1
|
Ur Rahman F, Shah AB, Muhammad M, khan E, Ataya FS, Batiha GES. Antioxidant, antibacterial, enzyme inhibition and fluorescence characteristics of unsymmetrical thiourea derivatives. Heliyon 2024; 10:e31563. [PMID: 38826706 PMCID: PMC11141368 DOI: 10.1016/j.heliyon.2024.e31563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024] Open
Abstract
A series of six unsymmetrical thiourea derivatives, namely 1-cyclohexyl-3-(pyridin-2-yl) thiourea (1), 1-cyclohexyl-3-(3-methylpyridin-2-yl)thiourea (2), 1-cyclohexyl-3-(2,4-dimethylphenyl) thiourea (3), 1-(4-chlorophenyl)-3-cyclohexylthiourea (4), 1-(3-methylpyridin-2-yl)-3-phenylthiourea (5), and 1-(3-chlorophenyl)-3-phenylthiourea (6), were successfully synthesized via reaction between different amines with isothiocyanates under a non-catalytic environment. Structural elucidation of compounds (1-6) was performed using FT-IR and NMR (1H and 13C) spectroscopy. The infrared spectra displayed characteristic stretching vibrations, while the 13C NMR chemical shifts of the thiourea moiety (C[bond, double bond]S) were observed in the range of 179.1-181.4 ppm. The antioxidative and antimicrobial properties of the compounds were assessed, as well as their inhibitory effects on acetylcholinesterase and butyrylcholinesterase were evaluated. In order to analyze the fluorescence characteristics of each compound (1-6), the excitation (λex) and emission (λem) wavelengths were scanned within the range of 250-750 nm, with the solvent blank serving as a standard. It was observed that when dissolved in acetone, toluene, tetrahydrofuran, and ethyl acetate, these compounds exhibited emission peaks ranging from 367 to 581 nm and absorption peaks ranging from 275 to 432 nm.
Collapse
Affiliation(s)
- Faizan Ur Rahman
- Department of Chemistry, University of Malakand, Dir Lower, 18800, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Bari Shah
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mian Muhammad
- Department of Chemistry, University of Malakand, Dir Lower, 18800, Khyber Pakhtunkhwa, Pakistan
| | - Ezzat khan
- Department of Chemistry, University of Malakand, Dir Lower, 18800, Khyber Pakhtunkhwa, Pakistan
| | - Farid S. Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
2
|
Rinehart NI, Saunthwal RK, Wellauer J, Zahrt AF, Schlemper L, Shved AS, Bigler R, Fantasia S, Denmark SE. A machine-learning tool to predict substrate-adaptive conditions for Pd-catalyzed C-N couplings. Science 2023; 381:965-972. [PMID: 37651532 DOI: 10.1126/science.adg2114] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 08/01/2023] [Indexed: 09/02/2023]
Abstract
Machine-learning methods have great potential to accelerate the identification of reaction conditions for chemical transformations. A tool that gives substrate-adaptive conditions for palladium (Pd)-catalyzed carbon-nitrogen (C-N) couplings is presented. The design and construction of this tool required the generation of an experimental dataset that explores a diverse network of reactant pairings across a set of reaction conditions. A large scope of C-N couplings was actively learned by neural network models by using a systematic process to design experiments. The models showed good performance in experimental validation: Ten products were isolated in more than 85% yield from a range of couplings with out-of-sample reactants designed to challenge the models. Importantly, the developed workflow continually improves the prediction capability of the tool as the corpus of data grows.
Collapse
Affiliation(s)
- N Ian Rinehart
- Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rakesh K Saunthwal
- Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joël Wellauer
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry and Catalysis, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Andrew F Zahrt
- Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lukas Schlemper
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry and Catalysis, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Alexander S Shved
- Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Raphael Bigler
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry and Catalysis, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Serena Fantasia
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry and Catalysis, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Scott E Denmark
- Roger Adams Laboratory, Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
3
|
Soni HI, Patel NB, Parmar RB, Bacab MJC, River G. Microwave Irradiated Synthesis of Pyrimidine Containing, Thiazolidin-4-ones: Antimicrobial, Anti-tuberculosis, Antimalarial, and Anti-protozoa evaluation. LETT ORG CHEM 2022. [DOI: 10.2174/1570178619666220111124104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aim:
This study aims to synthesize thiazolidine-4-one compounds with a pyrimidine nucleus and evaluate against different species of bacteria, fungi, protozoa, and the malaria parasite.
Background:
Microwave irradiation was the best method for synthesizing the thiazolidin-4-one ring system. It took only 15 minutes for synthesizing thiazolidin-4-one while the conventional method required 12 hours. The rapid reaction was the main concern of this research.
Objective:
Pyrimidine and Thiazolidin-4-one nucleus have broad-spectrum biological activity and when it is introduced with other hetero atoms containing moiety, many types of biological activities have been found; antimicrobial, anti-tuberculosis, anti-protozoa, antimalarial are the main activities. The activity of these compounds inspired us to do extra research on Thiazolidin-4-one fused pyrimidines with different functional groups. The aim of this is to synthesize a combination of these two ring systems in less time by using a microwave irradiation method and to evaluate new compounds for different bioactivity.
Method:
2-(4-Chlorophenyl)-3-(4-(substituted phenyl)-6-(substituted aryl) pyrimidin-2-yl) thiazolidin-4-ones (6A-J) were synthesized by microwave irradiation to save energy and time. The structure of all newly synthesized motifs was characterized by spectral analysis (1H NMR, 13C NMR, IR, spectroscopy) and screened for antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pyogenes, antifungal activity against Candida albicans, Aspergillus niger, Aspergillus clavatus, anti-tuberculosis activity against M. tuberculosis H37RV, antimalarial activity against Plasmodium falciparum and anti-protozoa activity against L. mexicana and T. cruzi.
Result:
Because of microwave irradiation synthesis, time period is very less for preparing the new compound. Biological response given by compounds 6B, 6C, 6D, 6E, 6G, 6H, and 6J was found excellent.
Conclusion:
Good yield with purity of the newly synthesized thiazolidine-4-one compounds obtained in less time by using microwave irradiation. The biological response of some of the compounds of this series was found excellent
Collapse
Affiliation(s)
- Hetal I. Soni
- C. B. Patel Computer & J. N. M. Patel Science College, Surat-395 017, Gujarat, India
| | - Navin B. Patel
- Organic Research Laboratory, Department of Chemistry, Veer Narmad South Gujarat
| | - Rahul B. Parmar
- Atmanand Saraswati Science College, Surat-395006, Gujarat, India
| | - Manuel J. Chan- Bacab
- Departamento de Microbiología Ambientaly Biotecnología, Universidad Autónoma de Campeche, Av. Agustín Melgar, s/n, Campeche, México
| | - Gildardo River
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, Mexico
| |
Collapse
|
4
|
Thiourea Derivatives, Simple in Structure but Efficient Enzyme Inhibitors and Mercury Sensors. Molecules 2021; 26:molecules26154506. [PMID: 34361659 PMCID: PMC8347686 DOI: 10.3390/molecules26154506] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 11/16/2022] Open
Abstract
In this study six unsymmetrical thiourea derivatives, 1-isobutyl-3-cyclohexylthiourea (1), 1-tert-butyl-3-cyclohexylthiourea (2), 1-(3-chlorophenyl)-3-cyclohexylthiourea (3), 1-(1,1-dibutyl)-3-phenylthiourea (4), 1-(2-chlorophenyl)-3-phenylthiourea (5) and 1-(4-chlorophenyl)-3-phenylthiourea (6) were obtained in the laboratory under aerobic conditions. Compounds 3 and 4 are crystalline and their structure was determined for their single crystal. Compounds 3 is monoclinic system with space group P21/n while compound 4 is trigonal, space group R3:H. Compounds (1–6) were tested for their anti-cholinesterase activity against acetylcholinesterase and butyrylcholinesterase (hereafter abbreviated as, AChE and BChE, respectively). Potentials (all compounds) as sensing probes for determination of deadly toxic metal (mercury) using spectrofluorimetric technique were also investigated. Compound 3 exhibited better enzyme inhibition IC50 values of 50, and 60 µg/mL against AChE and BChE with docking score of −10.01, and −8.04 kJ/mol, respectively. The compound also showed moderate sensitivity during fluorescence studies.
Collapse
|
5
|
Jaromin A, Czopek A, Parapini S, Basilico N, Misiak E, Gubernator J, Zagórska A. Synthesis and Antiplasmodial Activity of Novel Bioinspired Imidazolidinedione Derivatives. Biomolecules 2020; 11:biom11010033. [PMID: 33383906 PMCID: PMC7823712 DOI: 10.3390/biom11010033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/16/2022] Open
Abstract
Malaria is an enormous threat to public health, due to the emergence of Plasmodium falciparum resistance to widely-used antimalarials, such as chloroquine (CQ). Current antimalarial drugs are aromatic heterocyclic derivatives, most often containing a basic component with an added alkyl chain in their chemical structure. While these drugs are effective, they have many side effects. This paper presents the synthesis and preliminary physicochemical characterisation of novel bioinspired imidazolidinedione derivatives, where the imidazolidinedione core was linked via the alkylene chain and the basic piperazine component to the bicyclic system. These compounds were tested against the asexual stages of two strains of P. falciparum—the chloroquine-sensitive (D10) and chloroquine-resistant (W2) strains. In parallel, in vitro cytotoxicity was investigated on a human keratinocyte cell line, as well as their hemolytic activity. The results demonstrated that the antiplasmodial effects were stronger against the W2 strain (IC50 between 2424.15–5648.07 ng/mL (4.98–11.95 µM)), compared to the D10 strain (6202.00–9659.70 ng/mL (12.75–19.85 µM)). These molecules were also non-hemolytic to human erythrocytes at a concentration active towards the parasite, but with low toxicity to mammalian cell line. The synthetized derivatives, possessing enhanced antimalarial activity against the CQ-resistant strain of P. falciparum, appear to be interesting antimalarial drug candidates.
Collapse
Affiliation(s)
- Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-3756203
| | - Anna Czopek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 str, 30-688 Kraków, Poland; (A.C.); (E.M.); (A.Z.)
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche per la Salute, Università di Milano, Via Pascal 36, 20133 Milan, Italy;
| | - Nicoletta Basilico
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università di Milano, Via Pascal 36, 20133 Milan, Italy;
| | - Ernest Misiak
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 str, 30-688 Kraków, Poland; (A.C.); (E.M.); (A.Z.)
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland;
| | - Agnieszka Zagórska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 str, 30-688 Kraków, Poland; (A.C.); (E.M.); (A.Z.)
| |
Collapse
|
6
|
Song X, Yang R, Xiao Q. Recent Advances in the Synthesis of Heterocyclics via Cascade Cyclization of Propargylic Alcohols. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001142] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xian‐Rong Song
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Nanchang 330013 People's Republic of China
| | - Ruchun Yang
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Nanchang 330013 People's Republic of China
| | - Qiang Xiao
- Institute of Organic Chemistry Jiangxi Science & Technology Normal University Key Laboratory of Organic Chemistry Nanchang 330013 People's Republic of China
| |
Collapse
|
7
|
Huang G, Solano CM, Melendez J, Yu-Alfonzo S, Boonhok R, Min H, Miao J, Chakrabarti D, Yuan Y. Discovery of fast-acting dual-stage antimalarial agents by profiling pyridylvinylquinoline chemical space via copper catalyzed azide-alkyne cycloadditions. Eur J Med Chem 2020; 209:112889. [PMID: 33045660 DOI: 10.1016/j.ejmech.2020.112889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/08/2020] [Accepted: 09/24/2020] [Indexed: 11/18/2022]
Abstract
To identity fast-acting, multistage antimalarial agents, a series of pyridylvinylquinoline-triazole analogues have been synthesized via CuAAC. Most of the compounds display significant inhibitory effect on the drug-resistant malarial Dd2 strain at low submicromolar concentrations. Among the tested analogues, compound 60 is the most potent molecule with an EC50 value of 0.04 ± 0.01 μM. Our current study indicates that compound 60 is a fast-acting antimalarial compound and it demonstrates stage specific action at the trophozoite phase in the P. falciparum asexual life cycle. In addition, compound 60 is active against both early and late stage P. falciparum gametocytes. From a mechanistic perspective, compound 60 shows good activity as an inhibitor of β-hematin formation. Collectively, our findings suggest that fast-acting agent 60 targets dual life stages of the malarial parasites and warrant further investigation of pyridylvinylquinoline hybrids as new antimalarials.
Collapse
Affiliation(s)
- Guang Huang
- Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA
| | - Claribel Murillo Solano
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA
| | - Joel Melendez
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA
| | - Sabrina Yu-Alfonzo
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA
| | - Rachasak Boonhok
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA; Department of Medical Technology, School of Allied Health Science, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Hui Min
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Debopam Chakrabarti
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, 32826, USA.
| | - Yu Yuan
- Department of Chemistry, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|
8
|
Yu Z, Li Z, Yu Q, Wang Z, Song H, Sun H, Fan R, Bi A, Zhang J, Zhang X. Discovery of prolyl hydroxylase 2 inhibitors with new chemical scaffolds as in vivo active erythropoietin inducers through a combined virtual screening strategy. Chem Biol Drug Des 2019; 95:270-278. [PMID: 31628888 DOI: 10.1111/cbdd.13640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/15/2019] [Accepted: 10/12/2019] [Indexed: 12/15/2022]
Abstract
Hypoxia-inducible factor (HIF) is identified to be a promising target to mediate the response to hypoxia. Its stability and activation are negatively controlled by prolyl hydroxylase 2 (PHD2). Thus, PHD2 inhibition has been perceived as a promising anti-anemia therapy. In this study, we carried out a structure-based virtual screening followed by in vitro and in vivo biological validation, with the goal to identify novel PHD2 inhibitors. As a result, a set of hits with new chemical scaffolds were revealed to be active in vitro for PHD2 inhibition. Compounds 2 and 3 were revealed to be capable of stabilizing HIF-α and stimulating erythropoietin (EPO) expression in cell-based assays. Notably, further in vivo assays revealed that 2 was capable of elevating the EPO plasma levels in C57BL/6 mice model. These findings provide new chemical scaffolds for further development of PHD2 inhibitors.
Collapse
Affiliation(s)
- Zhan Yu
- The Affiliated Jiangning Hospital of NJMU, Nanjing Medical University (NJMU), Nanjing, China
| | - Zhihong Li
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
| | - Quanwei Yu
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
| | - Zhi Wang
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
| | - Huilin Song
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
| | - Hanyu Sun
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
| | - Rufeng Fan
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
| | - Angzhi Bi
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
| | - Jun Zhang
- Drum Tower Clinical Medical College of NJMU, Nanjing Medical University (NJMU), Nanjing, China
| | - Xiaojin Zhang
- Department of Chemistry, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
9
|
New Silver Complexes with Mixed Thiazolidine and Phosphine Ligands as Highly Potent Antimalarial and Anticancer Agents. J CHEM-NY 2018. [DOI: 10.1155/2018/8395374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Five silver(I) complexes containing a mixed ligand system of phosphine and thiazolidine were successfully synthesized. The structural information of the complexes was assembled using various spectroscopic techniques such as CHN elemental analysis, Fourier transformed infrared (FTIR), 1H, 13C, and 31P{1H} NMR spectroscopy, and thermogravimetric analysis (TGA). A bidentate phosphine ligand acted as a chelating agent which bond to the silver in 1 : 2 molar ratios. Meanwhile, thiazolidine was attached to the silver in a 1 : 1 molar ratio. The antiplasmodial properties of all synthesized complexes were investigated on chloroquine-resistant P. falciparum parasite via HRP2 assays and cytotoxicity tests on Vero cells. Of all the synthesized complexes, complex 2 showed the highest SI value (more than 12.4) followed by complex 5 (6.6). The potent properties of compounds 2 and 5 were also noted in the in vitro antiproliferative assays involving MDA-MB-231 and MCF-7 breast cancer cell lines as well as HT-29 colon cancer cell line. Complex 2 was selective for MDA-MB-231 cells (GI50 = 1.9 ± 0.3 µM), while complex 5 acted predominantly on breast carcinoma cells (GI50 MDA-MB-231 = 4.7 ± 1.1 µM; MCF-7 = 2.9 ± 0.9 µM) instead of colon carcinoma (HT-29) cells (GI50 = 15.1 ± 1.9 µM).
Collapse
|
10
|
|
11
|
Alexander OT, Donka R, Tonder JHV, Bezuidenhoudt BC, Visser HG. The crystal structure of 6-(4-bromobenzyl)-1,3,5-trimethyl-7-phenyl-1,5-dihydro-2 H-pyrrolo[3,2-d]pyrimidine-2,4(3 H)-dione, C 22H 20BrN 3O 2. Z KRIST-NEW CRYST ST 2018. [DOI: 10.1515/ncrs-2017-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C22H20BrN3O2, monoclinic, P21/c (no. 14), a = 15.889(12) Å, b = 16.332(13) Å, c = 7.324(5) Å, β = 94.985(5), V = 1893(2) Å3, Z = 4, Rgt(F) = 0.0295, wRref(F2) = 0.0790, T = 100(2) K.
Collapse
Affiliation(s)
- Orbett T. Alexander
- Department of Chemistry, University of the Free State, Nelson Mandela ave , Bloemfontein , South Africa
| | - Rajasekhar Donka
- Department of Chemistry, University of the Free State, Nelson Mandela ave , Bloemfontein , South Africa
| | - Johannes H. van Tonder
- Department of Chemistry, University of the Free State, Nelson Mandela ave , Bloemfontein , South Africa
| | - Barend C.B. Bezuidenhoudt
- Department of Chemistry, University of the Free State, Nelson Mandela ave , Bloemfontein , South Africa
| | - Hendrik G. Visser
- Department of Chemistry, University of the Free State, Nelson Mandela ave , Bloemfontein , South Africa
| |
Collapse
|
12
|
Alencar N, Sola I, Linares M, Juárez-Jiménez J, Pont C, Viayna A, Vílchez D, Sampedro C, Abad P, Pérez-Benavente S, Lameira J, Bautista JM, Muñoz-Torrero D, Luque FJ. First homology model of Plasmodium falciparum glucose-6-phosphate dehydrogenase: Discovery of selective substrate analog-based inhibitors as novel antimalarial agents. Eur J Med Chem 2018; 146:108-122. [PMID: 29407943 DOI: 10.1016/j.ejmech.2018.01.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/27/2017] [Accepted: 01/15/2018] [Indexed: 01/07/2023]
Abstract
In Plasmodium falciparum the bifunctional enzyme glucose-6-phosphate dehydrogenase‒6-phosphogluconolactonase (PfG6PD‒6PGL) is involved in the catalysis of the first reaction of the pentose phosphate pathway. Since this enzyme has a key role in parasite development, its unique structure represents a potential target for the discovery of antimalarial drugs. Here we describe the first 3D structural model of the G6PD domain of PfG6PD‒6PGL. Compared to the human enzyme (hG6PD), the 3D model has enabled the identification of a key difference in the substrate-binding site, which involves the replacement of Arg365 in hG6PD by Asp750 in PfG6PD. In a prospective validation of the model, this critical change has been exploited to rationally design a novel family of substrate analog-based inhibitors that can display the necessary selectivity towards PfG6PD. A series of glucose derivatives featuring an α-methoxy group at the anomeric position and different side chains at position 6 bearing distinct basic functionalities has been synthesized, and their PfG6PD and hG6PD inhibitory activities and their toxicity against parasite and mammalian cells have been assessed. Several compounds displayed micromolar affinity (Ki up to 23 μM), favorable selectivity (up to > 26-fold), and low cytotoxicity. Phenotypic assays with P. falciparum cultures revealed high micromolar IC50 values, likely as a result of poor internalization of the compounds in the parasite cell. Overall, these results endorse confidence to the 3D model of PfG6PD, paving the way for the use of target-based drug design approaches in antimalarial drug discovery studies around this promising target.
Collapse
Affiliation(s)
- Nelson Alencar
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Prat de la Riba 171, E-08921 Santa Coloma de Gramenet, Spain
| | - Irene Sola
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences and IBUB, University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - María Linares
- Research Institute Hospital 12 de Octubre, Avda. de Cordoba s/n, 28041 Madrid, Spain
| | - Jordi Juárez-Jiménez
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Prat de la Riba 171, E-08921 Santa Coloma de Gramenet, Spain
| | - Caterina Pont
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences and IBUB, University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Antonio Viayna
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Prat de la Riba 171, E-08921 Santa Coloma de Gramenet, Spain
| | - David Vílchez
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Prat de la Riba 171, E-08921 Santa Coloma de Gramenet, Spain
| | - Cristina Sampedro
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences and IBUB, University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain
| | - Paloma Abad
- Research Institute Hospital 12 de Octubre, Avda. de Cordoba s/n, 28041 Madrid, Spain; Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Facultad de Veterinaria, Ciudad Universitaria, 28040 Madrid, Spain
| | - Susana Pérez-Benavente
- Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Facultad de Veterinaria, Ciudad Universitaria, 28040 Madrid, Spain
| | - Jerónimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos-LPDF, Instituto de Ciências Exatas e Naturais- ICEN, Universidade Federal do Pará - UFPA, Av. Augusto Correa, Nº 1- Bairro: Guamá, Cep: 66.075-900 Belém-Pará, Brazil
| | - José M Bautista
- Research Institute Hospital 12 de Octubre, Avda. de Cordoba s/n, 28041 Madrid, Spain; Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Facultad de Veterinaria, Ciudad Universitaria, 28040 Madrid, Spain
| | - Diego Muñoz-Torrero
- Laboratory of Pharmaceutical Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences and IBUB, University of Barcelona, Av. Joan XXIII 27-31, E-08028 Barcelona, Spain.
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona, Av. Prat de la Riba 171, E-08921 Santa Coloma de Gramenet, Spain.
| |
Collapse
|
13
|
Shabeer M, Barbosa LCA, Karak M, Coelho ACS, Takahashi JA. Thiobarbiturates as potential antifungal agents to control human infections caused by Candida and Cryptococcus species. Med Chem Res 2018. [DOI: 10.1007/s00044-017-2126-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Carrasco MP, Machado M, Gonçalves L, Sharma M, Gut J, Lukens AK, Wirth DF, André V, Duarte MT, Guedes RC, Dos Santos DJVA, Rosenthal PJ, Mazitschek R, Prudêncio M, Moreira R. Probing the Azaaurone Scaffold against the Hepatic and Erythrocytic Stages of Malaria Parasites. ChemMedChem 2016; 11:2194-2204. [PMID: 27538856 DOI: 10.1002/cmdc.201600327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Indexed: 11/09/2022]
Abstract
The potential of azaaurones as dual-stage antimalarial agents was investigated by assessing the effect of a small library of azaaurones on the inhibition of liver and intraerythrocytic lifecycle stages of the malaria parasite. The whole series was screened against the blood stage of a chloroquine-resistant Plasmodium falciparum strain and the liver stage of P. berghei, yielding compounds with dual-stage activity and sub-micromolar potency against erythrocytic parasites. Studies with genetically modified parasites, using a phenotypic assay based on the P. falciparum Dd2-ScDHODH line, which expresses yeast dihydroorotate dehydrogenase (DHODH), showed that one of the azaaurone derivatives has the potential to inhibit the parasite mitochondrial electron-transport chain. The global urgency in finding new therapies for malaria, especially against the underexplored liver stage, associated with chemical tractability of azaaurones, warrants further development of this chemotype. Overall, these results emphasize the azaaurone chemotype as a promising scaffold for dual-stage antimalarials.
Collapse
Affiliation(s)
- Marta P Carrasco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal. .,Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Göteborg, Sweden.
| | - Marta Machado
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Moni Sharma
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Jiri Gut
- Department of Medicine, San Francisco General Hospital, University of California San Francisco, 1001 Potrero Avenue, San Francisco, CA, 94110, USA
| | - Amanda K Lukens
- The Broad Institute, Infectious Diseases Program, Cambridge, MA, 02142, USA.,Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Dyann F Wirth
- The Broad Institute, Infectious Diseases Program, Cambridge, MA, 02142, USA.,Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Vânia André
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Maria Teresa Duarte
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Rita C Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Daniel J V A Dos Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal.,LAQV@REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Portugal
| | - Philip J Rosenthal
- Department of Medicine, San Francisco General Hospital, University of California San Francisco, 1001 Potrero Avenue, San Francisco, CA, 94110, USA
| | - Ralph Mazitschek
- The Broad Institute, Infectious Diseases Program, Cambridge, MA, 02142, USA.,Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.,Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal.
| | - Rui Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| |
Collapse
|
15
|
Boss C, Aissaoui H, Amaral N, Bauer A, Bazire S, Binkert C, Brun R, Bürki C, Ciana CL, Corminboeuf O, Delahaye S, Dollinger C, Fischli C, Fischli W, Flock A, Frantz MC, Girault M, Grisostomi C, Friedli A, Heidmann B, Hinder C, Jacob G, Le Bihan A, Malrieu S, Mamzed S, Merot A, Meyer S, Peixoto S, Petit N, Siegrist R, Trollux J, Weller T, Wittlin S. Discovery and Characterization of ACT-451840: an Antimalarial Drug with a Novel Mechanism of Action. ChemMedChem 2016; 11:1995-2014. [DOI: 10.1002/cmdc.201600298] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/04/2016] [Indexed: 11/09/2022]
|
16
|
Devender N, Gunjan S, Chhabra S, Singh K, Pasam VR, Shukla SK, Sharma A, Jaiswal S, Singh SK, Kumar Y, Lal J, Trivedi AK, Tripathi R, Tripathi RP. Identification of β-Amino alcohol grafted 1,4,5 trisubstituted 1,2,3-triazoles as potent antimalarial agents. Eur J Med Chem 2015; 109:187-98. [PMID: 26774925 DOI: 10.1016/j.ejmech.2015.12.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/06/2015] [Accepted: 12/20/2015] [Indexed: 01/05/2023]
Abstract
In a quest to discover new drugs, we have synthesized a series of novel β-amino alcohol grafted 1,2,3-triazoles and screened them for their in vitro antiplasmodial and in vivo antimalarial activity. Among them, compounds 16 and 25 showed potent activity against chloroquine-sensitive (Pf3D7) strain with IC50 of 0.87 and 0.3 μM respectively, while compounds 7 and 13 exhibited better activity in vitro than the reference drug against chloroquine-resistance strain (PfK1) with IC50 of 0.5 μM each. Compound 25 showed 86.8% in vivo antimalarial efficacy with favorable pharmacokinetic parameters. Mechanistic studies divulged that potent compounds significantly boosted p53 protein levels to exhibit the antimalarial activity.
Collapse
Affiliation(s)
- Nalmala Devender
- Medicinal and Process Chemistry Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Sarika Gunjan
- Parasitology Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Stuti Chhabra
- Biochemistry Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Kartikey Singh
- Medicinal and Process Chemistry Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Venkata Reddy Pasam
- Medicinal and Process Chemistry Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Sanjeev K Shukla
- Sophisticated Analytical Instrument Facility Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India.
| | - Abhisheak Sharma
- Pharmacokinetics & Metabolism Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Swati Jaiswal
- Pharmacokinetics & Metabolism Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Sunil Kumar Singh
- Parasitology Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Yogesh Kumar
- Biochemistry Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Jawahar Lal
- Pharmacokinetics & Metabolism Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Arun Kumar Trivedi
- Biochemistry Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Renu Tripathi
- Parasitology Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India.
| | - Rama Pati Tripathi
- Medicinal and Process Chemistry Division, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India.
| |
Collapse
|