1
|
Sharma KK, Sharma K, Rao K, Sharma A, Rathod GK, Aaghaz S, Sehra N, Parmar R, VanVeller B, Jain R. Unnatural Amino Acids: Strategies, Designs, and Applications in Medicinal Chemistry and Drug Discovery. J Med Chem 2024; 67:19932-19965. [PMID: 39527066 PMCID: PMC11901032 DOI: 10.1021/acs.jmedchem.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Peptides can operate as therapeutic agents that sit within a privileged space between small molecules and larger biologics. Despite examples of their potential to regulate receptors and modulate disease pathways, the development of peptides with drug-like properties remains a challenge. In the quest to optimize physicochemical parameters and improve target selectivity, unnatural amino acids (UAAs) have emerged as critical tools in peptide- and peptidomimetic-based drugs. The utility of UAAs is illustrated by clinically approved drugs such as methyldopa, baclofen, and gabapentin in addition to small drug molecules, for example, bortezomib and sitagliptin. In this Perspective, we outline the strategy and deployment of UAAs in FDA-approved drugs and their targets. We further describe the modulation of the physicochemical properties in peptides using UAAs. Finally, we elucidate how these improved pharmacological parameters and the role played by UAAs impact the progress of analogs in preclinical stages with an emphasis on the role played by UAAs.
Collapse
Affiliation(s)
- Krishna K. Sharma
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Komal Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
- Present address– Department of Structural Biology, Stanford University, Stanford, California 94305, United States
| | - Kamya Rao
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Anku Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Gajanan K. Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Shams Aaghaz
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Naina Sehra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Rajesh Parmar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| |
Collapse
|
2
|
Hansen PR, Oddo A. Fmoc Solid-Phase Peptide Synthesis. Methods Mol Biol 2024; 2821:33-55. [PMID: 38997478 DOI: 10.1007/978-1-0716-3914-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Synthetic peptides are important as drugs and in research. Currently, the method of choice for producing these compounds is solid-phase peptide synthesis. Here, we describe the scope and limitations of Fmoc solid-phase peptide synthesis. Furthermore, we provide a detailed protocol for Fmoc peptide synthesis.
Collapse
Affiliation(s)
- Paul Robert Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Alberto Oddo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- , Måløv, Denmark
| |
Collapse
|
3
|
Andersen IKL, Thomsen TT, Rashid J, Bobak TR, Oddo A, Franzyk H, Løbner-Olesen A, Hansen PR. C-Locked Analogs of the Antimicrobial Peptide BP214. Antibiotics (Basel) 2022; 11:1080. [PMID: 36009951 PMCID: PMC9404711 DOI: 10.3390/antibiotics11081080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 11/26/2022] Open
Abstract
BP214 is an all-D antimicrobial peptide amide, kklfkkilryl, which shows an excellent activity against colistin-resistant Acinetobacter baumannii and a low hemolytic activity. The aim of the present work was to investigate how C-terminus-to-side chain macrocyclization and fatty acid modification affect the antimicrobial and hemolytic activity of this peptide. In total, 18 analogs of BP214 were synthesized using a combination of Fmoc-based solid-phase peptide synthesis and the submonomer approach. Cyclization was achieved by reacting the ε-amino group of a C-terminal lysine residue with a bromoacetylgroup attached to the Nα amino group of the N-terminal amino acid, generating a secondary amine at which the exocyclic lipopeptide tail was assembled. Three different ring sizes (i.e., 3-5 amino acid residues) of C-locked analogs combined with fatty acids of different lengths (i.e., C10-C14) were investigated. The antimicrobial activity of the analogs was tested against Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa. The most promising compound was analog 13 (MIC = 4 µg/mL (2.4 µM) against E. coli and 36% hemolysis of red blood cells at 150 µM). In a time-kill assay, this peptide showed a significant, concentration-dependent reduction in viable E. coli cells comparable to that seen for colistin.
Collapse
Affiliation(s)
- Ida Kristine Lysgaard Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Thomas T. Thomsen
- Department of Clinical Microbiology, Rigshospitalet, Henrik Harpestrengs Vej 4A, 2100 Copenhagen, Denmark
- Department of Biology, Section for Functional Genomics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Jasmina Rashid
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Thomas Rønnemoes Bobak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Alberto Oddo
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Anders Løbner-Olesen
- Department of Biology, Section for Functional Genomics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Paul R. Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
4
|
Lohan S, Mandal D, Choi W, Konshina AG, Tiwari RK, Efremov RG, Maslennikov I, Parang K. Small Amphiphilic Peptides: Activity Against a Broad Range of Drug-Resistant Bacteria and Structural Insight into Membranolytic Properties. J Med Chem 2022; 65:665-687. [PMID: 34978443 DOI: 10.1021/acs.jmedchem.1c01782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the synthesis and antibacterial activities of a series of amphiphilic membrane-active peptides composed, in part, of various nongenetically coded hydrophobic amino acids. The lead cyclic peptides, 8C and 9C, showed broad-spectrum activity against drug-resistant Gram-positive (minimum inhibitory concentration (MIC) = 1.5-6.2 μg/mL) and Gram-negative (MIC = 12.5-25 μg/mL) bacteria. The cytotoxicity study showed the predominant lethal action of the peptides against bacteria as compared with mammalian cells. A plasma stability study revealed approximately 2-fold higher stability of lead cyclic peptides as compared to their linear counterparts after 24 h of incubation. A calcein dye leakage experiment revealed the membranolytic effect of the cyclic peptides. Nuclear magnetic resonance spectroscopy and molecular dynamics simulation studies of the interaction of the peptides with the phospholipid bilayer provided a solid structural basis to explain the membranolytic action of the peptides with atomistic details. These results highlight the potential of newly designed amphiphilic peptides as the next generation of peptide-based antibiotics.
Collapse
Affiliation(s)
- Sandeep Lohan
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Road, Irvine, California 92618, United States
- AJK Biopharmaceutical, 5270 California Avenue, Irvine, California 92617, United States
| | - Dindyal Mandal
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Road, Irvine, California 92618, United States
- AJK Biopharmaceutical, 5270 California Avenue, Irvine, California 92617, United States
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India
| | - Wonsuk Choi
- Structural Biology Research Center, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Road, Irvine, California 92618, United States
| | - Anastasia G Konshina
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow 117997, Russia
| | - Rakesh K Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Road, Irvine, California 92618, United States
| | - Roman G Efremov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street, 16/10, Moscow 117997, Russia
- National Research University Higher School of Economics, Myasnitskaya ul. 20, Moscow 101000, Russia
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, 141701 Moscow, Oblast, Russia
| | - Innokentiy Maslennikov
- Structural Biology Research Center, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Road, Irvine, California 92618, United States
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Road, Irvine, California 92618, United States
| |
Collapse
|
5
|
Candish L, Collins KD, Cook GC, Douglas JJ, Gómez-Suárez A, Jolit A, Keess S. Photocatalysis in the Life Science Industry. Chem Rev 2021; 122:2907-2980. [PMID: 34558888 DOI: 10.1021/acs.chemrev.1c00416] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the pursuit of new pharmaceuticals and agrochemicals, chemists in the life science industry require access to mild and robust synthetic methodologies to systematically modify chemical structures, explore novel chemical space, and enable efficient synthesis. In this context, photocatalysis has emerged as a powerful technology for the synthesis of complex and often highly functionalized molecules. This Review aims to summarize the published contributions to the field from the life science industry, including research from industrial-academic partnerships. An overview of the synthetic methodologies developed and strategic applications in chemical synthesis, including peptide functionalization, isotope labeling, and both DNA-encoded and traditional library synthesis, is provided, along with a summary of the state-of-the-art in photoreactor technology and the effective upscaling of photocatalytic reactions.
Collapse
Affiliation(s)
- Lisa Candish
- Drug Discovery Sciences, Pharmaceuticals, Bayer AG, 42113 Wuppertal, Germany
| | - Karl D Collins
- Bayer Foundation, Public Affairs, Science and Sustainability, Bayer AG, 51368 Leverkusen, Germany
| | - Gemma C Cook
- Discovery High-Throughput Chemistry, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, U.K
| | - James J Douglas
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Adrián Gómez-Suárez
- Organic Chemistry, Bergische Universität Wuppertal, 42119 Wuppertal, Germany
| | - Anais Jolit
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| | - Sebastian Keess
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| |
Collapse
|
6
|
Karmakar S, Silamkoti A, Meanwell NA, Mathur A, Gupta AK. Utilization of C(
sp
3
)‐Carboxylic Acids and Their Redox‐Active Esters in Decarboxylative Carbon−Carbon Bond Formation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100314] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sukhen Karmakar
- Department of Discovery Synthesis Biocon Bristol Myers Squibb Research Center (BBRC) Biocon Park Bommasandra IV Phase Jigani Link Road Bangalore 560 099 India
| | - Arundutt Silamkoti
- Department of Discovery Synthesis Biocon Bristol Myers Squibb Research Center (BBRC) Biocon Park Bommasandra IV Phase Jigani Link Road Bangalore 560 099 India
| | - Nicholas A. Meanwell
- Small Molecule Drug Discovery Research and Early Development Bristol Myers Squibb P.O. Box 4000 Princeton New Jersey 08543-4000 USA
| | - Arvind Mathur
- Small Molecule Drug Discovery Research and Early Development Bristol Myers Squibb P.O. Box 4000 Princeton New Jersey 08543-4000 USA
| | - Arun Kumar Gupta
- Department of Discovery Synthesis Biocon Bristol Myers Squibb Research Center (BBRC) Biocon Park Bommasandra IV Phase Jigani Link Road Bangalore 560 099 India
| |
Collapse
|
7
|
Jwad R, Weissberger D, Hunter L. Strategies for Fine-Tuning the Conformations of Cyclic Peptides. Chem Rev 2020; 120:9743-9789. [PMID: 32786420 DOI: 10.1021/acs.chemrev.0c00013] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic peptides are promising scaffolds for drug development, attributable in part to their increased conformational order compared to linear peptides. However, when optimizing the target-binding or pharmacokinetic properties of cyclic peptides, it is frequently necessary to "fine-tune" their conformations, e.g., by imposing greater rigidity, by subtly altering certain side chain vectors, or by adjusting the global shape of the macrocycle. This review systematically examines the various types of structural modifications that can be made to cyclic peptides in order to achieve such conformational control.
Collapse
Affiliation(s)
- Rasha Jwad
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Daniel Weissberger
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales 2052, Australia
| | - Luke Hunter
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales 2052, Australia
| |
Collapse
|
8
|
Analogues of a Cyclic Antimicrobial Peptide with a Flexible Linker Show Promising Activity against Pseudomonas aeruginosa and Staphylococcus aureus. Antibiotics (Basel) 2020; 9:antibiotics9070366. [PMID: 32629881 PMCID: PMC7399811 DOI: 10.3390/antibiotics9070366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
The emergence of multi-drug resistant bacteria is becoming a major health concern. New strategies to combat especially Gram-negative pathogens are urgently needed. Antimicrobial peptides (AMPs) found in all multicellular organisms act as a first line of defense in immunity. In recent years, AMPs have attracted increasing attention as potential antibiotics. Naturally occurring antimicrobial cyclic lipopeptides include colistin and daptomycin, both of which contain a flexible linker. We previously reported a cyclic AMP BSI-9 cyclo(Lys-Nal-Lys-Lys-Bip-O2Oc-Nal-Lys-Asn) containing a flexible linker, with a broad spectrum of activity against bacterial strains and low hemolytic activity. In this study, improvement of the antimicrobial activity of BSI-9, against the European Committee on Antimicrobial Susceptibility Testing (EUCAST) strains of S. aureus, E. coli, A. baumannii, and P. aeruginosa was examined. This led to synthesis of eighteen peptide analogues of BSI-9, produced in four individual stages, with a different focus in each stage; cyclization point, hydrophobicity, cationic side-chain length, and combinations of the last two. Specifically the modified compound 11, exhibited improved activity against Staphylococcus aureus and Pseudomonas aeruginosa with MIC of 4 µg/mL and 8 µg/mL, respectively, compared to the original BSI-9, which had an MIC of 16–32 µg/mL.
Collapse
|
9
|
Bagheri M, Amininasab M, Dathe M. Arginine/Tryptophan-Rich Cyclic α/β-Antimicrobial Peptides: The Roles of Hydrogen Bonding and Hydrophobic/Hydrophilic Solvent-Accessible Surface Areas upon Activity and Membrane Selectivity. Chemistry 2018; 24:14242-14253. [PMID: 29969522 DOI: 10.1002/chem.201802881] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 11/08/2022]
Abstract
The bacterial selectivity of an amphiphilic library of small cyclic α/β-tetra-, α/β-penta-, and α/β-hexapeptides rich in arginine/tryptophan (Arg/Trp) residues, which contains asymmetric backbone configurations and differ in hydrophobicity and alternating d,l-amino acids, was investigated against Bacillus subtilis and Escherichia coli. The structural analyses showed that the peptides tend to form assemblies of different shapes. All-l-peptides, especially the most hydrophobic pentamers, were more strongly anti-B. subtilis. With the exception to cyclo(Phe-d-Trp-β3 hArg-Arg-d-Trp) (Phe=phenylalanine), the peptides had no effects on inner membrane of E. coli, but lyzed the lipopolysaccharide layer according to their activity pattern. The activities adversely changed with a decrease in the number of amide intramolecular hydrogen bonds in assemblies of diastereomeric peptides and the ratio of hydrophobic/hydrophilic solvent-accessible surface areas. The remarkable enhanced entropic contribution for the partitioning of the least conformationally constrained cyclo(Trp-d-Phe-β3 hTrp-Arg-d-Arg) sequence into the membranes supported the strong self-assembly behavior, therefore making the peptide less penetrable through the E. coli outer layer.
Collapse
Affiliation(s)
- Mojtaba Bagheri
- Peptide Chemistry Laboratory, Institute of Biochemistry and Biophysics, University of Tehran, 16 Azar Street, 14176-14335, Tehran, Iran
| | - Mehriar Amininasab
- Department of cell and molecular Biology, School of Biology, College of Science, University of, Tehran, Iran
| | - Margitta Dathe
- Leibniz institute of molecular pharmacology (FMP), Robert Roessle Street 10, 13125, Berlin, Germany
| |
Collapse
|
10
|
Greco I, Hummel BD, Vasir J, Watts JL, Koch J, Hansen JE, Nielsen HM, Damborg P, Hansen PR. In Vitro ADME Properties of Two Novel Antimicrobial Peptoid-Based Compounds as Potential Agents against Canine Pyoderma. Molecules 2018; 23:E630. [PMID: 29534469 PMCID: PMC6017477 DOI: 10.3390/molecules23030630] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial peptides (AMPs) hold promise as the next generation of antimicrobial agents, but often suffer from rapid degradation in vivo. Modifying AMPs with non-proteinogenic residues such as peptoids (oligomers of N-alkylglycines) provides the potential to improve stability. We have identified two novel peptoid-based compounds, B1 and D2, which are effective against the canine skin pathogen Staphylococcus pseudintermedius, the main cause of antibiotic use in companion animals. We report on their potential to treat infections topically by characterizing their release from formulation and in vitro ADME properties. In vitro ADME assays included skin penetration profiles, stability to proteases and liver microsomes, and plasma protein binding. Both B1 and D2 were resistant to proteases and >98% bound to plasma proteins. While half-lives in liver microsomes for both were >2 h, peptoid D2 showed higher stability to plasma proteases than the peptide-peptoid hybrid B1 (>2 versus 0.5 h). Both compounds were suitable for administration in an oil-in-water cream formulation (50% release in 8 h), and displayed no skin permeation, in the absence or presence of skin permeability modifiers. Our results indicate that these peptoid-based drugs may be suitable as antimicrobials for local treatment of canine superficial pyoderma and that they can overcome the inherent limitations of stability encountered in peptides.
Collapse
Affiliation(s)
- Ines Greco
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg, Denmark.
- Zoetis Inc., 333 Portage St., Kalamazoo, MI 49007, USA.
| | | | | | | | - Jason Koch
- Zoetis Inc., 333 Portage St., Kalamazoo, MI 49007, USA.
| | - Johannes E Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| | - Hanne Mørck Nielsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| | - Peter Damborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark.
| | - Paul R Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
11
|
McCarver SJ, Qiao JX, Carpenter J, Borzilleri RM, Poss MA, Eastgate MD, Miller MM, MacMillan DWC. Decarboxylative Peptide Macrocyclization through Photoredox Catalysis. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608207] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Stefan J. McCarver
- Merck Center for Catalysis at Princeton University Washington Road Princeton NJ 08544 USA
| | - Jennifer X. Qiao
- Bristol-Myers Squibb Route 206 & Province Line Road Princeton NJ 08543 USA
| | - Joseph Carpenter
- Bristol-Myers Squibb Route 206 & Province Line Road Princeton NJ 08543 USA
| | | | - Michael A. Poss
- Bristol-Myers Squibb Route 206 & Province Line Road Princeton NJ 08543 USA
| | - Martin D. Eastgate
- Bristol-Myers Squibb Route 206 & Province Line Road Princeton NJ 08543 USA
| | - Michael M. Miller
- Bristol-Myers Squibb Route 206 & Province Line Road Princeton NJ 08543 USA
| | - David W. C. MacMillan
- Merck Center for Catalysis at Princeton University Washington Road Princeton NJ 08544 USA
| |
Collapse
|
12
|
McCarver SJ, Qiao JX, Carpenter J, Borzilleri RM, Poss MA, Eastgate MD, Miller MM, MacMillan DWC. Decarboxylative Peptide Macrocyclization through Photoredox Catalysis. Angew Chem Int Ed Engl 2016; 56:728-732. [PMID: 27860140 DOI: 10.1002/anie.201608207] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/01/2016] [Indexed: 01/01/2023]
Abstract
A method for the decarboxylative macrocyclization of peptides bearing N-terminal Michael acceptors has been developed. This synthetic method enables the efficient synthesis of cyclic peptides containing γ-amino acids and is tolerant of functionalities present in both natural and non-proteinogenic amino acids. Linear precursors ranging from 3 to 15 amino acids cyclize effectively under this photoredox method. To demonstrate the preparative utility of this method in the context of bioactive molecules, we synthesized COR-005, a somatostatin analogue that is currently in clinical trials.
Collapse
Affiliation(s)
- Stefan J McCarver
- Merck Center for Catalysis at Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Jennifer X Qiao
- Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Joseph Carpenter
- Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Robert M Borzilleri
- Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Michael A Poss
- Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Martin D Eastgate
- Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Michael M Miller
- Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Washington Road, Princeton, NJ, 08544, USA
| |
Collapse
|
13
|
Wilbs J, Middendorp SJ, Heinis C. Improving the Binding Affinity of in-Vitro-Evolved Cyclic Peptides by Inserting Atoms into the Macrocycle Backbone. Chembiochem 2016; 17:2299-2303. [DOI: 10.1002/cbic.201600336] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Jonas Wilbs
- Institute of Chemical Sciences and Engineering; Ecole Polytechnique Fédérale de Lausanne; EPFL); 1015 Lausanne Switzerland
| | - Simon J. Middendorp
- Institute of Chemical Sciences and Engineering; Ecole Polytechnique Fédérale de Lausanne; EPFL); 1015 Lausanne Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering; Ecole Polytechnique Fédérale de Lausanne; EPFL); 1015 Lausanne Switzerland
| |
Collapse
|
14
|
Oddo A, Thomsen TT, Britt HM, Løbner-Olesen A, Thulstrup PW, Sanderson JM, Hansen PR. Modulation of Backbone Flexibility for Effective Dissociation of Antibacterial and Hemolytic Activity in Cyclic Peptides. ACS Med Chem Lett 2016; 7:741-5. [PMID: 27563396 DOI: 10.1021/acsmedchemlett.5b00400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 05/24/2016] [Indexed: 12/12/2022] Open
Abstract
Bacterial resistance to antibiotic therapy is on the rise and threatens to evolve into a worldwide emergency: alternative solutions to current therapies are urgently needed. Cationic amphipathic peptides are potent membrane-active agents that hold promise as the next-generation therapy for multidrug-resistant infections. The peptides' behavior upon encountering the bacterial cell wall is crucial, and much effort has been dedicated to the investigation and optimization of this amphipathicity-driven interaction. In this study we examined the interaction of a novel series of nine-membered flexible cyclic AMPs with liposomes mimicking the characteristics of bacterial membranes. Employed techniques included circular dichroism and marker release assays, as well as microbiological experiments. Our analysis was aimed at correlating ring flexibility with their antimicrobial, hemolytic, and membrane activity. By doing so, we obtained useful insights to guide the optimization of cyclic antimicrobial peptides via modulation of their backbone flexibility without loss of activity.
Collapse
Affiliation(s)
- Alberto Oddo
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department of Chemistry, Durham University, South Road, DH1 3LE Durham, United Kingdom
| | - Thomas T. Thomsen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Hannah M. Britt
- Department of Chemistry, Durham University, South Road, DH1 3LE Durham, United Kingdom
| | - Anders Løbner-Olesen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Peter W. Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken
5, 2100 Copenhagen, Denmark
| | - John M. Sanderson
- Department of Chemistry, Durham University, South Road, DH1 3LE Durham, United Kingdom
| | - Paul R. Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|