1
|
Shaaban S, Alabdali AYM, Mousa MHA, Ba-Ghazal H, Al-Faiyz YS, Elghamry I, Althikrallah HA, Khatib AOA, Alaasar M, Al-Karmalawy AA. Innovative Multitarget Organoselenium Hybrids With Apoptotic and Anti-Inflammatory Properties Acting as JAK1/STAT3 Suppressors. Drug Dev Res 2025; 86:e70075. [PMID: 40103327 DOI: 10.1002/ddr.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Herein, we report the design, synthesis, and characterization of novel organoselenium (OSe) hybrids (5-19) via modifications of the lead, N-(4-selaneylphenyl)-2-selaneylacetamide. The OSe-based thiazol 9 showed the highest growth inhibition % (GI%) of 64.72% relative to the positive reference doxorubicin (DOX), with a GI% of 79.5%. Furthermore, the novel OSe derivatives showed low GI% values compared to the normal cell lines employed, demonstrating their selectivity. The OSe tethered N-chloroacetamide 5 and Schiff base 19 showed a cytotoxic effect with an IC50 of (25.07 and 11.61 µM), respectively, against the A549 tumor cell line and IC50 of (34.22 and 20.12 µM), respectively, against the HELA cancer cell line. Enzyme-linked immunosorbent assay to study the JAK1 and the STAT3 inhibitory potentials of OSe compounds 5 and 19 in the A549 cancer cells both showed promising inhibitory activities with IC50 values of 25.07 and 11.61 µM, respectively. Protein expression analysis on the A549 cancer cell line on OSe compounds 5 and 19 showed upregulation of P53, BAX, and Caspases 3, 6, 8, and 9 as apoptotic proteins. However, both candidates expressed downregulation of the antiapoptotic proteins (BCL2, MMP2, and MMP9). Moreover, OSe compounds 5 and 19 described the downregulation of the examined inflammatory proteins: COX2, IL-6, and IL-1β. In addition, OSe compound 19 showed potential cell cycle arrest at the G0, S, and G2-M layers, with an increase in cellular levels. Finally, molecular docking studies of OSe compound 19 showed the most promising inhibitory potential toward the JAK1 and STAT3 target receptors, with binding scores and interactions exceeding that of the cocrystallized inhibitor of JAK1.
Collapse
Affiliation(s)
- Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Mai H A Mousa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Hussein Ba-Ghazal
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Yasair S Al-Faiyz
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ibrahim Elghamry
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Hanan A Althikrallah
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Arwa Omar Al Khatib
- Faculty of Pharmacy, Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohamed Alaasar
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Faculty of Natural, Science II, Institute of Chemistry, Martin-Luther University, Halle Saale, Germany
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq, Baghdad, Iraq
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
2
|
Nawareg NA, Yassen ASA, Husseiny EM, El-Sayed MAA, Elshihawy HA. Exploring 1,2,3-triazole-Schiff's base hybrids as innovative EGFR inhibitors for the treatment of breast cancer: In vitro and in silico study. Bioorg Chem 2025; 155:108106. [PMID: 39761615 DOI: 10.1016/j.bioorg.2024.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/15/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025]
Abstract
EGFR inhibitors are a class of targeted therapies utilized in the management of certain tumor kinds such as NSCLC and breast cancer. Series of 1,2,3-triazole-Schiff's base hybrids were designed, synthesized, and estimated for their antitumor effect toward breast cancer cells, MCF-7 and MDA-MB-231. The safety and selectivity of the new compounds were tested using normal cell (WI-38). Analogs 4a, 4b, and 5f demonstrated significant antitumor effects toward both MCF-7 and MDA-MB-231 with IC50 range of 5.61-18.01 µM in comparison to Doxorubicin (6.72 µM). Moreover, they proved considerable selectivity toward the tested cancer cells (SI values of 4.36-5.33). The superior compounds were investigated for EGFR inhibition where compounds 4b and 5f showed the highest EGFR inhibition effect with IC50 equal 0.16 and 0.15 µM, respectively utilizing Gefitinib as reference (IC50 = 0.081 µM). Further mechanistic studies for hybrid 5f in MDA-MB-231 cells, exhibited cell cycle arrest at G2/M phase by 29.85 % that was accompanied by the elevation of apoptosis percent by 48-fold more than the control. The apoptosis studies indicated that hybrid 5f was able to upregulate Bax (9.43 folds) while downregulate Bcl-2 (0.27) with substantial remarkable elevation of Bax/Bcl-2 ratio (35:1). Furthermore, it upregulated both caspases 8 and 9 by 2.93 and 6.54-fold, respectively. Molecular modeling studies showed the good binding affinity of compounds 4b and 5f with EGFR kinase active site explaining their potent biological effects. Drug likeness and ADMET features of compounds 4b and 5f demonstrated that they represent promising drug like candidates against breast cancer.
Collapse
Affiliation(s)
- Nareman A Nawareg
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt
| | - Asmaa S A Yassen
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt.
| | - Ebtehal M Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11754, Egypt.
| | - Magda A A El-Sayed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta 34518, Egypt; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hosam A Elshihawy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
3
|
Gan T, Cheng Y, Tian W, Liu Z, Gan C, Huang Y, Cai C, Cui J. Synthesis of novel estradiol bisselenocyanate with unique 2-selenocyano-17-selenocyanoesteryl structure and evaluation of antitumor activity. Mol Divers 2024:10.1007/s11030-024-11040-2. [PMID: 39580771 DOI: 10.1007/s11030-024-11040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024]
Abstract
Cancer is one of the most significant diseases that afflict human beings. The pursuit of high efficacy and low-toxicity anticancer drugs has always been a paramount research objective for scientists. In the present study, we incorporated two selenocyano pharmacophores into the 2-site and 17-branch chain of the steroid nucleus in various manners, utilizing estradiol as the fundamental framework. Consequently, several estradiol bisselenocyanate compounds with a 2-selenocyano-17-selenocyanoester structure were synthesized. When compared to the positive control steroidal anti-tumor drug 2-methoxyestradiol, certain derivatives exhibited superior inhibitory activity against tumor cells in vitro, surpassing their monoselenocyanate precursors. The representative compound 4b induced programmed apoptosis in HeLa cells in a concentration-dependent manner during apoptosis and cell cycle experiments, while causing G2 phase arrest predominantly in the cell cycle. Moreover, compound 4b exhibited significant inhibitory effects on cell migration and demonstrated remarkable inhibitory activity against HeLa xenograft tumors in zebrafish models. These findings suggest that these compounds hold potential as promising candidates for anti-tumor drugs and warrant further investigation.
Collapse
Affiliation(s)
- Tao Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, People's Republic of China
| | - Yang Cheng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, People's Republic of China
| | - Wenhao Tian
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, People's Republic of China
| | - Zhiping Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, People's Republic of China
| | - Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, People's Republic of China
| | - Yanmin Huang
- College of Chemistry and Material Science, Nanning Normal University, Nanning, 530001, China.
| | - Chunrui Cai
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, People's Republic of China
| | - Jianguo Cui
- College of Chemistry and Material Science, Nanning Normal University, Nanning, 530001, China.
| |
Collapse
|
4
|
Prasanna A, Karunakar P, Pillai A, Mukundan S, Y V M, Balaji R, Niranjan V, Skariyachan S, Narayanappa R. Screening of bioactive compounds from selected mushroom species against putative drug targets in Mycobacterium tuberculosis: a multi-target approach. J Biomol Struct Dyn 2024:1-16. [PMID: 38895953 DOI: 10.1080/07391102.2024.2335292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/20/2024] [Indexed: 06/21/2024]
Abstract
Mycobacterium tuberculosis (Mtb) is a notorious pathogen that causes one of the highest mortalities globally. Due to a pressing demand to identify novel therapeutic alternatives, the present study aims to focus on screening the putative drug targets and prioritizing their role in antibacterial drug development. The most vital proteins involved in the Biotin biosynthesis pathway and the Lipoarabinomannan (LAM) pathway such as biotin synthase (bioB) and alpha-(1->6)-mannopyranosyltransferase A (mptA) respectively, along with other essential virulence proteins of Mtb were selected as drug targets. Among these, the ones without native structures were modelled and validated using standard bioinformatics tools. Further, the interactions were performed with naturally available lead molecules present in selected mushroom species such as Agaricus bisporus, Pleurotus djamor, Hypsizygus ulmarius. Through Gas Chromatography-Mass Spectrometry (GC-MS), 15 bioactive compounds from the methanolic extract of mushrooms were identified. Further, 4 were selected based on drug-likeness and pharmacokinetic screening for molecular docking analysis against our prioritized targets wherein Benz[e]azulene from Pleurotus djamor illustrated a good binding affinity with a LF rank score of -9.036 kcal mol -1 against nuoM (NADH quinone oxidoreductase subunit M) and could be used as a prospective candidate in order to combat Tuberculosis (TB). Furthermore, the stability of the complex are validated using MD Simulations and subsequently, the binding free energy was calculated using MM-GBSA analysis. Thus, the current in silico analysis suggests a promising role of compounds extracted from mushrooms in tackling the TB burden.
Collapse
Affiliation(s)
- Akshatha Prasanna
- Department of Biotechnology, Dayananda Sagar College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi), Bengaluru, Karnataka, India
| | - Prashantha Karunakar
- Department of Biotechnology, Dayananda Sagar College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi), Bengaluru, Karnataka, India
| | - Anushka Pillai
- Department of Biotechnology, Dayananda Sagar College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi), Bengaluru, Karnataka, India
| | - Shreyashree Mukundan
- Department of Biotechnology, Dayananda Sagar College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi), Bengaluru, Karnataka, India
| | - Mansi Y V
- Department of Biotechnology, Dayananda Sagar College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi), Bengaluru, Karnataka, India
| | - Renu Balaji
- Department of Biotechnology, Dayananda Sagar College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi), Bengaluru, Karnataka, India
| | - Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bengaluru, Karnataka, India
| | - Sinosh Skariyachan
- Department of Microbiology, St. Pius X College Rajapuram, Kasaragod, Kerala, India
| | - Rajeswari Narayanappa
- Department of Biotechnology, Dayananda Sagar College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi), Bengaluru, Karnataka, India
| |
Collapse
|
5
|
Shaaban S, Althikrallah HA, Negm A, Abo Elmaaty A, Al-Karmalawy AA. Repurposed organoselenium tethered amidic acids as apoptosis inducers in melanoma cancer via P53, BAX, caspases-3, 6, 8, 9, BCL-2, MMP2, and MMP9 modulations. RSC Adv 2024; 14:18576-18587. [PMID: 38860260 PMCID: PMC11164031 DOI: 10.1039/d4ra02944e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
Organoselenium (OSe) agents hold promise for preventing cancer due to their potential ability to fight cancer development and protect cells from oxidative damage. Herein, OSe-based maleanilic and succinanilic acids were tested to estimate their antitumor activities against fifteen cancer cell lines. Besides, their potential safety and selectivity were further investigated against two normal cell lines, namely, human skin fibroblasts (HSF) and olfactory ensheathing cell line (OEC) using the growth inhibition percentage (GI%) assay. Moreover, the apoptotic potential of the superior anticancer candidates (8, 9, 10, and 11) was evaluated against P53, BAX, Caspase-3, Caspase-6, Caspase-8, Caspase-9, BCL-2, MMP2, and MMP9 apoptotic markers. Additionally, to enhance our understanding and predict the inhibitory potential of the examined compounds as potential anticancer agents, a thorough structure-activity relationship (SAR) analysis was conducted. On the other hand, molecular docking and ADMET studies were performed for the examined candidates as well. Overall, our findings point to significant anticancer activities of the organoselenium tethered amidic acids, suggesting their promising cytotoxic potential as effective anticancer drugs.
Collapse
Affiliation(s)
- Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| | - Hanan A Althikrallah
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia
| | - Amr Negm
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University Port Said 42511 Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt New Damietta 34518 Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University 6th of October City Giza 12566 Egypt
| |
Collapse
|
6
|
Huang Y, Cheng Y, Wei M, Peng Z, Tian W, Liu Z, Li J, Cui J. Synthesis, antitumor activity evaluation of 2-selenocyano-3-selenocyanoalkyloxyestradiols with a bisselenocyanate structure. Bioorg Chem 2024; 144:107149. [PMID: 38278048 DOI: 10.1016/j.bioorg.2024.107149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
The combination of steroid structure and selenocyano group offers high potential for the design and synthesis of new potential anti-tumor drugs. Beginning with estradiol, a series of 2-selenocyano-3-selenocyanoalkyloxyestradiol derivatives with remarkable antiproliferative activity was synthesized. Additionally, a 2,4-bisselenocyanoestradiol was synthesized by directly selenocyanating estradiol diacetate. It was found that the cytotoxicity of 2-selenocyano-3-selenocyanoalkyloxyestradiol derivatives was significantly increased in comparison to the corresponding monoselenocyanate precursor, whereas the cytotoxicity of the 2, 4-bisselenocyanoestradiol derivative was significantly reduced compared to the respective monosubstituted precursor. The introduction of the second selenocyano group at different locations of estradiol shows a various impact on the cytotoxicity of the compounds. Among them, compound 3e showed the best cytotoxicity, with an IC50 value of less than 5 μM against the tested tumor cells, and strong inhibitory activities against HeLa and MCF-7 cell xenograft tumors in zebrafish, suppressing tumor cell migration and neovascularization. Notably, compound 3e was more effective at inhibiting neovascularization of MCF-7 cell xenograft tumors than the positive control 2-methoxyestradiol. Furthermore, compound 3e showed excellent anti-oxidative stress effect in zebrafish. Therefore, these estrogen bisselenocyanate compounds may be promising anti-tumor agents, warranting further investigation.
Collapse
Affiliation(s)
- Yanmin Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China
| | - Yang Cheng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China
| | - Meizhen Wei
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China
| | - Zining Peng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China
| | - Wenhao Tian
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China
| | - Zhiping Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China.
| | - Junyan Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China
| | - Jianguo Cui
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, 530001, PR China.
| |
Collapse
|
7
|
Shang MH, Sun XW, Wang HL, Li HR, Zhang JS, Wang LZ, Yu SJ, Zhang X, Xiong LX, Li YH, Niu CW, Wang JG. Facile synthesis, crystal structure, quantum calculation, and biological evaluations of novel selenenyl sulfide compounds as potential agrochemicals. PEST MANAGEMENT SCIENCE 2023; 79:1885-1896. [PMID: 36700288 DOI: 10.1002/ps.7382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 01/26/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND In order to design compounds with fresh molecular skeleton to break through the limitation of available agrochemicals, a series of 36 novel selenenyl sulfide compounds were chemically synthesized, and their biological activities were fully evaluated against tobacco mosaic virus (TMV), 14 plant pathogenic fungi, three insect species and plant acetohydroxyacid synthase (AHAS). RESULTS All the target compounds were characterized by proton nuclear magnetic resonance (1 H-NMR), carbon-13 (13 C)-NMR, selenium-77 (77 Se)-NMR, and high-resolution mass spectrometry (HRMS). The crystal structure of 10j indicated that the Se-S bond was successfully constructed. Compounds 10d, 10h, 10s, 10u, 10aa, 10ac, 10ae, 10ag, and 10ai exhibited 40%, 43%, 39%, 41%, 47%, 46%, 47%, 42%, and 39% anti-TMV activities at 500 mg L-1 , better than that of ribavirin. The median effective concentration (EC50 ) against Sclerotinia sclerotiorum of 10ac was 6.69 mg L-1 and EC50 values against Physalospora piricola and Pyricularia grisea of 10z were 12.25 mg L-1 and 15.27 mg L-1 , respectively, superior to the corresponding values of chlorothalonil. Compounds 10c and 10v demonstrated 100% larvicidal activity against Culex pipiens pallens at 5 mg L-1 , while 10a displayed 100% insecticidal activity against Mythimna separata at 200 mg L-1 . Compounds 10c, 10j, and 10o showed > 60% inhibitions against plant AHAS at 10 μmol L-1 . From the quantum calculation, highest occupied molecular orbital (HOMO) was considered as a factor that affects the anti-TMV activity. CONCLUSION The preliminary results suggested that more efforts should be devoted to exploring the selenenyl sulfides for the discovery of new leads of antiviral agent, fungicide, insecticide or AHAS inhibitors as potential agrochemicals for crop protection. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ming-Hao Shang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Xue-Wen Sun
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Hai-Lian Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Hao-Ran Li
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Jia-Shuang Zhang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Li-Zhong Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Shu-Jing Yu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Xiao Zhang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Li-Xia Xiong
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Yong-Hong Li
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Cong-Wei Niu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Jian-Guo Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, P. R. China
| |
Collapse
|
8
|
Mekhlef YO, AboulMagd AM, Gouda AM. Design, Synthesis, Molecular docking, and biological evaluation of novel 2,3-diaryl-1,3-thiazolidine-4-one derivatives as potential anti-inflammatory and cytotoxic agents. Bioorg Chem 2023; 133:106411. [PMID: 36801792 DOI: 10.1016/j.bioorg.2023.106411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
A new series of 2,3-diaryl-1,3thiazolidin-4-one derivatives was designed, synthesized, and evaluated for their cytotoxicity and COXs inhibitory activities. Among these derivatives, compounds 4 k and 4j exhibited the highest inhibitory activities against COX-2 at IC50 values of 0.05 and 0.06 μM, respectively. Compounds 4a, 4b, 4e, 4 g, 4j, 4 k, 5b, and 6b, which exhibited the highest inhibition% against COX-2, were evaluated for their anti-inflammatory activity in rats. Results showed 41.08-82.00 % inhibition of paw edema thickness by the test compounds compared to celecoxib (inhibition% = 89.51 %). In addition, compounds 4b, 4j, 4 k, and 6b exhibited better GIT safety profiles compared to celecoxib and indomethacin. The four compounds were also evaluated for their antioxidant activity. The results revealed the highest antioxidant activity for 4j (IC50 = 45.27 μM) comparable to torolox (IC50 = 62.03 μM). The antiproliferative activity of the new compounds was evaluated against HePG-2, HCT-116, MCF-7, and PC-3 cancer cell lines. The results showed the highest cytotoxicity for compounds 4b, 4j, 4 k, and 6b (IC50 = 2.31-27.19 μM), with 4j being the most potent. Mechanistic studies revealed the ability of 4j and 4 k by inducing marked apoptosis and cell cycle arrest at the G1 phase in HePG-2 cancer cells. These biological results may also suggest a role for COX-2 inhibition in the antiproliferative activity of these compounds. The results of the molecular docking study for 4 k and 4j into the active site of COX-2 revealed good fitting and correlation with the results of the in vitro COX‑2 inhibition assay.
Collapse
Affiliation(s)
- Yosra O Mekhlef
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Asmaa M AboulMagd
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.
| | - Ahmed M Gouda
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
9
|
Noser AA, Baren MH, Ibrahim SA, Rekaby M, Salem MM. New Pyrazolothiazole as Potential Wnt/β‐Catenin Inhibitors: Green Synthesis, Characterization, Antimicrobial, Antioxidant, Antineoplastic Evaluation, and Molecular Docking Study. ChemistrySelect 2023. [DOI: 10.1002/slct.202204670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
10
|
Elucidation for coordination features of N-(benzothiazol-2-yl)-3-oxo-3-(2-(3-phenylallylidene)hydrazineyl)propanamide on Co2+, Ni2+and Cu2+: Structural description, DFT geometry optimization, cyclic voltammetry and biological inspection. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Saad MH, El-Moselhy TF, S El-Din N, Mehany ABM, Belal A, Abourehab MAS, Tawfik HO, El-Hamamsy MH. Discovery of new symmetrical and asymmetrical nitrile-containing 1,4-dihydropyridine derivatives as dual kinases and P-glycoprotein inhibitors: synthesis, in vitro assays, and in silico studies. J Enzyme Inhib Med Chem 2022; 37:2489-2511. [PMID: 36093880 PMCID: PMC9481151 DOI: 10.1080/14756366.2022.2120478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Two new series of symmetric (1a-h) and asymmetric (2a-l) 1,4-DHP derivatives were designed, synthesised, and evaluated as anticancer agents. In vitro anticancer screening of target compounds via National cancer institute “NCI” revealed that analogues 1g, 2e, and 2l demonstrated antiproliferative action with mean growth inhibition percentage “GI%” = 41, 28, and 64, respectively. The reversal doxorubicin (DOX) effects of compounds 1g, 2e, and 2l were examined and illustrated better cytotoxic activity with IC50 =1.12, 3.64, and 3.57 µM, respectively. The most active anticancer analogues, 1g, 2e, and 2l, were inspected for their putative mechanism of action by estimating their epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER-2), and Bruton’s tyrosine kinase (BTK) inhibitory activities. Furthermore, the antimicrobial activity of target compounds was assessed against six different pathogens, followed by determining the minimum inhibitory concentration “MIC” values for the most active analogues. Molecular docking study was achieved to understand mode of interactions between selected inhibitors and different biological targets.
Collapse
Affiliation(s)
| | - Tarek F El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Nabaweya S El-Din
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Amany Belal
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mervat H El-Hamamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
12
|
Anticancer, Antimicrobial, and Antioxidant Activities of Organodiselenide-Tethered Methyl Anthranilates. Biomolecules 2022; 12:biom12121765. [PMID: 36551195 PMCID: PMC9775310 DOI: 10.3390/biom12121765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Novel methyl anthranilate-based organodiselenide hybrids were synthesized, and their chemical structures were confirmed by state-of-the-art spectroscopic techniques. Their antimicrobial properties were assessed against Staphylococcus aureus, Escherichia coli, and Candida albicans microbial strains. Moreover, the antitumor potential was estimated against liver and breast carcinomas, as well as primary fibroblast cell lines. The Staphylococcus aureus and Candida albicans strains were more sensitive than Escherichia coli toward the OSe compounds. Interestingly, methyl 2-amino-5-(methylselanyl) benzoate (14) showed similar antifungal activity to the standard drug clotrimazole (IA% = 100%) and manifested promising antibacterial activity against E. coli (IA% = 91.3%) and S. aureus (IA% = 90.5%). Furthermore, the minimum inhibitory concentration experiments confirmed the antimicrobial activity of the OSe 14, which in turn was comparable to clotrimazole and ampicillin drugs. Interestingly, the anticancer properties were more pronounced in the HepG2 cells. The OSe 14 was the most cytotoxic (IC50 = 3.57 ± 0.1 µM), even more than the Adriamycin drug (IC50 = 4.50 ± 0.2 µM), and with therapeutic index (TI) 17 proposing its potential selectivity and safety. Additionally, OSe compounds 14 and dimethyl 5,5'-diselanediylbis(2-aminobenzoate) (5) exhibited promising antioxidants in the 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) in vitro assays with 96%, 92%, 91%, and 86% radical scavenging activities compared to 95% by vitamin C in the DPPH and ABTS assays, respectively. These results point to promising antimicrobial, anticancer, and antioxidant activities of OSe 14 and 5 and warrant further studies.
Collapse
|
13
|
Novel organoselenium-based N-mealanilic acid and its zinc (II) chelate: Catalytic, anticancer, antimicrobial, antioxidant, and computational assessments. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Shaaban S, Ferjani H, Abd El-Lateef HM, Khalaf MM, Gouda M, Alaasar M, Yousef TA. Unexpected kinetically controlled organoselenium-based isomaleimide: X-ray structure, hirshfeld surface analysis, 3D energy framework approach, and density functional theory calculation. Front Chem 2022; 10:961787. [PMID: 35991613 PMCID: PMC9388736 DOI: 10.3389/fchem.2022.961787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Reduction of 4,4′-diselanediyldianiline (1) followed by the reaction with bromo-4-(bromomethyl)benzene afforded the corresponding 4-((4-bromobenzyl)selanyl)aniline (2) in 85% yield. N-Maleanilic acid 3 was obtained in 94% yield via the reaction of selenoamine 2 with toxilic anhydride. Subsequent dehydration of N-maleanilic acid 3 using acetic anhydride furnished the unexpected isomaleimide 5-((4-((4-bromophenyl)selanyl)phenyl)imino)furan-2(5H)-one (4) instead of the maleimide 5. The molecular structure of compound 4 was confirmed by mass spectrometry, 1H- and 13C-NMR spectroscopy, and X-ray diffraction analysis. Their cytotoxicity was assessed against two oligodendrocytes, and their respective redox properties were evaluated using 2′,7′-dichlorodihydrofluorescein diacetate (H2-DCFDA) assay. Furthermore, their antiapoptotic potential was also evaluated by flow cytometry. The compound crystallizes in triclinic P-1 space group with unit cell parameters a = 5.7880 (4) Å, b = 9.8913 (6) Å, c = 14.5951 (9) Å, V = 1731.0 (3) Å3 and Z = 2. The crystal packing is stabilized by intermolecular hydrogen bonding, π···π, C-Br···π stacking interactions, and other non-covalent interactions. The mapping of different Hirshfeld surfaces and 2D-fingerprint were used to investigate intermolecular interactions. The interaction energies that stabilize the crystal packing were calculated and graphically represented as framework energy diagrams. We present a computational investigation of compound 4’s molecular structure at the Density Functional Theory level using the B3LYP method and the 6-31G ++ basis set in this paper. The optimized structure matches the experimental outcome. The global reactivity descriptors and molecular electrostatic potential (M.E.P.) map emphasize the molecule’s reactive locations, allowing reactivity prediction. The charge transfer properties of molecules can be estimated by examining Frontier molecular orbitals.
Collapse
Affiliation(s)
- Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University, Al Hofuf, Saudi Arabia
- Department of Chemistry, Organic Chemistry Division, College of Science, Mansoura University, Mansoura, Egypt
- *Correspondence: Saad Shaaban, , ; Mohamed Alaasar, ; Tarek A. Yousef,
| | - Hela Ferjani
- Department of Chemistry, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), Riyadh, Saudi Arabia
| | - Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al Hofuf, Saudi Arabia
- Chemistry Department, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mai M. Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al Hofuf, Saudi Arabia
- Chemistry Department, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al Hofuf, Saudi Arabia
| | - Mohamed Alaasar
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- *Correspondence: Saad Shaaban, , ; Mohamed Alaasar, ; Tarek A. Yousef,
| | - Tarek A. Yousef
- Department of Chemistry, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), Riyadh, Saudi Arabia
- Toxic and Narcotic Drug, Forensic Medicine Department, Mansoura Laboratory, Medicolegal Organization, Ministry of Justice, Cairo, Egypt
- *Correspondence: Saad Shaaban, , ; Mohamed Alaasar, ; Tarek A. Yousef,
| |
Collapse
|
15
|
Saeed S, Zahoor AF, Ahmad M, Anjum MN, Akhtar R, Shahzadi I. Synthetic methodologies for the construction of selenium-containing heterocycles: a review. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2091566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Sadaf Saeed
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Naveed Anjum
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rabia Akhtar
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Irum Shahzadi
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
16
|
Novel Organoselenium Redox Modulators with Potential Anticancer, Antimicrobial, and Antioxidant Activities. Antioxidants (Basel) 2022; 11:antiox11071231. [PMID: 35883724 PMCID: PMC9312238 DOI: 10.3390/antiox11071231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
Novel organic selenides were developed in good yields (up to 91%), and their chemical entities were confirmed by IR, MS, and 1H- and 13C-NMR spectroscopy. Their anticancer and antimicrobial properties were estimated against different human cancer (MCF-7 and HepG2) and healthy (WI-38) cell lines, as well as several microbial strains (Escherichia coli, Staphylococcus aureus, and Candida albicans). Furthermore, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) bioassays were used for the estimation of the antioxidant activities. Generally, cytotoxicity results were more pronounced against the MCF-7 cells than HepG2 cells. Compound 2-((4-((1-hydroxynaphthalen-2-yl)diazenyl)phenyl)selanyl)-N-phenylacetamide (9) was the most cytotoxic, even more than doxorubicin, with IC50 of 3.27 ± 0.2 against 4.17 ± 0.2 µM and twelve-times more selective, respectively. Interestingly, compound 9 exhibited similar antimicrobial potential to reference antibacterial and antifungal drugs and comparable antioxidant activity to vitamin C. These results point to selective cytotoxicity against MCF-7 cells and interesting antimicrobial and antioxidant properties of some newly synthesized organic selenides, which in turn needs further in vitro studies.
Collapse
|
17
|
Karmaker PG, huo F. Organic Selenocyanates: Rapid Advancements and Applications in the Field of Organic Chemistry. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pran Gopal Karmaker
- Neijiang Normal University Chemistry & Chemical Engineering 705#, Dongtong Road, Neijiang, China, 641100Neijiang Normal University 641100 Neijiang CHINA
| | - feng huo
- Neijiang Normal University Chemistry Dongtong Rood #705 641100 Neijiang CHINA
| |
Collapse
|
18
|
Shaaban S, El-Lateef HMA, Khalaf MM, Gouda M, Youssef I. One-Pot Multicomponent Polymerization, Metal-, and Non-Metal-Catalyzed Synthesis of Organoselenium Compounds. Polymers (Basel) 2022; 14:polym14112208. [PMID: 35683881 PMCID: PMC9182861 DOI: 10.3390/polym14112208] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023] Open
Abstract
The one-pot multicomponent synthetic strategy of organoselenium compounds represents an alternative and robust protocol to the conventional multistep methods. During the last decade, a potential advance has been made in this domain. This review discusses the latest advances in the polymerization, metal, and metal-free one-pot multicomponent synthesis of organoselenium compounds.
Collapse
Affiliation(s)
- Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia; (H.M.A.E.-L.); (M.M.K.); (M.G.)
- Department of Chemistry, Organic Chemistry Division, College of Science, Mansoura University, Mansoura 11432, Egypt
- Correspondence: or (S.S.); (I.Y.)
| | - Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia; (H.M.A.E.-L.); (M.M.K.); (M.G.)
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Mai M. Khalaf
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia; (H.M.A.E.-L.); (M.M.K.); (M.G.)
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia; (H.M.A.E.-L.); (M.M.K.); (M.G.)
| | - Ibrahim Youssef
- Department of Chemistry, Organic Chemistry Division, College of Science, Mansoura University, Mansoura 11432, Egypt
- Transcranial Focused Ultrasound Laboratory, UTSW Medical Center, Dallas, TX 75390, USA
- Neuroradiology and Neuro-Intervention Section, Department of Radiology, UTSW Medical Center, Dallas, TX 75390, USA
- Correspondence: or (S.S.); (I.Y.)
| |
Collapse
|
19
|
Ramli FF, Cowen PJ, Godlewska BR. The Potential Use of Ebselen in Treatment-Resistant Depression. Pharmaceuticals (Basel) 2022; 15:485. [PMID: 35455482 PMCID: PMC9030939 DOI: 10.3390/ph15040485] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Ebselen is an organoselenium compound developed as an antioxidant and subsequently shown to be a glutathione peroxidase (GPx) mimetic. Ebselen shows some efficacy in post-stroke neuroprotection and is currently in trial for the treatment and prevention of hearing loss, Meniere's Disease and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In vitro screening studies show that ebselen is also an effective inhibitor of the enzyme inositol monophosphatase (IMPase), which is a key target of the mood-stabilising drug lithium. Further, in animal experimental studies, ebselen produces effects on the serotonin system very similar to those of lithium and also decreases behavioural impulsivity. The antidepressant effects of lithium in treatment-resistant depression (TRD) have been attributed to its ability to facilitate presynaptic serotonin activity; this suggests that ebselen might also have a therapeutic role in this condition. Human studies utilising magnetic resonance spectroscopy support the notion that ebselen, at therapeutic doses, inhibits IMPase in the human brain. Moreover, neuropsychological studies support an antidepressant profile for ebselen based on positive effects on emotional processing and reward seeking. Ebselen also lowers a human laboratory measure of impulsivity, a property that has been associated with lithium's anti-suicidal effects in patients with mood disorders. Current clinical studies are directed towards assessment of the neuropsychological effects of ebselen in TRD patients. It will also be important to ascertain whether ebselen is able to lower impulsivity and suicidal behaviour in clinical populations. The objective of this review is to summarise the developmental history, pre-clinical and clinical psychopharmacological properties of ebselen in psychiatric disorders and its potential application as a treatment for TRD.
Collapse
Affiliation(s)
- Fitri Fareez Ramli
- Clinical Psychopharmacology Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (F.F.R.); (P.J.C.)
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Philip J. Cowen
- Clinical Psychopharmacology Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (F.F.R.); (P.J.C.)
| | - Beata R. Godlewska
- Clinical Psychopharmacology Research Group, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK; (F.F.R.); (P.J.C.)
| |
Collapse
|
20
|
A Competition between Hydrogen, Stacking, and Halogen Bonding in N-(4-((3-Methyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl)selanyl)phenyl)acetamide: Structure, Hirshfeld Surface Analysis, 3D Energy Framework Approach, and DFT Calculation. Int J Mol Sci 2022; 23:ijms23052716. [PMID: 35269858 PMCID: PMC8910872 DOI: 10.3390/ijms23052716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 02/01/2023] Open
Abstract
N-(4-((3-Methyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl)selanyl)phenyl)acetamide (5), C19H15NO3Se, was prepared in two steps from 4,4'-diselanediyldianiline (3) via reduction and subsequent nucleophilic reaction with 2-methyl-3-bromo-1,4-naphthalenedione, followed by acetylation with acetic anhydride. The cytotoxicity was estimated against 158N and 158JP oligodendrocytes and the redox profile was also evaluated using different in vitro assays. The technique of single-crystal X-ray diffraction is used to confirm the structure of compound 5. The enantiopure 5 crystallizes in space group P21 with Flack parameter 0.017 (8), exhibiting a chiral layered absolute structure. Molecular structural studies showed that the crystal structure is foremost stabilized by N-H···O and relatively weak C-H···O contacts between molecules, and additionally stabilized by weak C-H···π and Se···N interactions. Hirshfeld surface analysis is used to quantitatively investigate the noncovalent interactions that stabilize crystal packing. Framework energy diagrams were used to graphically represent the stabilizing interaction energies for crystal packing. The analysis of the energy framework shows that the interactions energies of and C-H···π and C-O···π are primarily dispersive and are the crystal's main important forces. Density functional theory (DFT) calculations were used to determine the compound's stability, chemical reactivity, and other parameters by determining the HOMO-LUMO energy differences. The determination of its optimized surface of the molecular electrostatic potential (MEP) was also carried out. This study was conducted to demonstrate both the electron-rich and electron-poor sites.
Collapse
|
21
|
Oubella A, Fawzi M, Bimoussa A, N’Ait Ousidi A, Auhmani A, Riahi A, Robert A, El Firdoussi L, Morjani H, Ait Itto MY. Convenient route to benzo[1,2,3]selenadiazole–isoxazole hybrids and evaluation of their in vitro cytotoxicity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02083-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Crystal structure, Hirshfeld surface analysis, and DFT calculations of methyl (Z)-4-((4-((4-bromobenzyl)selanyl)phenyl)amino)-4-oxobut-2-enoate. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
El-Husseiny WM. Synthesis and Biological Evaluation of New 3-Phenylthiazolidin-4-One and 3-Phenylthiazole Derivatives as Antimicrobial Agents. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2019.1708420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Walaa M. El-Husseiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
24
|
Bharathi DS, Boopathyraja A, Nachimuthu S, Kannan K. Green Synthesis, Characterization and Antibacterial Activity of SiO2–ZnO Nanocomposite by Dictyota bartayresiana Extract and Its Cytotoxic Effect on HT29 Cell Line. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02170-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Urea-functionalized organoselenium compounds as promising anti-HepG2 and apoptosis-inducing agents. Future Med Chem 2021; 13:1655-1677. [PMID: 34427101 DOI: 10.4155/fmc-2021-0114] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma is a highly aggressive and difficult-to-treat type of cancer. Incorporating urea functionality into the backbone of organoselenium compounds is expected to develop promising chemotherapeutic leads against liver cancer. Methods: Urea-functionalized organoselenium compounds were synthesized in good yields, and their cytotoxicity was evaluated against HepG2 cells. Results: 1,1'-(Diselanediylbis(4,1-phenylene))bis(3-phenylurea) (14) exhibited efficient anti-HepG2 activity in sub-micromolar concentrations, with no toxicity to normal human skin fibroblasts. The molecular mechanisms of the diselenide-based urea 14 were evaluated using colony formation, wound healing, 3D spheroid invasion assays, cell cycle analysis and apoptosis induction. Its redox properties were also assessed by using different bioassays. Conclusion: Our study revealed promising anticancer, antimigratory and anti-invasiveness properties of 1,1'-(diselanediylbis(4,1-phenylene))bis(3-phenylurea) (14) against HepG2.
Collapse
|
26
|
Fica-Contreras SM, Daniels R, Yassin O, Hoffman DJ, Pan J, Sotzing G, Fayer MD. Long Vibrational Lifetime R-Selenocyanate Probes for Ultrafast Infrared Spectroscopy: Properties and Synthesis. J Phys Chem B 2021; 125:8907-8918. [PMID: 34339200 DOI: 10.1021/acs.jpcb.1c04939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultrafast infrared vibrational spectroscopy is widely used for the investigation of dynamics in systems from water to model membranes. Because the experimental observation window is limited to a few times the probe's vibrational lifetime, a frequent obstacle for the measurement of a broad time range is short molecular vibrational lifetimes (typically a few to tens of picoseconds). Five new long-lifetime aromatic selenocyanate vibrational probes have been synthesized and their vibrational properties characterized. These probes are compared to commercial phenyl selenocyanate. The vibrational lifetimes range between ∼400 and 500 ps in complex solvents, which are some of the longest room-temperature vibrational lifetimes reported to date. In contrast to vibrations that are long-lived in simple solvents such as CCl4, but become much shorter in complex solvents, the probes discussed here have ∼400 ps lifetimes in complex solvents and even longer in simple solvents. One of them has a remarkable lifetime of 1235 ps in CCl4. These probes have a range of molecular sizes and geometries that can make them useful for placement into different complex materials due to steric reasons, and some of them have functionalities that enable their synthetic incorporation into larger molecules, such as industrial polymers. We investigated the effect of a range of electron-donating and electron-withdrawing para-substituents on the vibrational properties of the CN stretch. The probes have a solvent-independent linear relationship to the Hammett substituent parameter when evaluated with respect to the CN vibrational frequency and the ipso 13C NMR chemical shift.
Collapse
Affiliation(s)
| | - Robert Daniels
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Omer Yassin
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - David J Hoffman
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Junkun Pan
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Gregory Sotzing
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
27
|
Nogueira CW, Barbosa NV, Rocha JBT. Toxicology and pharmacology of synthetic organoselenium compounds: an update. Arch Toxicol 2021; 95:1179-1226. [PMID: 33792762 PMCID: PMC8012418 DOI: 10.1007/s00204-021-03003-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Here, we addressed the pharmacology and toxicology of synthetic organoselenium compounds and some naturally occurring organoselenium amino acids. The use of selenium as a tool in organic synthesis and as a pharmacological agent goes back to the middle of the nineteenth and the beginning of the twentieth centuries. The rediscovery of ebselen and its investigation in clinical trials have motivated the search for new organoselenium molecules with pharmacological properties. Although ebselen and diselenides have some overlapping pharmacological properties, their molecular targets are not identical. However, they have similar anti-inflammatory and antioxidant activities, possibly, via activation of transcription factors, regulating the expression of antioxidant genes. In short, our knowledge about the pharmacological properties of simple organoselenium compounds is still elusive. However, contrary to our early expectations that they could imitate selenoproteins, organoselenium compounds seem to have non-specific modulatory activation of antioxidant pathways and specific inhibitory effects in some thiol-containing proteins. The thiol-oxidizing properties of organoselenium compounds are considered the molecular basis of their chronic toxicity; however, the acute use of organoselenium compounds as inhibitors of specific thiol-containing enzymes can be of therapeutic significance. In summary, the outcomes of the clinical trials of ebselen as a mimetic of lithium or as an inhibitor of SARS-CoV-2 proteases will be important to the field of organoselenium synthesis. The development of computational techniques that could predict rational modifications in the structure of organoselenium compounds to increase their specificity is required to construct a library of thiol-modifying agents with selectivity toward specific target proteins.
Collapse
Affiliation(s)
- Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| | - Nilda V Barbosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - João B T Rocha
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica E Toxicológica de Organocalcogênios, Centro de Ciências Naturais E Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil.
| |
Collapse
|
28
|
Shaaban S, Zarrouk A, Vervandier-Fasseur D, S.Al-Faiyz Y, El-Sawy H, Althagafi I, Andreoletti P, Cherkaoui-Malki M. Cytoprotective organoselenium compounds for oligodendrocytes. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
29
|
Patel B, Mishra S, Priyadarsini IK, Vavilala SL. Elucidating the anti-biofilm and anti-quorum sensing potential of selenocystine against respiratory tract infections causing bacteria: in vitro and in silico studies. Biol Chem 2021; 402:769-783. [PMID: 33735944 DOI: 10.1515/hsz-2020-0375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/10/2021] [Indexed: 11/15/2022]
Abstract
Bacteria are increasingly relying on biofilms to develop resistance to antibiotics thereby resulting in their failure in treating many infections. In spite of continuous research on many synthetic and natural compounds, ideal anti-biofilm molecule is still not found thereby warranting search for new class of molecules. The current study focuses on exploring anti-biofilm potential of selenocystine against respiratory tract infection (RTI)-causing bacteria. Anti-bacterial and anti-biofilm assays demonstrated that selenocystine inhibits the growth of bacteria in their planktonic state, and formation of biofilms while eradicating preformed-biofilm effectively. Selenocystine at a MIC50 as low as 42 and 28 μg/mL effectively inhibited the growth of Klebsiella pneumonia and Pseudomonas aeruginosa. The antibacterial effect is further reconfirmed by agar cup diffusion assay and growth-kill assay. Selenocystine showed 30-60% inhibition of biofilm formation in K. pneumonia, and 44-70% in P. aeruginosa respectively. It also distorted the preformed-biofilms by degrading the eDNA component of the Extracellular Polymeric Substance matrix. Molecular docking studies of selenocystine with quorum sensing specific proteins clearly showed that through the carboxylic acid moiety it interacts and inhibits the protein function, thereby confirming its anti-biofilm potential. With further validation selenocystine can be explored as a potential candidate for the treatment of RTIs.
Collapse
Affiliation(s)
- Bharti Patel
- School of Biological and Chemical Sciences, UM DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz East, Mumbai400098, India
| | - Subrata Mishra
- School of Biological and Chemical Sciences, UM DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz East, Mumbai400098, India
| | - Indira K Priyadarsini
- School of Biological and Chemical Sciences, UM DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz East, Mumbai400098, India
| | - Sirisha L Vavilala
- School of Biological and Chemical Sciences, UM DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina Campus, Santacruz East, Mumbai400098, India
| |
Collapse
|
30
|
Kostić MD, Divac VM. Diselenides and Selenocyanates as Versatile Precursors for the Synthesis of Pharmaceutically Relevant Compounds. Curr Org Synth 2021; 19:317-330. [PMID: 33655868 DOI: 10.2174/1570179418666210303113723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/05/2021] [Accepted: 01/23/2021] [Indexed: 11/22/2022]
Abstract
Organoselenium chemistry has undergone extensive development during the past decades, mostly due to the unique chemical properties of organoselenium compounds that have been widely explored in a number of synthetic transformations, as well as due to the interesting biological properties of these compounds. Diselenides and selenocyanates constitute the promising classes of organoselenium compounds that possess interesting biological effects and that can be used in the preparation of other selenium compounds. The combination of diselenide and selenocyanate moieties with other biologically relevant molecules (such as heterocycles, steroids, etc.) is a way for the development of compounds with promising pharmaceutical potential. Therefore, the aim of this review is to highlight the recent achievements in the use of diselenides or selenocyanates as precursors for the synthesis of pharmaceutically relevant compounds, preferentially compounds with antitumor and antimicrobial activities.
Collapse
Affiliation(s)
- Marina D Kostić
- Institute for Information Technologies, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac. Serbia
| | - Vera M Divac
- Faculty of Science, Department of Chemistry, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac. Serbia
| |
Collapse
|
31
|
Enhancing the chemosensitivity of HepG2 cells towards cisplatin by organoselenium pseudopeptides. Bioorg Chem 2021; 109:104713. [PMID: 33611136 DOI: 10.1016/j.bioorg.2021.104713] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 12/29/2022]
Abstract
Despite all recent advances in the treatment of hepatocellular carcinoma (HCC), chemotherapy resistance still represents a major challenge in its successful clinical management. Chemo-sensitization offers an attractive strategy to counter drug resistance. Herein we report the identification of novel organoselenium-based pseudopeptides as promising highly effective chemo-sensitizers in treating HCC with cisplatin. A series of functionalized pseudopeptide- (5-9 and 17-19), peptidomimetic- (10-12 and 20-23), and tetrazole-based (13-16 and 24-27) organoselenium compounds were synthesized via isonitrile-based multicomponent reactions from two novel selenium-containing isocyanides. All compounds were evaluated for their cytotoxicity against HepG2 and the non-cytotoxic doses were used to restor the sensitivity of the cells to cisplatin. New organoselenium compounds (7, 9, 15, or 23) led to an effective chemo-sensitization of HepG2 cells towards cisplatin (up-to 27-fold). Cell cycle studies indicate that the most potent peptidomimetic diselenide 23 arrested cells at the S phase and induced apoptosis via ROS modulation.
Collapse
|
32
|
Abu-Dief AM, El-Metwaly NM, Alzahrani SO, Bawazeer AM, Shaaban S, Adam MSS. Targeting ctDNA binding and elaborated in-vitro assessments concerning novel Schiff base complexes: Synthesis, characterization, DFT and detailed in-silico confirmation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114977] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Sheikhi‐Mohammareh S, Shiri A, Maleki EH, Matin MM, Beyzaei H, Baranipour P, Oroojalian F, Memariani T. Synthesis of Various Derivatives of [1,3]Selenazolo[4,5‐d]pyrimidine and Exploitation of These Heterocyclic Systems as Antibacterial, Antifungal, and Anticancer Agents. ChemistrySelect 2020. [DOI: 10.1002/slct.202002474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Ali Shiri
- Department of Chemistry, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| | - Ebrahim H. Maleki
- Department of Biology, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
| | - Maryam M. Matin
- Department of Biology, Faculty of Science Ferdowsi University of Mashhad Mashhad Iran
- Novel Diagnostics and Therapeutics Research Group Institute of Biotechnology, Ferdowsi University of Mashhad Mashhad Iran
| | - Hamid Beyzaei
- Department of Chemistry, Faculty of Science University of Zabol Zabol Iran
| | - Parviz Baranipour
- Department of Chemistry, Faculty of Science University of Zabol Zabol Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies School of Medicine, North Khorasan University of Medical Sciences Bojnurd Iran
- Natural Products and Medicinal Plants Research Center North Khorasan University of Medical Sciences Bojnurd Iran
| | - Toktam Memariani
- Natural Products and Medicinal Plants Research Center North Khorasan University of Medical Sciences Bojnurd Iran
| |
Collapse
|
34
|
Fulco BCW, Jung JTK, Chagas PM, Rosa SG, Prado VC, Nogueira CW. Diphenyl diselenide is as effective as Ebselen in a juvenile rat model of cisplatin-induced nephrotoxicity. J Trace Elem Med Biol 2020; 60:126482. [PMID: 32135444 DOI: 10.1016/j.jtemb.2020.126482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cisplatin (CIS) is widely used in the chemotreatment of pediatric tumors. However, the CIS use is limited because of its high incidence of toxicity, mainly nephrotoxicity. Although there are many studies about CIS-related nephrotoxicity in animal models, only a few studies focus on juvenile animals. Because redox disturbances have been associated with kidney damage induced by CIS, this study aimed to compare the effectiveness of Ebselen and diphenyl diselenide (PhSe)2 against nephrotoxicity induced by CIS in juvenile rats. METHODS Juvenile Wistar rats were randomly divided into six groups: rats from groups I to III received an intraperitoneal (i.p.) injection with saline solution. The other groups received CIS (i.p., 6 mg/kg) on the first day. One hour before CIS injection and on the next four days, animals of groups III and V were intragastrically treated with Ebselen (11 mg/kg) whereas those from groups IV and VI received (PhSe)2 (12 mg/kg). After 24 h of the last treatment, blood and kidney were collected, and the parameters of renal function and oxidative stress were determined. RESULTS Kidney damage induced by CIS was confirmed by the increase of creatinine, urea and uric acid levels in the blood of juvenile rats. The renal oxidative disturbance was characterized by an increase in the levels of thiobarbituric acid reactive substances (TBARS), protein carbonyl, and nitrogen oxides (Nox), as well as the decrease in non-protein thiol content (NPSH), glutathione-S-transferase (GST), catalase (CAT) and superoxide dismutase (SOD) activities. CIS inhibited the activities of δ-aminolevulinic acid dehydratase (δ-ALA-D) and Na+, K+-ATPase and down-regulated the Nrf2/Keap-1/HO-1 pathway in the kidney of juvenile rats. CONCLUSION Both Ebselen and (PhSe)2 modulated back to the normal levels all parameters altered by the CIS administration in the kidney of juvenile rats. Thus, this study shows that (PhSe)2 was as effective as Ebselen in protecting the kidney against oxidative damage caused by CIS in rats.
Collapse
Affiliation(s)
- Bruna Cruz Weber Fulco
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Juliano Ten Kathen Jung
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Pietro Maria Chagas
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Suzan Gonçalves Rosa
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Vinicius Costa Prado
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil
| | - Cristina Wayne Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, CEP 97105-900, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
35
|
Abdel-Motaal M, Almohawes K, Tantawy MA. Antimicrobial evaluation and docking study of some new substituted benzimidazole-2yl derivatives. Bioorg Chem 2020; 101:103972. [PMID: 32506017 DOI: 10.1016/j.bioorg.2020.103972] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/11/2020] [Accepted: 05/23/2020] [Indexed: 12/25/2022]
Abstract
Benzimidazoles incorporated biologically active heterocycles such as quinoline, triazine-3-thione, thiazole and thiadiazole, were synthesized utilizing 2-acetylbenzimidazole as a building block. The structures of the newly synthesized benzimidazoles were assured by their spectral data (IR, 1H NMR, 13C- NMR and MS spectra). Most of the synthesized candidates were screened for their in vitro antimicrobial activity against Staphylococcus aureus, Escherichia coli, Bacillus pumilus and antifungal activity against (Saccharomyces cerevisiae). As a result, 2-(2-(1-(1H-benzo[d]imidazol-2-yl)ethylidene)hydrazineyl)-5-(furan-2-yl)-1,3,4-thiadiazole (14) had the most potent inhibitory activity against all tested bacteria with no antifungal inhibition. Furthermore, to gain insight into the mode of action of the synthesized compounds as antibacterial agents, docking studies were performed for the synthesized compounds in order to evaluate their activity as anti-bacterial agents. Virtual screening of the most promising compounds was performed against two bacterial proteins (DNA gyrase subunit B, and penicillin binding protein 1a) that are known targets for some antibiotics.
Collapse
Affiliation(s)
- Marwa Abdel-Motaal
- Chemistry Department, College of Science, Qassim University, Qassim, Buraydah, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt.
| | - Khozama Almohawes
- Chemistry Department, College of Science, Qassim University, Qassim, Buraydah, Saudi Arabia
| | - Mohamed A Tantawy
- Hormones Department, Medical Research Division, National Research Centre, Dokki, Giza, 12622, Egypt; Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
36
|
Prabhu Kumar K, Vasantha Kumar B, Kumar PR, Butcher RJ, Vivek H, Suchetan P, Revanasiddappa H, Foro S. Synthesis, characterization, CT‐DNA binding and docking studies of novel selenated ligands and their palladium complexes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- K.M. Prabhu Kumar
- Department of Studies and Research in ChemistryTumkur University Tumkur Karnataka 572 103 India
| | - B.C. Vasantha Kumar
- Department of Studies in ChemistryUniversity of Mysore Mysuru Karnataka 570 006 India
| | - P. Raghavendra Kumar
- Department of Studies and Research in ChemistryTumkur University Tumkur Karnataka 572 103 India
| | | | - H.K. Vivek
- Faculty of Natural SciencesAdichunchanagiri University B. G. Ngara Mandya Karnataka India
| | - P.A. Suchetan
- Department of Studies and Research in ChemistryTumkur University Tumkur Karnataka 572 103 India
| | - H.D. Revanasiddappa
- Department of Studies in ChemistryUniversity of Mysore Mysuru Karnataka 570 006 India
| | - Sabine Foro
- Institute of Materials ScienceDarmstadt University of Technology Petersenstr. 23 D‐64287 Darmstadt Germany
| |
Collapse
|
37
|
Nie Y, Zhong M, Li S, Li X, Zhang Y, Zhang Y, He X. Synthesis and Potential Anticancer Activity of Some Novel Selenocyanates and Diselenides. Chem Biodivers 2020; 17:e1900603. [DOI: 10.1002/cbdv.201900603] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Yousong Nie
- School of Environmental Ecology and Biological EngineeringWuhan Institute of Technology, LiuFang Campus Guanggu 1st road Wuhan 430205 P. R. China
| | - Min Zhong
- Institute for Interdisciplinary ResearchJianghan University Wuhan Economic and Technological Development Zone Wuhan 430056 P. R. China
| | - Shaolei Li
- Shenzhen Fushan Biological Technology Co.Ltd., Kexing Science Park A1 1005, Nanshan Zone Shenzhen 518057 P. R. China
| | - Xiaolong Li
- Shenzhen Fushan Biological Technology Co.Ltd., Kexing Science Park A1 1005, Nanshan Zone Shenzhen 518057 P. R. China
| | - Yongmin Zhang
- Institut Parisien de Chimie MoléculaireCNRS UMR 7201Sorbonne Université 4 Place Jussieu 75005 Paris France
| | - Youhong Zhang
- School of Environmental Ecology and Biological EngineeringWuhan Institute of Technology, LiuFang Campus Guanggu 1st road Wuhan 430205 P. R. China
| | - Xianran He
- Institute for Interdisciplinary ResearchJianghan University Wuhan Economic and Technological Development Zone Wuhan 430056 P. R. China
| |
Collapse
|
38
|
Adam MSS, Ahmed MSM, El‐Hady OM, Shaaban S. Bis‐dioxomolybdenum (VI) oxalyldihydrazone complexes: Synthesis, characterization, DFT studies, catalytic epoxidation potential, molecular modeling and biological evaluations. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5573] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mohamed Shaker S. Adam
- Department of Chemistry, College of ScienceKing Faisal University P.O. Box 380 Al‐Hofuf Al‐Ahsa 31982 Saudi Arabia
- Chemistry Department, Faculty of ScienceSohag University Sohag 82534 Egypt
| | - Mohamed S. Mohamed Ahmed
- Department of Chemistry, College of ScienceKing Faisal University P.O. Box 380 Al‐Hofuf Al‐Ahsa 31982 Saudi Arabia
- Chemistry Department, Faculty of ScienceCairo University Giza Egypt
| | - Omar M. El‐Hady
- Chemistry Department, Faculty of ScienceSohag University Sohag 82534 Egypt
| | - Saad Shaaban
- Department of Chemistry, College of ScienceKing Faisal University P.O. Box 380 Al‐Hofuf Al‐Ahsa 31982 Saudi Arabia
- Chemistry Department, Faculty of ScienceMansoura University Mansoura Egypt
| |
Collapse
|
39
|
Żesławska E, Korona-Głowniak I, Nitek W, Tejchman W. Effect of the position of a methoxy substituent on the antimicrobial activity and crystal structures of 4-methyl-1,6-diphenylpyrimidine-2(1H)-selenone derivatives. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2020; 76:359-366. [PMID: 32229717 DOI: 10.1107/s2053229620004040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/23/2020] [Indexed: 11/10/2022]
Abstract
Derivatives of pyrimidine-2(1H)-selenone are a group of compounds with very strong antimicrobial activity. In order to study the effect of the position of the methoxy substituent on biological activity, molecular geometry and intermolecular interactions in the crystal, three derivatives were prepared and evaluated with respect to their antimicrobial activities, and their crystal structures were determined by X-ray diffraction. The investigated compounds, namely, 1-(X-methoxyphenyl)-4-methyl-6-phenylpyrimidine-2(1H)-selenones (X = 2, 3 and 4 for 1, 2 and 3, respectively), C18H16N2OSe, showed very strong activity against selected strains of Gram-positive bacteria and fungi. Two compounds, 1 and 2, crystallize in the monoclinic space group P21/c, while 3 crystallizes in the space group P21/n; 1 has two molecules in the asymmetric unit and the other two (2 and 3) have one molecule. The geometries of the investigated compounds differ slightly in the mutual orientations of the aromatic and pyrimidineselenone rings. The O atom in 1 stabilizes the conformation of the molecules via intramolecular C-H...O hydrogen bonding. The packing of molecules is determined by weak C-H...N and C-H...Se intermolecular interactions and additionally in 1 and 2 by C-H...O intermolecular interactions. The introduction of the methoxy substituent results in greater selectivity of the investigated compounds.
Collapse
Affiliation(s)
- Ewa Żesławska
- Pedagogical University, Department of Chemistry, Institute of Biology, Podchorążych 2, 30-084 Kraków, Poland
| | - Izabela Korona-Głowniak
- Medical University of Lublin, Department of Pharmaceutical Microbiology, Chodźki 1, 20-093 Lublin, Poland
| | - Wojciech Nitek
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland
| | - Waldemar Tejchman
- Pedagogical University, Department of Chemistry, Institute of Biology, Podchorążych 2, 30-084 Kraków, Poland
| |
Collapse
|
40
|
Hariharan S, Dharmaraj S. Selenium and selenoproteins: it's role in regulation of inflammation. Inflammopharmacology 2020; 28:667-695. [PMID: 32144521 PMCID: PMC7222958 DOI: 10.1007/s10787-020-00690-x] [Citation(s) in RCA: 344] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 02/06/2020] [Indexed: 12/22/2022]
Abstract
Abstract Selenium is an essential immunonutrient which holds the human’s metabolic activity with its chemical bonds. The organic forms of selenium naturally present in human body are selenocysteine and selenoproteins. These forms have a unique way of synthesis and translational coding. Selenoproteins act as antioxidant warriors for thyroid regulation, male-fertility enhancement, and anti-inflammatory actions. They also participate indirectly in the mechanism of wound healing as oxidative stress reducers. Glutathione peroxidase (GPX) is the major selenoprotein present in the human body, which assists in the control of excessive production of free radical at the site of inflammation. Other than GPX, other selenoproteins include selenoprotein-S that regulates the inflammatory cytokines and selenoprotein-P that serves as an inducer of homeostasis. Previously, reports were mainly focused on the cellular and molecular mechanism of wound healing with reference to various animal models and cell lines. In this review, the role of selenium and its possible routes in translational decoding of selenocysteine, synthesis of selenoproteins, systemic action of selenoproteins and their indirect assimilation in the process of wound healing are explained in detail. Some of the selenium containing compounds which can acts as cancer preventive and therapeutics are also discussed. These compounds directly or indirectly exhibit antioxidant properties which can sustain the intracellular redox status and these activities protect the healthy cells from reactive oxygen species induced oxidative damage. Although the review covers the importance of selenium/selenoproteins in wound healing process, still some unresolved mystery persists which may be resolved in near future. Graphic abstract ![]()
Collapse
Affiliation(s)
- Sneha Hariharan
- Department of Biochemistry, Karpagam Academy of Higher Education, Eachanari Post, Pollachi Main Road, Coimbatore, Tamil Nadu, 641021, India
| | - Selvakumar Dharmaraj
- Department of Biochemistry, Karpagam Academy of Higher Education, Eachanari Post, Pollachi Main Road, Coimbatore, Tamil Nadu, 641021, India.
| |
Collapse
|
41
|
Oxidative umpolung selenocyanation of ketones and arenes: An efficient protocol to the synthesis of selenocyanates. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.130978] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Emad E. El-Katori, Ashraf S. Abousalem. Inhibitive Properties and Computational Approach of Organoselenides on Mild Steel Corrosion in Acidic Environment. RUSS J ELECTROCHEM+ 2020. [DOI: 10.1134/s1023193519120048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Mahi-Birjand M, Yaghoubi S, Abdollahpour-Alitappeh M, Keshtkaran Z, Bagheri N, Pirouzi A, Khatami M, Sineh Sepehr K, Peymani P, Karimzadeh I. Protective effects of pharmacological agents against aminoglycoside-induced nephrotoxicity: A systematic review. Expert Opin Drug Saf 2020; 19:167-186. [PMID: 31914328 DOI: 10.1080/14740338.2020.1712357] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Aminoglycosides have been long used for antibacterial treatment and are still commonly used in clinical practice. Despite their extensive application and positive effects, drug-related toxicity is considered as the main obstacle for aminoglycosides. Aminoglycosides induce nephrotoxicity through the endocytosis and accumulation of the antibiotics in the epithelial cells of proximal tubule. Most importantly, however, a number of pharmacological agents were demonstrated to have protective activities against nephrotoxicity in experimental animals.Areas covered: In the present systematic review, the authors provide and discuss the mechanisms and epidemiological features of aminoglycoside-induced nephrotoxicity, and focus mainly on recent discoveries and key features of pharmacological interventions. In total, 39 articles were included in this review.Expert opinion: The majority of studies investigated gentamicin-induced nephrotoxicity in animal models. Antioxidants, chemicals, synthetic drugs, hormones, vitamins, and minerals showed potential values to prevent gentamicin-induced nephrotoxicity. Indicators used to evaluate the effectiveness of nephroprotection included antioxidative indexes, inflammatory responses, and apoptotic markers. Among the nephroprotective agents studied, herbs and natural antioxidant agents showed excellent potential to provide a protective strategy against gentamicin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Motahareh Mahi-Birjand
- Student Research Committee, Department of Clinical Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Sajad Yaghoubi
- Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | | | - Zahra Keshtkaran
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Mehrdad Khatami
- NanoBioelectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Koushan Sineh Sepehr
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Payam Peymani
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich-University of Zurich, Switzerland.,Health Policy Research Center, Institute of Heath, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Karimzadeh
- Student Research Committee, Department of Clinical Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
44
|
Chaudhari KR, Kunwar A, Bhuvanesh N, Dey S. Synthesis and anti-proliferative activities of amine capped Pd and Pt macrocycles of 4,4′-dipyridylselenides. NEW J CHEM 2020. [DOI: 10.1039/c9nj06052a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Symmetric macrocyclic complexes characterized as dimeric and their oligomeric form in water and the solid state exhibit high in vitro anticancer activities.
Collapse
Affiliation(s)
- K. R. Chaudhari
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
| | - A. Kunwar
- Homi Bhabha National Institute
- Training School Complex
- Mumbai 400 094
- India
- Radiation and Photo Chemistry Division
| | - N. Bhuvanesh
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - S. Dey
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400 085
- India
- Homi Bhabha National Institute
| |
Collapse
|
45
|
Shaaban S, Ashmawy AM, Negm A, Wessjohann LA. Synthesis and biochemical studies of novel organic selenides with increased selectivity for hepatocellular carcinoma and breast adenocarcinoma. Eur J Med Chem 2019; 179:515-526. [DOI: 10.1016/j.ejmech.2019.06.075] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/02/2019] [Accepted: 06/27/2019] [Indexed: 01/06/2023]
|
46
|
Di Leo I, Messina F, Nascimento V, Nacca FG, Pietrella D, Lenardão EJ, Perin G, Sancineto L. Synthetic Approaches to Organoselenium Derivatives with Antimicrobial and Anti-Biofilm Activity. MINI-REV ORG CHEM 2019. [DOI: 10.2174/1570193x16666181227111038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the recent years, an increasing attention has been given to the biological activities exerted
by organoselenium compounds. In 1984, Sies reported for the first time the ability of ebselen to
mimic the activity of glutathione peroxidase. From this milestone, several studies reported the pharmacological
properties of selenium-containing compounds including their exploitation as antimicrobials.
In this context, this minireview presents the most recent examples of seleno derivatives endowed
with antimicrobial activities while discussing the most interesting and recent synthetic procedures
used to obtain these compounds.
Collapse
Affiliation(s)
- Iris Di Leo
- Universidade Federal Fluminense, Departamento de Quimica Organica, Programa de Pos-Graduacao em Quimica, Outeiro de Sao Joao Batista, 24020-141 Niteroi, RJ, Brazil
| | | | - Vanessa Nascimento
- Universidade Federal Fluminense, Departamento de Quimica Organica, Programa de Pos-Graduacao em Quimica, Outeiro de Sao Joao Batista, 24020-141 Niteroi, RJ, Brazil
| | - Francesca G. Nacca
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Donatella Pietrella
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Eder J. Lenardão
- Laboratorio de Síntese Organica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Gelson Perin
- Laboratorio de Síntese Organica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Luca Sancineto
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
47
|
Cytotoxic Effects of Newly Synthesized Heterocyclic Candidates Containing Nicotinonitrile and Pyrazole Moieties on Hepatocellular and Cervical Carcinomas. Molecules 2019; 24:molecules24101965. [PMID: 31121825 PMCID: PMC6572605 DOI: 10.3390/molecules24101965] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/31/2022] Open
Abstract
In this study, a series of newly synthesized substituted pyridine 9, 11-18, naphthpyridine derivative 10 and substituted pyrazolopyridines 19-23 by using cycnopyridone 8 as a starting material. Some of the synthesized candidates are evaluated as anticancer agents against different cancer cell lines. In vitro cytotoxic activities against hepatocellular and cervical carcinoma cell lines were evaluated using standard MTT assay. Different synthesized compounds exhibited potential in vitro cytotoxic activities against both HepG2 and HeLa cell lines. Furthermore, compared to standard positive control drugs, compounds 13 and 19 showed the most potent cytotoxic effect with IC50 values of 8.78 ± 0.7, 5.16 ± 0.4 μg/mL, and 15.32 ± 1.2 and 4.26 ± 0.3 μg/mL for HepG2 and HeLa cells, respectively.
Collapse
|
48
|
Sudati JH, Nogara PA, Saraiva RA, Wagner C, Alberto EE, Braga AL, Fachinetto R, Piquini PC, Rocha JBT. Diselenoamino acid derivatives as GPx mimics and as substrates of TrxR: in vitro and in silico studies. Org Biomol Chem 2019; 16:3777-3787. [PMID: 29737350 DOI: 10.1039/c8ob00451j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Excessive production of reactive species in living cells usually has pathological effects. Consequently, the synthesis of compounds which can mimic the activity of antioxidant enzymes has inspired great interest. In this study, a variety of diselenoamino acid derivatives from phenylalanine and valine were tested to determine whether they could be functional mimics of glutathione peroxidase (GPx) and substrates for liver thioredoxin reductase (TrxR). Diselenides C and D showed the best GPx mimicking properties when compared with A and B. We suppose that the catalytic activity of diselenide GPx mimics depends on the steric effects, which can be influenced by the number of carbon atoms between the selenium atom and the amino acid residue and/or by the amino acid lateral residue. Compounds C and D stimulated NADPH oxidation in the presence of partially purified hepatic mammalian TrxR, indicating that they are substrates for TrxR. Our study indicates a possible dissociation between the two pathways for peroxide degradation (i.e., via a substrate for TrxR or via mimicry of GPx) for compounds tested in this study, except for PhSeSePh, and the antioxidant activity of diselenoamino acids can also be attributed to their capacity to mimic GPx and to be a substrate for mammalian TrxR.
Collapse
|
49
|
Nasim MJ, Witek K, Kincses A, Abdin AY, Żesławska E, Marć MA, Gajdács M, Spengler G, Nitek W, Latacz G, Karczewska E, Kieć-Kononowicz K, Handzlik J, Jacob C. Pronounced activity of aromatic selenocyanates against multidrug resistant ESKAPE bacteria. NEW J CHEM 2019. [DOI: 10.1039/c9nj00563c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Selenocyanates demonstrate pronounced activity against bacteria of the ESKAPE family, yeast and nematodes with limited cytotoxicity against human cells.
Collapse
|
50
|
Al-Assy WH, Mahmoud SA, Husein DZ, Mostafa MM. Synthesis, characterization and the role of ionic radii on the mechanistic of solvothermal for polyazine PtIV complexes: Reduction PtIV to PtII, DFT, x-ray single crystal and anticancer studies. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2018. [DOI: 10.1016/j.bjbas.2018.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|