BUCT) , Beijing 100029 , P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering , Nankai University , Tianjin 300071 , P. R. China
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering , Nankai University , Tianjin 300071 , P. R. China
| |
Collapse
|
27
|
Jiang J, Cai X, Hu Y, Liu X, Chen X, Wang SY, Zhang Y, Zhang S. Thermo-Promoted Reactions of Anthranils with Carboxylic Acids, Amines, Phenols, and Malononitrile under Catalyst-Free Conditions. J Org Chem 2019; 84:2022-2031. [DOI: 10.1021/acs.joc.8b02890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jing Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren’ai Road, Suzhou, Jiangsu 215123, China
- Jiangsu Key Laboratory for Functional Substances of Chinese of Medicine, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xin Cai
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren’ai Road, Suzhou, Jiangsu 215123, China
| | - Yanwei Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren’ai Road, Suzhou, Jiangsu 215123, China
| | - Xuejun Liu
- Shanghai Fosun Shino Tech Pharmaceutical Co., Ltd., Building 7, No. 1999 ZhangHeng Road, Shanghai, 201203, China
| | - Xiaodong Chen
- Shanghai Fosun Shino Tech Pharmaceutical Co., Ltd., Building 7, No. 1999 ZhangHeng Road, Shanghai, 201203, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Yinan Zhang
- Jiangsu Key Laboratory for Functional Substances of Chinese of Medicine, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shilei Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren’ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
28
|
Wang HX, Liu HY, Li W, Zhang S, Wu Z, Li X, Li CW, Liu YM, Chen BQ. Design, synthesis, antiproliferative and antibacterial evaluation of quinazolinone derivatives. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2276-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Wu RJ, Ren T, Gao JY, Wang L, Yu Q, Yao Z, Song GQ, Ruan WB, Niu CW, Song FH, Zhang LX, Li M, Wang JG. Chemical preparation, biological evaluation and 3D-QSAR of ethoxysulfuron derivatives as novel antifungal agents targeting acetohydroxyacid synthase. Eur J Med Chem 2018; 162:348-363. [PMID: 30448420 DOI: 10.1016/j.ejmech.2018.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 12/29/2022]
Abstract
Accetohydroxyacid synthase (AHAS) is the first enzyme involved in the biosynthetic pathway of branched-chain amino acids. Earlier gene mutation of Candida albicans in a mouse model suggested that this enzyme is a promising target of antifungals. Recent studies have demonstrated that some commercial AHAS-inhibiting sulfonylurea herbicides exerted desirable antifungal activity. In this study, we have designed and synthesized 68 novel ethoxysulfulron (ES) derivatives and evaluated their inhibition constants (Ki) against C. albicans AHAS and cell based minimum inhibitory concentration (MIC) values. The target compounds 5-1, 5-10, 5-22, 5-31 and 5-37 displayed stronger AHAS inhibitions than ES did. Compound 5-1 had the best Ki of 6.7 nM against fungal AHAS and MIC values of 2.5 mg/L against Candida albicans and Candica parapsilosis after 72 h. A suitable nematode model was established here and the antifungal activity of 5-1 was further evaluated in vivo. A possible binding mode was simulated via molecular docking and a comparative field analysis (CoMFA) model was constructed to understand the structure-activity relationship. The current study has indicated that some ES derivatives should be considered as promising hits to develop antifungal drugs with novel biological target.
Collapse
Affiliation(s)
- Ren-Jun Wu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tongtong Ren
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jie-Yu Gao
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Li Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zheng Yao
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Guo-Qing Song
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei-Bin Ruan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Cong-Wei Niu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fu-Hang Song
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li-Xin Zhang
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Jian-Guo Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
30
|
Li KJ, Qu RY, Liu YC, Yang JF, Devendar P, Chen Q, Niu CW, Xi Z, Yang GF. Design, Synthesis, and Herbicidal Activity of Pyrimidine-Biphenyl Hybrids as Novel Acetohydroxyacid Synthase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3773-3782. [PMID: 29618205 DOI: 10.1021/acs.jafc.8b00665] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The issue of weed resistance to acetohydroxyacid synthase (EC 2.2.1.6, AHAS) inhibitors has become one of the largest obstacles for the application of this class of herbicides. In a continuing effort to discover novel AHAS inhibitors to overcome weed resistance, a series of pyrimidine-biphenyl hybrids (4aa-bb and 5aa-ah) were designed and synthesized via a scaffold hopping strategy. Among these derivatives, compounds 4aa ( Ki = 0.09 μM) and 4bb ( Ki = 0.02 μM) displayed higher inhibitory activities against Arabidopsis thaliana AHAS than those of the controls bispyribac ( Ki = 0.54 μM) and flumetsulam ( Ki = 0.38 μM). Remarkably, compounds 4aa, 4bb, 5ah, and 5ag exhibited excellent postemergence herbicidal activity and a broad spectrum of weed control at application rates of 37.5-150 g of active ingredient (ai)/ha. Furthermore, 4aa and 4bb showed higher herbicidal activity against AHAS inhibitor-resistant Descurainia sophia, Ammannia arenaria, and the corresponding sensitive weeds than that of bispyribac at 0.94-0.235 g ai/ha. Therefore, the pyrimidine-biphenyl motif and lead compounds 4aa and 4bb have great potential for the discovery of novel AHAS inhibitors to combat AHAS-inhibiting herbicide-resistant weeds.
Collapse
Affiliation(s)
- Ke-Jian Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P.R. China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P.R. China
| | - Yu-Chao Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P.R. China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P.R. China
| | - Ponnam Devendar
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P.R. China
| | - Qiong Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P.R. China
| | - Cong-Wei Niu
- State Key Laboratory of Elemento-Organic Chemistry , Nankai University (NKU) , Tianjin 300071 , P.R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry , Nankai University (NKU) , Tianjin 300071 , P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 30071 , P.R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 30071 , P.R. China
| |
Collapse
|
31
|
Amorim Franco TM, Blanchard JS. Bacterial Branched-Chain Amino Acid Biosynthesis: Structures, Mechanisms, and Drugability. Biochemistry 2017; 56:5849-5865. [PMID: 28977745 DOI: 10.1021/acs.biochem.7b00849] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The eight enzymes responsible for the biosynthesis of the three branched-chain amino acids (l-isoleucine, l-leucine, and l-valine) were identified decades ago using classical genetic approaches based on amino acid auxotrophy. This review will highlight the recent progress in the determination of the three-dimensional structures of these enzymes, their chemical mechanisms, and insights into their suitability as targets for the development of antibacterial agents. Given the enormous rise in bacterial drug resistance to every major class of antibacterial compound, there is a clear and present need for the identification of new antibacterial compounds with nonoverlapping targets to currently used antibacterials that target cell wall, protein, mRNA, and DNA synthesis.
Collapse
Affiliation(s)
- Tathyana M Amorim Franco
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10805, United States
| | - John S Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10805, United States
| |
Collapse
|
32
|
Discovery of potent antiviral (HSV-1) quinazolinones and initial structure-activity relationship studies. Bioorg Med Chem Lett 2017; 27:4601-4605. [DOI: 10.1016/j.bmcl.2017.09.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 11/19/2022]
|
33
|
Fernandes GFDS, Man Chin C, Dos Santos JL. Advances in Drug Discovery of New Antitubercular Multidrug-Resistant Compounds. Pharmaceuticals (Basel) 2017; 10:ph10020051. [PMID: 28587160 PMCID: PMC5490408 DOI: 10.3390/ph10020051] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/09/2017] [Accepted: 05/29/2017] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB), a disease caused mainly by the Mycobacterium tuberculosis (Mtb), is according to the World Health Organization (WHO) the infectious disease responsible for the highest number of deaths worldwide. The increased number of multidrug-resistant (MDR-TB) and extensively drug-resistant (XDR-TB) strains, and the ineffectiveness of the current treatment against latent tuberculosis are challenges to be overcome in the coming years. The scenario of drug discovery becomes alarming when it is considered that the number of new drugs does not increase proportionally to the emergence of drug resistance. In this review, we will demonstrate the current advances in antitubercular drug discovery, focusing on the research of compounds with potent antituberculosis activity against MDR-TB strains. Herein, active compounds against MDR-TB with minimum inhibitory concentrations (MICs) less than 11 µM and low toxicity published in the last 4 years in the databases PubMed, Web of Science and Scopus will be presented and discussed.
Collapse
Affiliation(s)
- Guilherme Felipe Dos Santos Fernandes
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800060, Brazil.
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil.
| | - Chung Man Chin
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil.
| | - Jean Leandro Dos Santos
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800060, Brazil.
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil.
| |
Collapse
|
34
|
Ionic Liquid [HMIm]BF4Mediated and Promoted Eco-Friendly One-Pot Sequential Synthesis of New Isoxazolyl Quinazolin-4(3H)-ones. ChemistrySelect 2017. [DOI: 10.1002/slct.201700247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Yahia E, Mohammad H, Abdelghany TM, Fayed E, Seleem MN, Mayhoub AS. Phenylthiazole antibiotics: A metabolism-guided approach to overcome short duration of action. Eur J Med Chem 2016; 126:604-613. [PMID: 27918995 DOI: 10.1016/j.ejmech.2016.11.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 11/02/2016] [Accepted: 11/20/2016] [Indexed: 01/20/2023]
Abstract
Antibacterial resistance is a pressing global health challenge that necessitates the development of new therapeutic agents. Phenylthiazole antibacterial agents have been extensively studied, by our group, as a potential novel class of antibiotics to circumvent the scourge of antibacterial resistance. Previously, the phenylthiazole lead compound 1 was shown to possess potent activity against clinical isolates of methicillin- and vancomycin-resistant Staphylococcus aureus (MRSA and VRSA). The promising activity of this novel class of antibiotics is hampered by their short half-life due to rapid hepatic metabolism. In the present study, a metabolic methylene soft spot in the lead 1 was identified and replaced with an oxygen atom. The newly developed phenylthiazoles, with alkoxy side chains, demonstrate high metabolic stability (t1/2 > 4 h), while maintaining their potent anti-MRSA activity. Furthermore, compound 5p demonstrated a selective advantage over vancomycin with its ability to kill intracellular MRSA.
Collapse
Affiliation(s)
- Eman Yahia
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Haroon Mohammad
- Department of Comparative Pathobiology, Purdue University, College of Veterinary Medicine, West Lafayette, IN 47907, USA
| | - Tamer M Abdelghany
- Department of Pharmacology, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Eman Fayed
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University, College of Veterinary Medicine, West Lafayette, IN 47907, USA; Purdue Institute for Inflammation, Immunology, and Infectious Diseases, West Lafayette, IN 479067, USA.
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt; Biomedical Sciences, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.
| |
Collapse
|
36
|
Verma A, Kumar S. Selective Oxidative Decarbonylative Cleavage of Unstrained C(sp(3))-C(sp(2)) Bond: Synthesis of Substituted Benzoxazinones. Org Lett 2016; 18:4388-91. [PMID: 27549986 DOI: 10.1021/acs.orglett.6b02142] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A transition metal (TM)-free practical synthesis of biologically relevant benzoxazinones has been established via a selective oxidative decarbonylative cleavage of an unstrained C(sp(3))-C(sp(2)) bond employing iodine, sodium bicarbonate, and (t)butyl hydroperoxide in DMSO at 95 °C. Control experiments and Density Functional Theory (DFT) calculations suggest that the reaction involves a [1,5]H shift and extrusion of CO gas as the key steps. The extrusion of CO has also been established using PMA-PdCl2.
Collapse
Affiliation(s)
- Ajay Verma
- Department of Chemistry, IISER Bhopal , Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sangit Kumar
- Department of Chemistry, IISER Bhopal , Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
37
|
Tangella Y, Manasa KL, Sathish M, Alarifi A, Kamal A. Phenyliodonium Diacetate Mediated One-Pot Synthesis of Benzimidazoles and Quinazolinones from Benzylamines. ChemistrySelect 2016. [DOI: 10.1002/slct.201600772] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yellaiah Tangella
- Medicinal Chemistry & Pharmacology; CSIR-Indian Institute of Chemical Technology; Hyderabad- 500 007 India
- Academy of Scientific and Innovative Research; CSIR-Indian Institute of Chemical Technology; Hyderabad - 500 007 India
| | - Kesari Lakshmi Manasa
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad- 500 037 India
| | - Manda Sathish
- Medicinal Chemistry & Pharmacology; CSIR-Indian Institute of Chemical Technology; Hyderabad- 500 007 India
| | - Abdullah Alarifi
- Catalytic Chemistry Research Chair; Chemistry Department; College of Science; King Saud University; Riyadh 11451 Saudi Arabia
| | - Ahmed Kamal
- Medicinal Chemistry & Pharmacology; CSIR-Indian Institute of Chemical Technology; Hyderabad- 500 007 India
- Academy of Scientific and Innovative Research; CSIR-Indian Institute of Chemical Technology; Hyderabad - 500 007 India
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad- 500 037 India
- Catalytic Chemistry Research Chair; Chemistry Department; College of Science; King Saud University; Riyadh 11451 Saudi Arabia
| |
Collapse
|
38
|
Arasteh-Fard Z, Dilmaghani KA, Saeedi M, Mahdavi M, Shafiee A. Synthesis of Novel Phthalazino[1,2-b]quinazolinedione Derivatives: Efficient and Practical Reaction of 2-Amino-N′-Arylbenzohydrazides and 2-Formylbenzoic Acids. Helv Chim Acta 2016. [DOI: 10.1002/hlca.201600025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zahra Arasteh-Fard
- Department of Chemistry; Faculty of Sciences; Urmia University; Urmia Iran
| | | | - Mina Saeedi
- Medicinal Plants Research Center; Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
- Persian Medicine and Pharmacy Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Mohammad Mahdavi
- Drug Design and Development Research Center; Tehran University of Medical Sciences; Tehran Iran
| | - Abbas Shafiee
- Department of Medicinal Chemistry; Faculty of Pharmacy and Pharmaceutical Sciences Research Center; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
39
|
Guo W, Zheng LY, Li YD, Wu RM, Chen Q, Yang DQ, Fan XL. Discovery of molluscicidal and cercaricidal activities of 3-substituted quinazolinone derivatives by a scaffold hopping approach using a pseudo-ring based on the intramolecular hydrogen bond formation. Eur J Med Chem 2016; 115:291-4. [DOI: 10.1016/j.ejmech.2016.03.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 01/22/2023]
|
40
|
Appani R, Bhukya B, Gangarapu K. Synthesis and Antibacterial Activity of 3-(Substituted)-2-(4-oxo-2-phenylquinazolin-3(4H)-ylamino)quinazolin-4(3H)-one. SCIENTIFICA 2016; 2016:1249201. [PMID: 27190676 PMCID: PMC4839212 DOI: 10.1155/2016/1249201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 03/17/2016] [Indexed: 06/05/2023]
Abstract
A series of novel 3-(substituted)-2-(substituted quinazolinylamino)quinazolin-4(3H)-ones were synthesized by the reaction of 3-(substituted)-2-hydrazino-quinazoline-4(3H)-ones with 2-phenyl-3,1-benzoxazin-4-one. The starting materials 3-(substituted)-2-hydrazino-quinazolin-4(3H)-ones were synthesized from various primary amines by a multistep synthesis. All the title compounds were tested for their antibacterial activity using ciprofloxacin as reference standard. Compounds 3-(4-fluorophenyl)-2-(4-oxo-2-phenylquinazolin-3(4H)-ylamino)quinazolin-4(3H)-one (9a) and 3-(4-chlorophenyl)-2-(4-oxo-2-phenylquinazolin-3(4H)-ylamino)quinazolin-4(3H)-one (9h) emerged as the most active compounds of the series. These compounds have shown most potent antibacterial activity against the tested organisms of Proteus vulgaris and Bacillus subtilis having zone of inhibition values of 1.1 cm and 1.4 cm for compound 9a 1.2 cm and 1.0 cm for compound 9h, respectively.
Collapse
Affiliation(s)
- Ramgopal Appani
- Department of Pharmaceutical Chemistry and Phytochemistry, Nethaji Institute of Pharmaceutical Sciences, Somidi, Kazipet, Warangal, Telangana 506003, India
| | - Baburao Bhukya
- Department of Pharmaceutical Chemistry and Phytochemistry, Nethaji Institute of Pharmaceutical Sciences, Somidi, Kazipet, Warangal, Telangana 506003, India
| | - Kiran Gangarapu
- Department of Pharmaceutical Chemistry, Chaitanya Institute of Pharmaceutical Sciences, Rampur, Warangal, Telangana 506151, India
| |
Collapse
|
41
|
Liu L, Chen L, Zhang YH, Wei L, Cheng S, Kong X, Zheng M, Huang T, Cai YD. Analysis and prediction of drug-drug interaction by minimum redundancy maximum relevance and incremental feature selection. J Biomol Struct Dyn 2016; 35:312-329. [PMID: 26750516 DOI: 10.1080/07391102.2016.1138142] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Drug-drug interaction (DDI) defines a situation in which one drug affects the activity of another when both are administered together. DDI is a common cause of adverse drug reactions and sometimes also leads to improved therapeutic effects. Therefore, it is of great interest to discover novel DDIs according to their molecular properties and mechanisms in a robust and rigorous way. This paper attempts to predict effective DDIs using the following properties: (1) chemical interaction between drugs; (2) protein interactions between the targets of drugs; and (3) target enrichment of KEGG pathways. The data consisted of 7323 pairs of DDIs collected from the DrugBank and 36,615 pairs of drugs constructed by randomly combining two drugs. Each drug pair was represented by 465 features derived from the aforementioned three categories of properties. The random forest algorithm was adopted to train the prediction model. Some feature selection techniques, including minimum redundancy maximum relevance and incremental feature selection, were used to extract key features as the optimal input for the prediction model. The extracted key features may help to gain insights into the mechanisms of DDIs and provide some guidelines for the relevant clinical medication developments, and the prediction model can give new clues for identification of novel DDIs.
Collapse
Affiliation(s)
- Lili Liu
- a Intelligence Research Department, Information Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , P. R. China
| | - Lei Chen
- b College of Information Engineering, Shanghai Maritime University , Shanghai 201306 , P. R. China
| | - Yu-Hang Zhang
- c Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200031 , P. R. China
| | - Lai Wei
- b College of Information Engineering, Shanghai Maritime University , Shanghai 201306 , P. R. China
| | - Shiwen Cheng
- b College of Information Engineering, Shanghai Maritime University , Shanghai 201306 , P. R. China
| | - Xiangyin Kong
- c Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200031 , P. R. China
| | - Mingyue Zheng
- d State Key Laboratory of Drug Research, Drug Discovery and Design Center , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , P. R. China
| | - Tao Huang
- c Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200031 , P. R. China
| | - Yu-Dong Cai
- e School of Life Sciences, Shanghai University , Shanghai 200444 , P. R. China
| |
Collapse
|
42
|
Beerappa M, Shivashankar K. Multicomponent reaction of benzyl halides: Synthesis of [1,2,4]triazolo/benzimidazolo quinazolinones. SYNTHETIC COMMUN 2016. [DOI: 10.1080/00397911.2016.1140784] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mallappa Beerappa
- P.G. Department of Chemistry, Central College Campus, Bangalore University, Bangalore, Karnataka, India
| | - Kalegowda Shivashankar
- P.G. Department of Chemistry, Central College Campus, Bangalore University, Bangalore, Karnataka, India
| |
Collapse
|
43
|
Li T, Chen M, Yang L, Xiong Z, Wang Y, Li F, Chen D. Copper-catalyzed consecutive reaction to construct quinazolin-4(3H)-ones and pyrido[2,3-d]pyrimidin-4(3H)-ones. Tetrahedron 2016. [DOI: 10.1016/j.tet.2015.12.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
44
|
Fan L, Wang T, Tian Y, Xiong F, Wu S, Liang Q, Zhao J. Copper-catalyzed oxidative coupling between quinazoline 3-oxides and unactivated aldehydes: an efficient approach to functionalized quinazolines. Chem Commun (Camb) 2016; 52:5375-8. [DOI: 10.1039/c6cc00946h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first copper-catalyzed oxidative coupling between quinazoline 3-oxides and unactivated aldehydes was described.
Collapse
Affiliation(s)
- Liwen Fan
- College of Chemistry & Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P. R. China
| | - Tao Wang
- College of Chemistry & Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P. R. China
- National Research Center for Carbohydrate Synthesis
| | - Ying Tian
- College of Chemistry & Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P. R. China
| | - Fei Xiong
- College of Chemistry & Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P. R. China
| | - Simei Wu
- College of Chemistry & Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P. R. China
| | - Qingjin Liang
- College of Chemistry & Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P. R. China
| | - Junfeng Zhao
- College of Chemistry & Chemical Engineering
- Jiangxi Normal University
- Nanchang
- P. R. China
- National Research Center for Carbohydrate Synthesis
| |
Collapse
|
45
|
Laha JK, Tummalapalli KSS, Nair A, Patel N. Sulfate Radical Anion (SO4•–) Mediated C(sp3)–H Nitrogenation/Oxygenation in N-Aryl Benzylic Amines Expanded the Scope for the Synthesis of Benzamidine/Oxazine Heterocycles. J Org Chem 2015; 80:11351-9. [DOI: 10.1021/acs.joc.5b01872] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joydev K. Laha
- Department of Pharmaceutical
Technology (Process Chemistry) National Institute of Pharmaceutical Education and Research S. A. S. Nagar, Punjab 160062 India
| | - K. S. Satyanarayana Tummalapalli
- Department of Pharmaceutical
Technology (Process Chemistry) National Institute of Pharmaceutical Education and Research S. A. S. Nagar, Punjab 160062 India
| | - Akshay Nair
- Department of Pharmaceutical
Technology (Process Chemistry) National Institute of Pharmaceutical Education and Research S. A. S. Nagar, Punjab 160062 India
| | - Nidhi Patel
- Department of Pharmaceutical
Technology (Process Chemistry) National Institute of Pharmaceutical Education and Research S. A. S. Nagar, Punjab 160062 India
| |
Collapse
|