1
|
Feng Y, Jiang Y, Yang L, Lu D, Li N, Zhang Q, Yang H, Qin H, Zhang J, Gou X, Jiang F. Targeting CAFs and extracellular matrix (ECM) in lung cancer: Potential of adjuvants and nanoparticles. Bioorg Chem 2025; 162:108586. [PMID: 40398184 DOI: 10.1016/j.bioorg.2025.108586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/09/2025] [Accepted: 05/11/2025] [Indexed: 05/23/2025]
Abstract
Cancer-associated fibroblasts (CAFs) are prominent components of the lung tumor stroma and are known to foster tumor growth, invasion, and metastasis through extracellular matrix (ECM) and tumor stroma remodeling. The interactions of CAFs with cancer cells and other stromal components contribute significantly to the aggressive nature of lung cancer and pose challenges to conventional treatment approaches. Simultaneously, the ECM, which contains numerous proteins and other molecules surrounding cancer cells, serves as more than just a structural scaffold. In lung cancer, alterations in ECM composition and organization not only promote tumor cell proliferation and survival but also impact drug penetration, immune cell infiltration, and therapeutic resistance. Targeting the intricate interplay between CAFs and the dynamic ECM in lung cancer represents a crucial frontier in oncology research. This review aims to delve deeply into the pivotal roles of CAFs and the ECM in the tumorigenesis and progression of lung cancer. Then, the potential of utilizing adjuvants, phytochemicals, and nanoparticles to modulate the functions of CAFs and remodel the ECM in the lung tumor will be reviewed.
Collapse
Affiliation(s)
- Yuan Feng
- Doctoral student of Guangxi University of Chinese Medicine in grade 2022, Nanning, Guangxi 530200, China
| | - Ying Jiang
- Department of Neurology, Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China
| | - Lin Yang
- Master student of Guangxi University of Chinese Medicine in 2022, Nanning, Guangxi 530200, China
| | - Danni Lu
- Master student of Guangxi University of Chinese Medicine in 2022, Nanning, Guangxi 530200, China
| | - Ning Li
- Master student of Guangxi University of Chinese Medicine in 2023, Nanning, Guangxi 530200, China
| | - Qun Zhang
- Master student of Guangxi University of Chinese Medicine in 2023, Nanning, Guangxi 530200, China
| | - Haiyan Yang
- Master student of Guangxi University of Chinese Medicine in 2023, Nanning, Guangxi 530200, China
| | - Huiyuan Qin
- Master student of Guangxi University of Chinese Medicine in 2024, Nanning, Guangxi 530200, China
| | - Jiaxin Zhang
- Master student of Guangxi University of Chinese Medicine in 2024, Nanning, Guangxi 530200, China
| | - Xinyun Gou
- Master student of Guangxi University of Chinese Medicine in 2024, Nanning, Guangxi 530200, China
| | - Feng Jiang
- Science and Technology Department of Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, 530011, China.
| |
Collapse
|
2
|
Liu Z, Cao X, Ma Z, Xu L, Wang L, Li J, Xiao M, Jiang X. Enhanced Sampling Molecular Dynamics Simulations Reveal Transport Mechanism of Glycoconjugate Drugs through GLUT1. Int J Mol Sci 2024; 25:5486. [PMID: 38791523 PMCID: PMC11122603 DOI: 10.3390/ijms25105486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Glucose transporters GLUT1 belong to the major facilitator superfamily and are essential to human glucose uptake. The overexpression of GLUT1 in tumor cells designates it as a pivotal target for glycoconjugate anticancer drugs. However, the interaction mechanism of glycoconjugate drugs with GLUT1 remains largely unknown. Here, we employed all-atom molecular dynamics simulations, coupled to steered and umbrella sampling techniques, to examine the thermodynamics governing the transport of glucose and two glycoconjugate drugs (i.e., 6-D-glucose-conjugated methane sulfonate and 6-D-glucose chlorambucil) by GLUT1. We characterized the specific interactions between GLUT1 and substrates at different transport stages, including substrate recognition, transport, and releasing, and identified the key residues involved in these procedures. Importantly, our results described, for the first time, the free energy profiles of GLUT1-transporting glycoconjugate drugs, and demonstrated that H160 and W388 served as important gates to regulate their transport via GLUT1. These findings provide novel atomic-scale insights for understanding the transport mechanism of GLUT1, facilitating the discovery and rational design of GLUT1-targeted anticancer drugs.
Collapse
Affiliation(s)
- Zhuo Liu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Xueting Cao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Zhenyu Ma
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Limei Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jian Li
- Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Min Xiao
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Xukai Jiang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| |
Collapse
|
3
|
Bose P, Singh M, Gupta A, Kumar S, Ansari FJ, Pandey VK, Singh AS, Tiwari VK. Design, synthesis, and docking study of saccharin N-triazolyl glycoconjugates. Carbohydr Res 2024; 538:109101. [PMID: 38574410 DOI: 10.1016/j.carres.2024.109101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
To achieve better-repurposed motifs, saccharin has been merged with biocompatible sugar molecules via a 1,2,3-triazole linker, and ten novel 1,2,3-triazole-appended saccharin glycoconjugates were developed in good yield by utilizing modular CuAAC click as regioselective triazole forming tool. The docking study indicated that the resulting hybrid molecules have an overall substantial interaction with the CAXII macromolecule. Moreover, the galactose triazolyl saccharin analogue 3h has a binding energy of -8.5 kcal/mol with 5 H-bonds, and xylosyl 1,2,3-triazolyl saccharin analogue 3d has a binding energy of -8.2 kcal/mol with 6 H-bond interactions and have exhibited the highest binding interaction with the macromolecule system.
Collapse
Affiliation(s)
- Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Mala Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Abhishek Gupta
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sunil Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Faisal Jaah Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinay K Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anoop S Singh
- Chemistry Innovation Research Center, Jubilant Biosys Ltd, Greater Noida, 201310, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
4
|
Zaghloul EH, Abdel-Latif HH, Elsayis A, Hassan SWM. Production and characterization of novel marine black yeast's exopolysaccharide with potential antiradical and anticancer prospects. Microb Cell Fact 2024; 23:60. [PMID: 38388439 PMCID: PMC10882794 DOI: 10.1186/s12934-024-02332-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
The marine black yeasts are characterized by the production of many novel protective substances. These compounds increase their physiological adaptation to multi-extreme environmental stress. Hence, the exopolysaccharide (EPS) producing marine black yeast SAHE was isolated in this study. It was molecularly identified as Hortaea werneckii (identity 98.5%) through ITS1 and ITS4 gene sequencing analysis. The physicochemical properties of the novel SAHE-EPS were investigated through FTIR, GC-MS, TGA, ESM, and EDX analysis, revealing its heteropolysaccharide nature. SAHE-EPS was found to be thermostable and mainly consists of sucrose, maltose, cellobiose, lactose, and galactose. Furthermore, it exhibited an amorphous texture and irregular porous surface structure. SAHE-EPS showed significant antiradical activity, as demonstrated by the DPPH radical scavenging assay, and the IC50 was recorded to be 984.9 μg/mL. In addition, SAHE-EPS exhibited outstanding anticancer activity toward the A549 human lung cancer cell line (IC50 = 22.9 μg/mL). Conversely, it demonstrates minimal cytotoxicity toward the WI-38 normal lung cell line (IC50 = 203 μg/mL), which implies its safety. This study represents the initial attempt to isolate and characterize the chemical properties of an EPS produced by the marine black yeast H. werneckii as a promising antiradical and anticancer agent.
Collapse
Affiliation(s)
- Eman H Zaghloul
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
| | | | - Asmaa Elsayis
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Sahar W M Hassan
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| |
Collapse
|
5
|
Swami R, Vij S, Sharma S. Unlocking the power of sugar: carbohydrate ligands as key players in nanotherapeutic-assisted targeted cancer therapy. Nanomedicine (Lond) 2024; 19:431-453. [PMID: 38288611 DOI: 10.2217/nnm-2023-0276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024] Open
Abstract
Cancer cells need as much as 40-times more sugar than their normal cell counterparts. This sugar demand is attained by the excessive expression of inimitable transporters on the surface of cancer cells, driven by their voracious appetite for carbohydrates. Nanotechnological advances drive research utilizing ligand-directed therapeutics and diverse carbohydrate analogs. The precise delivery of these therapeutic cargos not only mitigates toxicity associated with chemotherapy but also reduces the grim toll of mortality and morbidity among patients. This in-depth review explores the potential of these ligands in advanced cancer treatment using nanoparticles. It offers a broader perspective beyond the usual ways we deliver drugs, potentially changing the way we fight cancer.
Collapse
Affiliation(s)
- Rajan Swami
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Sahil Vij
- Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar University, Mullana, Haryana, 133203, India
| | - Shubham Sharma
- Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar University, Mullana, Haryana, 133203, India
| |
Collapse
|
6
|
Ye W, Tang Q, Zhou T, Zhou C, Fan C, Wang X, Wang C, Zhang K, Liao G, Zhou W. Design, synthesis and biological evaluation of the positional isomers of the galactose conjugates able to target hepatocellular carcinoma cells via ASGPR-mediated cellular uptake and cytotoxicity. Eur J Med Chem 2024; 264:115988. [PMID: 38039790 DOI: 10.1016/j.ejmech.2023.115988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Galactose as a recognizing motif for asialoglycoprotein receptor (ASGPR) is a widely accepted vector to deliver cytotoxic agents in the therapy of hepatocellular carcinoma (HCC), however, the individual hydroxyl group of galactose (Gal) contributed to recognizing ASGPR is obscure and remains largely unanswered in the design of glycoconjugates. Herein, we designed and synthesized five positional isomers of Gal-anthocyanin Cy5.0 conjugates and three Gal-doxorubicin (Dox) isomers, respectively. The fluorescence intensity of Gal-Cy5.0 conjugates accumulated in cancer cells hinted the optimal modification sites of positions C2 and C6. Comparing to the cytotoxicity of other conjugates, C2-Gal-Dox (11) was the most potent. Moreover, Gal-Dox conjugates significantly the toxicity of Dox. A progressively lower internalization capacity and siRNA technology implied the cellular uptake and cytotoxicity directly related to the ASGPR expression level. Accordingly, position C2 of galactose may be the best substitution site via ASGPR mediation in the design of anti-HCC glycoconjugates.
Collapse
Affiliation(s)
- Wenchong Ye
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, E. 232, University Town, Waihuan Rd, Panyu, Guangzhou, 510006, Guangdong, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Qun Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Tiantian Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Cui Zhou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chuangchuang Fan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Guochao Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, E. 232, University Town, Waihuan Rd, Panyu, Guangzhou, 510006, Guangdong, China.
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
7
|
Bose P, Agrahari AK, Singh R, Singh M, Kumar S, Singh RK, Tiwari VK. Click inspired synthesis of piperazine-triazolyl sugar-conjugates as potent anti-Hela activity. Carbohydr Res 2023; 529:108846. [PMID: 37245419 DOI: 10.1016/j.carres.2023.108846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/06/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
To imbibe the aim of synthesizing water-soluble and biocompatible motif, a click-inspired piperazine glycoconjugate has been devised up. In this report, we present a focused approach to design and synthesis of versatile sugar-appended triazoles through 'Click Chemistry' along with their pharmacological studies on cyclin-dependent kinases (CDKs) and cell cytotoxicity on cancer cells using in silico and in vitro approaches, respectively. The study has inclusively recognized the galactose- and mannose-derived piperazine conjugates as the promising motifs. The findings suggested that the galactosyl bis-triazolyl piperazine analogue 10b is the most CDK interactive derivative and also possess significant anticancer activity.
Collapse
Affiliation(s)
- Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India; Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Rajan Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Mala Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Sunil Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Rakesh K Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
8
|
Holzer I, Desiatkina O, Anghel N, Johns SK, Boubaker G, Hemphill A, Furrer J, Păunescu E. Synthesis and Antiparasitic Activity of New Trithiolato-Bridged Dinuclear Ruthenium(II)-arene-carbohydrate Conjugates. Molecules 2023; 28:902. [PMID: 36677958 PMCID: PMC9865825 DOI: 10.3390/molecules28020902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Eight novel carbohydrate-tethered trithiolato dinuclear ruthenium(II)-arene complexes were synthesized using CuAAC ‘click’ (Cu(I)-catalyzed azide-alkyne cycloaddition) reactions, and there in vitro activity against transgenic T. gondii tachyzoites constitutively expressing β-galactosidase (T. gondii β-gal) and in non-infected human foreskin fibroblasts, HFF, was determined at 0.1 and 1 µM. When evaluated at 1 µM, seven diruthenium-carbohydrate conjugates strongly impaired parasite proliferation by >90%, while HFF viability was retained at 50% or more, and they were further subjected to the half-maximal inhibitory concentration (IC50) measurement on T. gondii β-gal. Results revealed that the biological activity of the hybrids was influenced both by the nature of the carbohydrate (glucose vs. galactose) appended on ruthenium complex and the type/length of the linker between the two units. 23 and 26, two galactose-based diruthenium conjugates, exhibited low IC50 values and reduced effect on HFF viability when applied at 2.5 µM (23: IC50 = 0.032 µM/HFF viability 92% and 26: IC50 = 0.153 µM/HFF viability 97%). Remarkably, compounds 23 and 26 performed significantly better than the corresponding carbohydrate non-modified diruthenium complexes, showing that this type of conjugates are a promising approach for obtaining new antiparasitic compounds with reduced toxicity.
Collapse
Affiliation(s)
- Isabelle Holzer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Oksana Desiatkina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Nicoleta Anghel
- Institute of Parasitology Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Serena K. Johns
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- School of Chemistry, Cardiff University, Park Place, Cardiff CF103AT, UK
| | - Ghalia Boubaker
- Institute of Parasitology Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Emilia Păunescu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
9
|
Sharma N, Kabeer SW, Singh IP, Tikoo K. Cisplatin conjugation with an exopolysaccharide extracted from Lactobacillus gasseri potentiates its efficacy and attenuates its toxicity. Int J Biol Macromol 2023; 225:227-240. [PMID: 36354077 DOI: 10.1016/j.ijbiomac.2022.10.256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022]
Abstract
The development of newer cisplatin analogs is constantly being investigated owing to its low solubility, poor pharmacokinetics, and dose-related toxicity. In order to address the limitations of current cisplatin therapy, the present study was undertaken. Cisplatin conjugation with an exopolysaccharide extracted from Lactobacillus gasseri (LG-EPS) showed remarkably enhanced and selective anticancer activity by targeting tumor cells overexpressing glucose transporter 1 (GLUT1). The EPS-cisplatin complex exhibited a 600-fold increase in aqueous solubility with a better pharmacokinetic profile (longer half-life) in comparison to cisplatin. Cell viability assay and western blotting demonstrated a strong correlation between the cytotoxicity profile and GLUT1 expressions in different cell lines. The concentration of DNA-bound platinum was also found to be significantly higher in EPS-cisplatin-treated cells. Quercetin, a competitive inhibitor of GLUTs, was shown to prevent this selective uptake of EPS-cisplatin complex. Surprisingly, EPS-cisplatin complex showed an exceptionally safer profile (4 times the maximum tolerated dose of cisplatin) in the acute toxicity study and was also more efficacious against the xenograft mice model. The study suggests that this green glycoconjugation can be an effective and safer strategy to broaden the therapeutic potential of anti-cancer drugs in general and cisplatin in particular.
Collapse
Affiliation(s)
- Nisha Sharma
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Shaheen Wasil Kabeer
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Inder Pal Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Kulbhushan Tikoo
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
10
|
Xu JQ, Fu YL, Zhang J, Zhang KY, Ma J, Tang JY, Zhang ZW, Zhou ZY. Targeting glycolysis in non-small cell lung cancer: Promises and challenges. Front Pharmacol 2022; 13:1037341. [PMID: 36532721 PMCID: PMC9748442 DOI: 10.3389/fphar.2022.1037341] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/04/2022] [Indexed: 08/17/2023] Open
Abstract
Metabolic disturbance, particularly of glucose metabolism, is a hallmark of tumors such as non-small cell lung cancer (NSCLC). Cancer cells tend to reprogram a majority of glucose metabolism reactions into glycolysis, even in oxygen-rich environments. Although glycolysis is not an efficient means of ATP production compared to oxidative phosphorylation, the inhibition of tumor glycolysis directly impedes cell survival and growth. This review focuses on research advances in glycolysis in NSCLC and systematically provides an overview of the key enzymes, biomarkers, non-coding RNAs, and signaling pathways that modulate the glycolysis process and, consequently, tumor growth and metastasis in NSCLC. Current medications, therapeutic approaches, and natural products that affect glycolysis in NSCLC are also summarized. We found that the identification of appropriate targets and biomarkers in glycolysis, specifically for NSCLC treatment, is still a challenge at present. However, LDHB, PDK1, MCT2, GLUT1, and PFKM might be promising targets in the treatment of NSCLC or its specific subtypes, and DPPA4, NQO1, GAPDH/MT-CO1, PGC-1α, OTUB2, ISLR, Barx2, OTUB2, and RFP180 might be prognostic predictors of NSCLC. In addition, natural products may serve as promising therapeutic approaches targeting multiple steps in glycolysis metabolism, since natural products always present multi-target properties. The development of metabolic intervention that targets glycolysis, alone or in combination with current therapy, is a potential therapeutic approach in NSCLC treatment. The aim of this review is to describe research patterns and interests concerning the metabolic treatment of NSCLC.
Collapse
Affiliation(s)
- Jia-Qi Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Li Fu
- Department of Oncology, Shenzhen (Fu Tian) Hospital, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Jing Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai-Yu Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ma
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Yi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi-Wei Zhang
- Department of Oncology, Shenzhen (Fu Tian) Hospital, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Zhong-Yan Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Glycoconjugation of Quinoline Derivatives Using the C-6 Position in Sugars as a Strategy for Improving the Selectivity and Cytotoxicity of Functionalized Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206918. [PMID: 36296513 PMCID: PMC9607644 DOI: 10.3390/molecules27206918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022]
Abstract
Based on the Warburg effect and the increased demand for glucose by tumor cells, a targeted drug delivery strategy was developed. A series of new glycoconjugates with increased ability to interact with GLUT transporters, responsible for the transport of sugars to cancer cells, were synthesized. Glycoconjugation was performed using the C-6 position in the sugar unit, as the least involved in the formation of hydrogen bonds with various aminoacids residues of the transporter. The carbohydrate moiety was connected with the 8-hydroxyquinoline scaffold via a 1,2,3-triazole linker. For the obtained compounds, several in vitro biological tests were performed using HCT-116 and MCF-7 cancer cells as well as NHDF-Neo healthy cells. The highest cytotoxicity of both cancer cell lines in the MTT test was noted for glycoconjugates in which the triazole-quinoline was attached through the triazole nitrogen atom to the d-glucose unit directly to the carbon at the C-6 position. These compounds were more selective than the analogous glycoconjugates formed by the C-1 anomeric position of d-glucose. Experiments with an EDG inhibitor have shown that GLUTs can be involved in the transport of glycoconjugates. The results of apoptosis and cell cycle analyses by flow cytometry confirmed that the new type of glycoconjugates shows pro-apoptotic properties, without significantly affecting changes in the distribution of the cell cycle. Moreover, glycoconjugates were able to decrease the clonogenic potential of cancer cells, inhibit the migration capacity of cells and intercalate with DNA.
Collapse
|
12
|
Zhang L, Liu S, Li Y, Liang M, Zhao H, Yang W. Monoglycocalix[4]arene-based nanoparticles for tumor selective drug delivery via GLUT1 recognition of hyperglycolytic cancers. Org Biomol Chem 2022; 20:4884-4887. [PMID: 35670433 DOI: 10.1039/d2ob00656a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a new strategy of tumor-specific glucose transporter (GLUT)-mediated selective drug delivery using amphiphilic fluorescent monoglycocalix[4]arene in docetaxel (DTX) encapsulated nanoparticles (NPs) that leads to significant improvement in cytotoxic activity against a panel of human cancer cells. The fluorescent tracer conjugation in the calixarene enables the self-probed tumor targeting analysis and makes the system potentially suitable for tumor diagnostic imaging.
Collapse
Affiliation(s)
- Lijuan Zhang
- Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Shengnan Liu
- Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Yang Li
- Department of Biology, Gudui BioPharma Technology Inc., 5 Lanyuan Road, Huayuan Industrial Park, Tianjin 300384, P. R. China
| | - Min Liang
- Central Institute of Pharmaceutical Research, CSPC Pharmaceutical Group, 226 Huanhe Road, Shijiazhuang, Hebei 050035, P. R. China
| | - Hongxia Zhao
- Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Wensheng Yang
- Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| |
Collapse
|
13
|
Liu S, Sun Z, Liang M, Song W, Zhang R, Shi Y, Cui Y, Gao Q. An Unrevealed Molecular Function of Corannulene Buckybowl Glycoconjugates in Selective Tumor Annihilation by Targeting the Cancer-Specific Warburg Effect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105315. [PMID: 35253390 PMCID: PMC8981914 DOI: 10.1002/advs.202105315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The biomedical application of corannulene π-bowls is historically limited by low solubility and bioavailability despite the potential in their unique electronic properties for new functional materials. Herein, the unexpected role and molecular mechanism of Corranulene π-bowls are uncovered in biomedical applications as an effective anticancer agent for Warburg effect mediated selective tumor targeting. The corannulene triazolyl monosaccharides Cor-sugars exhibit highly potent cytotoxicity against human cancer cells and effectively inhibit xenograft growth of hyperglycolytic tumors. Particularly, the galactose-conjugated Cor-gal exhibits superior in vivo anticancer efficacy in A549 tumor models with outstanding safety profile compared to doxorubicin. Moreover, the combined treatment of Cor-gal with immune checkpoint inhibitor results in an effective synergy in treating H460 human lung carcinoma. An uptake mechanism study reveals that Cor-sugars exploit tumor-specific glucose transporter glucose transporter 1 (GLUT1) for targeted cell delivery and intra-tumoral accumulation through the cancer-specific Warburg effect. Their significant anticancer activity is attributed to multiphasic DNA-binding and cell cycle alteration effects. This study uncovers new molecular properties of corannulene buckybowl and enabling their potential new applications in biomedical engineering.
Collapse
Affiliation(s)
- Shengnan Liu
- Institute of Molecular PlusFrontiers Science Center for Synthetic Biology (Ministry of Education of China)Tianjin Key Laboratory for Modern Drug Delivery and High‐EfficiencyTianjin University92 Weijin RoadNankai DistrictTianjin300072P. R. China
| | - Ziru Sun
- Institute of Molecular PlusFrontiers Science Center for Synthetic Biology (Ministry of Education of China)Tianjin Key Laboratory for Modern Drug Delivery and High‐EfficiencyTianjin University92 Weijin RoadNankai DistrictTianjin300072P. R. China
| | - Min Liang
- Institute of Molecular PlusFrontiers Science Center for Synthetic Biology (Ministry of Education of China)Tianjin Key Laboratory for Modern Drug Delivery and High‐EfficiencyTianjin University92 Weijin RoadNankai DistrictTianjin300072P. R. China
- Central Institute of Pharmaceutical ResearchCSPC Pharmaceutical Group226 Huanhe RoadShijiazhuangHebei050035P. R. China
| | - Weijie Song
- Institute of Molecular PlusFrontiers Science Center for Synthetic Biology (Ministry of Education of China)Tianjin Key Laboratory for Modern Drug Delivery and High‐EfficiencyTianjin University92 Weijin RoadNankai DistrictTianjin300072P. R. China
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerWest Huanhu RoadHexi DistrictTianjin300060P. R. China
| | - Ru Zhang
- Institute of Molecular PlusFrontiers Science Center for Synthetic Biology (Ministry of Education of China)Tianjin Key Laboratory for Modern Drug Delivery and High‐EfficiencyTianjin University92 Weijin RoadNankai DistrictTianjin300072P. R. China
- Department of BiologyGudui BioPharma Technology Inc.Huayuan Industrial Park5 Lanyuan RoadTianjin300384P. R. China
| | - Yunli Shi
- Institute of Molecular PlusFrontiers Science Center for Synthetic Biology (Ministry of Education of China)Tianjin Key Laboratory for Modern Drug Delivery and High‐EfficiencyTianjin University92 Weijin RoadNankai DistrictTianjin300072P. R. China
| | - Yujun Cui
- Institute of Molecular PlusFrontiers Science Center for Synthetic Biology (Ministry of Education of China)Tianjin Key Laboratory for Modern Drug Delivery and High‐EfficiencyTianjin University92 Weijin RoadNankai DistrictTianjin300072P. R. China
- Transplantation CenterTianjin First Central Hospital24 Fukang RoadNankai DistrictTianjin300192P. R. China
| | - Qingzhi Gao
- Institute of Molecular PlusFrontiers Science Center for Synthetic Biology (Ministry of Education of China)Tianjin Key Laboratory for Modern Drug Delivery and High‐EfficiencyTianjin University92 Weijin RoadNankai DistrictTianjin300072P. R. China
| |
Collapse
|
14
|
Moynihan E, Bassi G, Ruffini A, Panseri S, Montesi M, Velasco-Torrijos T, Montagner D. Click Pt(IV)-Carbohydrates Pro-Drugs for Treatment of Osteosarcoma. Front Chem 2021; 9:795997. [PMID: 34950638 PMCID: PMC8688915 DOI: 10.3389/fchem.2021.795997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
The selectivity vs. cancer cells has always been a major challenge for chemotherapeutic agents and in particular for cisplatin, one of the most important anticancer drugs for the treatment of several types of tumors. One strategy to overtake this challenge is to modify the coordination sphere of the metallic center with specific vectors whose receptors are overexpressed in the tumoral cell membrane, such as monosaccharides. In this paper, we report the synthesis of four novel glyco-modified Pt(IV) pro-drugs, based on cisplatin scaffold, and their biological activity against osteosarcoma (OS), a malignant tumor affecting in particular adolescents and young adults. The sugar moiety and the Pt scaffold are linked exploiting the Copper Azide Alkyne Cycloaddition (CUAAC) reaction, which has become the flagship of click chemistry due to its versatility and mild conditions. Cytotoxicity and drug uptake on three different OS cell lines as well as CSCs (Cancer Stem Cell) are described.
Collapse
Affiliation(s)
- Eoin Moynihan
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | - Giada Bassi
- Institute of Science and Technology for Ceramics-National Research Council, Faenza, Italy
| | - Andrea Ruffini
- Institute of Science and Technology for Ceramics-National Research Council, Faenza, Italy
| | - Silvia Panseri
- Institute of Science and Technology for Ceramics-National Research Council, Faenza, Italy
| | - Monica Montesi
- Institute of Science and Technology for Ceramics-National Research Council, Faenza, Italy
| | - Trinidad Velasco-Torrijos
- Department of Chemistry, Maynooth University, Maynooth, Ireland.,Kathleen Londsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Diego Montagner
- Department of Chemistry, Maynooth University, Maynooth, Ireland.,Kathleen Londsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| |
Collapse
|
15
|
Annunziata A, Liberti D, Bedini E, Cucciolito ME, Loreto D, Monti DM, Merlino A, Ruffo F. Square-Planar vs. Trigonal Bipyramidal Geometry in Pt(II) Complexes Containing Triazole-Based Glucose Ligands as Potential Anticancer Agents. Int J Mol Sci 2021; 22:ijms22168704. [PMID: 34445409 PMCID: PMC8395886 DOI: 10.3390/ijms22168704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
This article describes the synthesis, characterization, and biological activity of novel square-planar cationic platinum(II) complexes containing glucoconjugated triazole ligands and a comparison with the results obtained from the corresponding five-coordinate complexes bearing the same triazole ligands. Stability in solution, reactivity with DNA and small molecules of the new compounds were evaluated by NMR, fluorescence, and UV–vis absorption spectroscopy, together with their cytotoxic action against pairs of immortalized and tumorigenic cell lines. The results show that the square-planar species exhibit greater stability than the corresponding five-coordinate ones. Furthermore, although the square-planar complexes are less cytotoxic than the latter ones, they exhibit a certain selectivity. These results simultaneously demonstrate that overall stability is a fundamental prerequisite for preserving the performance of the agents and that coordinative saturation constitutes a point in favor of their biological action.
Collapse
|
16
|
Insulin-Like Growth Factor 1 (IGF-1) Signaling in Glucose Metabolism in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22126434. [PMID: 34208601 PMCID: PMC8234711 DOI: 10.3390/ijms22126434] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common aggressive carcinoma types worldwide, characterized by unfavorable curative effect and poor prognosis. Epidemiological data re-vealed that CRC risk is increased in patients with metabolic syndrome (MetS) and its serum components (e.g., hyperglycemia). High glycemic index diets, which chronically raise post-prandial blood glucose, may at least in part increase colon cancer risk via the insulin/insulin-like growth factor 1 (IGF-1) signaling pathway. However, the underlying mechanisms linking IGF-1 and MetS are still poorly understood. Hyperactivated glucose uptake and aerobic glycolysis (the Warburg effect) are considered as a one of six hallmarks of cancer, including CRC. However, the role of insulin/IGF-1 signaling during the acquisition of the Warburg metabolic phenotypes by CRC cells is still poorly understood. It most likely results from the interaction of multiple processes, directly or indirectly regulated by IGF-1, such as activation of PI3K/Akt/mTORC, and Raf/MAPK signaling pathways, activation of glucose transporters (e.g., GLUT1), activation of key glycolytic enzymes (e.g., LDHA, LDH5, HK II, and PFKFB3), aberrant expression of the oncogenes (e.g., MYC, and KRAS) and/or overexpression of signaling proteins (e.g., HIF-1, TGF-β1, PI3K, ERK, Akt, and mTOR). This review describes the role of IGF-1 in glucose metabolism in physiology and colorectal carcinogenesis, including the role of the insulin/IGF system in the Warburg effect. Furthermore, current therapeutic strategies aimed at repairing impaired glucose metabolism in CRC are indicated.
Collapse
|
17
|
Shchegravina ES, Sachkova AA, Usova SD, Nyuchev AV, Gracheva YA, Fedorov AY. Carbohydrate Systems in Targeted Drug Delivery: Expectation and Reality. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Li Y, Sun Z, Cui Y, Zhang H, Zhang S, Wang X, Liu S, Gao Q. Oxaliplatin derived monofunctional triazole-containing platinum(II) complex counteracts oxaliplatin-induced drug resistance in colorectal cancer. Bioorg Chem 2021; 107:104636. [PMID: 33465670 DOI: 10.1016/j.bioorg.2021.104636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 11/17/2022]
Abstract
Oxaliplatin-based chemotherapy is the current standard of care in adjuvant therapy for advanced colorectal cancer (CRC). But acquired resistance to oxaliplatin eventually occurs and becoming a major cause of treatment failure. Thus, there is an unmet need for developing new chemical entities (NCE) as new therapeutic candidates to target chemotherapy-resistant CRC. Novel Pt(II) complexes were designed and synthesized as cationic monofunctional oxaliplatin derivatives for DNA platination-mediated tumor targeting. The complex Ph-glu-Oxa sharing the same chelating ligand of diaminocyclohexane (DACH) with oxaliplatin but is equally potent in inhibiting the proliferation of HT29 colon cancer cells and its oxaliplatin-resistant phenotype of HT29/Oxa. The in vivo therapeutic potential of Ph-glu-Oxa was confirmed in oxaliplatin-resistant xenograft model demonstrating the reversibility of the drug resistance by the new complex and the efficacy was associated with the unimpaired high intracellular drug accumulation in HT29/Oxa. Guanosine-5'-monophosphate (5'-GMP) reactivity, double-strand plasmid DNA cleavage, DNA-intercalated ethidium bromide (EB) fluorescence quenching and atomic force microscopy (AFM)-mediated DNA denaturing studies revealed that Ph-glu-Oxa was intrinsically active as DNA-targeting agent. The diminished susceptibility of the complex to glutathione (GSH)-mediated detoxification, which confers high intracellular accumulation of the drug molecule may play a key role in maintaining cytotoxicity and counteracting oxaliplatin drug resistance.
Collapse
Affiliation(s)
- Yaru Li
- School of Pharmaceutical Science and Technology and Institute of Molecular Plus, Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Ziru Sun
- School of Pharmaceutical Science and Technology and Institute of Molecular Plus, Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Yujun Cui
- School of Pharmaceutical Science and Technology and Institute of Molecular Plus, Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Transplantation Center, Tianjin First Central Hospital, 24 Fukang Road, Nankai District, Tianjin 300192, PR China
| | - Heming Zhang
- School of Pharmaceutical Science and Technology and Institute of Molecular Plus, Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Central Institute of Pharmaceutical Research, CSPC Pharmaceutical Group, 226 Huanhe Road, Shijiazhuang, Hebei 050035, PR China
| | - Shunjie Zhang
- School of Pharmaceutical Science and Technology and Institute of Molecular Plus, Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Xinyu Wang
- School of Pharmaceutical Science and Technology and Institute of Molecular Plus, Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Shengnan Liu
- School of Pharmaceutical Science and Technology and Institute of Molecular Plus, Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China.
| | - Qingzhi Gao
- School of Pharmaceutical Science and Technology and Institute of Molecular Plus, Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China; Department of Biology, Gudui BioPharma Technology Inc, 5 Lanyuan Road, Huayuan Industrial Park, Tianjin 300384, PR China.
| |
Collapse
|
19
|
Sagini MN, Hotz-Wagenblatt A, Berger MR. A subgroup of lactosyl-Sepharose binding proteins requires calcium for affinity and galactose for anti-proliferation. Chem Biol Interact 2020; 334:109354. [PMID: 33309620 DOI: 10.1016/j.cbi.2020.109354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022]
Abstract
Lactosyl-Sepharose binding proteins (LSBPs) were recently described in human pancreatic ductal adenocarcinoma (PDAC) Suit2-007 cells regarding their lectin-like properties and role in metastasis. This study further investigated how calcium and galactose influence the binding of LSBPs to the lactosyl resin as well as their anti-proliferative effect in Suit2-007 cells. Altered binding of LSBPs to the lactosyl resin was evaluated by affinity chromatography and mass spectrometry. Calcium binding EF-hand proteins were aligned and identified with a motif derived from the Uniprot protein database. The antiproliferative effects of LSBPs and monosaccharides were determined by MTT assay. In addition, LSBPs and galactose effects were investigated by chip array and tumor take in nude rats. LSBPs reduced Suit2-007 cells' proliferation with an IC50 of 125 μg/mL. Coincubation of LSBPs with EGTA decreased the number of LSBPs binding to the lactosyl resin by ~50%. Ca2+ -sensitive LSBPs included subgroups of galactose-sensitive (10%) and EF-hand calcium binding motifs containing (2.5%) proteins. In vitro, the combination of LSBPs with monosaccharides including galactose synergistically decreased cell proliferation compared to single agents (p < 0.05). In addition, LSBPs in combination with galactose prevented the tumor growth of Suit2-007 cells in nude rats, as opposed to single treatments. At mRNA level, the combination treatment modulated 5% of Ca2+ -sensitive LSBPs and downregulated 216 genes, 18% of which were up-regulated during PDAC progression. This study highlights the importance of calcium and galactose in modulating the affinity and anti-proliferative activity of LSBPs and their potential application as therapeutic agents for metastatic PDAC.
Collapse
Affiliation(s)
- Micah N Sagini
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| | - Agnes Hotz-Wagenblatt
- Genomics and Proteomics Core Facility, Bioinformatics-Husar Unit, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
20
|
Fu J, Yang J, Seeberger PH, Yin J. Glycoconjugates for glucose transporter-mediated cancer-specific targeting and treatment. Carbohydr Res 2020; 498:108195. [PMID: 33220603 DOI: 10.1016/j.carres.2020.108195] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/29/2022]
Abstract
First observed in 1920s, the Warburg effects have inspired scientists to harness the unique glucose metabolism of cancer cells for targeted therapy for a century. Carbohydrate-drug conjugates are explicitly designed for selective uptake by cancer cells overexpressing glucose transporters. We summarize the progress in developing glycoconjugates for cancer-specific targeting and treatment over the past decade (2010-2020) and point to some future directions in this field.
Collapse
Affiliation(s)
- Junjie Fu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Jiaxin Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Peter H Seeberger
- Biomolecular Systems Department, Max Planck Institute of Colloids and Interfaces, Potsdam, 14476, Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
21
|
Bononi G, Iacopini D, Cicio G, Di Pietro S, Granchi C, Di Bussolo V, Minutolo F. Glycoconjugated Metal Complexes as Cancer Diagnostic and Therapeutic Agents. ChemMedChem 2020; 16:30-64. [PMID: 32735702 DOI: 10.1002/cmdc.202000456] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Indexed: 12/15/2022]
Abstract
The possibility of selectively delivering metal complexes to a defined cohort of cells on the basis of their metabolic features is a highly challenging goal, which may be extremely useful for a series of purposes, including diagnosis and therapy of pathological states, such as cancer. Tumor cells display augmented requests for carbohydrates and, in particular, for glucose in order to sustain their high proliferation rate, which causes an increased glycolytic process (Warburg effect). Since several metal complexes display diagnostic and/or therapeutic properties, their conjugation to carbohydrate portions often induce their preferential accumulation in cancer cells, similarly to what is observed with fluorodeoxyglucose (FDG). In this review we have considered the latest developments of glycoconjugates containing metal complexes in their structures. These compounds are classified as diagnostic or therapeutic agents and are further systematically discussed on the basis of the metal atom they contain. Several diagnostic techniques are possible with these probes, since, depending on the metal species included in their structures, they may be employed in nuclear medicine (PET, SPECT), magnetic resonance imaging, luminescence and phosphorescence. At the same time, the lack of selective cytotoxicity displayed by several metal-based chemotherapeutic agents, may also be solved by the conjugation of these agents to carbohydrate portions. Overall, data so far available reveal the great potential of this chemical class in the early detection and in the cure of severe neoplastic diseases, which still needs to be fully explored in the clinic.
Collapse
Affiliation(s)
- Giulia Bononi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 33, 56126, Pisa, Italy
| | - Dalila Iacopini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Gaspare Cicio
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 33, 56126, Pisa, Italy.,Current address: Menarini Ricerche S.p.A. -, Laboratori di Pisa, Via Livornese 897, 56122, Pisa, Italy
| | - Sebastiano Di Pietro
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 33, 56126, Pisa, Italy
| | - Carlotta Granchi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 33, 56126, Pisa, Italy
| | - Valeria Di Bussolo
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Filippo Minutolo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 33, 56126, Pisa, Italy
| |
Collapse
|
22
|
Zhang C, Chen Z, Li W, Liu X, Tang S, Jiang L, Li M, Peng H, Lian M. Influences of different sugar ligands on targeted delivery of liposomes. J Drug Target 2020; 28:789-801. [PMID: 32242754 DOI: 10.1080/1061186x.2020.1744156] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ligands are an important part of targeted drug delivery systems. Optimised lignads not only improve the target efficiency, but also enhance therapeutical effect of drugs. In our research, five sugar molecules (Mannose, Galactose, Glucose, Malt disaccharide, and Maltotriose) conjugated PEG600-DSPE were synthesised, of which polysaccharides were first discovered by us as sugar ligands to modify liposomes, which interacts with over expressive GLUT on cancer cells. DiO was encapsulated as fluorescent probe to evaluate their cellular uptake abilities of targeting C6 glioma cells, and the distribution in different visceral organs of rats. The results demonstrated that Malt disaccharide and Glucose-PEG600-DSPE had the strong efficiency of cellular uptake by C6 glioma cells. The distribution and accumulation of liposomes showed that different sugars modified liposomes could target different visceral organs in rats. It has provided a novel idea for ligand selectivity and optimisation of nanocarriers for tumour targeted therapy.
Collapse
Affiliation(s)
- Changmei Zhang
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Harbin, China
| | - Zhong Chen
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Harbin, China
| | - Wenhua Li
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Harbin, China
| | - Xiaoying Liu
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Harbin, China
| | - Shukun Tang
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Harbin, China
| | - Lei Jiang
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Harbin, China
| | - Minghui Li
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Harbin, China
| | - Haisheng Peng
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Harbin, China
| | - Mingming Lian
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Harbin, China
| |
Collapse
|
23
|
Kuzmina NS, Otvagin VF, Krylova LV, Nyuchev AV, Romanenko YV, Koifman OI, Balalaeva IV, Fedorov AY. Synthesis and antiproliferative activity of new chlorin e6 glycoconjugates. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Dallavalle S, Dobričić V, Lazzarato L, Gazzano E, Machuqueiro M, Pajeva I, Tsakovska I, Zidar N, Fruttero R. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist Updat 2020; 50:100682. [PMID: 32087558 DOI: 10.1016/j.drup.2020.100682] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Multidrug resistance (MDR) is the dominant cause of the failure of cancer chemotherapy. The design of antitumor drugs that are able to evade MDR is rapidly evolving, showing that this area of biomedical research attracts great interest in the scientific community. The current review explores promising recent approaches that have been developed with the aim of circumventing or overcoming MDR. Encouraging results have been obtained in the investigation of the MDR-modulating properties of various classes of natural compounds and their analogues. Inhibition of P-gp or downregulation of its expression have proven to be the main mechanisms by which MDR can be surmounted. The use of hybrid molecules that are able to simultaneously interact with two or more cancer cell targets is currently being explored as a means to circumvent drug resistance. This strategy is based on the design of hybrid compounds that are obtained either by merging the structural features of separate drugs, or by conjugating two drugs or pharmacophores via cleavable/non-cleavable linkers. The approach is highly promising due to the pharmacokinetic and pharmacodynamic advantages that can be achieved over the independent administration of the two individual components. However, it should be stressed that the task of obtaining successful multivalent drugs is a very challenging one. The conjugation of anticancer agents with nitric oxide (NO) donors has recently been developed, creating a particular class of hybrid that can combat tumor drug resistance. Appropriate NO donors have been shown to reverse drug resistance via nitration of ABC transporters and by interfering with a number of metabolic enzymes and signaling pathways. In fact, hybrid compounds that are produced by covalently attaching NO-donors and antitumor drugs have been shown to elicit a synergistic cytotoxic effect in a variety of drug resistant cancer cell lines. Another strategy to circumvent MDR is based on nanocarrier-mediated transport and the controlled release of chemotherapeutic drugs and P-gp inhibitors. Their pharmacokinetics are governed by the nanoparticle or polymer carrier and make use of the enhanced permeation and retention (EPR) effect, which can increase selective delivery to cancer cells. These systems are usually internalized by cancer cells via endocytosis and accumulate in endosomes and lysosomes, thus preventing rapid efflux. Other modalities to combat MDR are described in this review, including the pharmaco-modulation of acridine, which is a well-known scaffold in the development of bioactive compounds, the use of natural compounds as means to reverse MDR, and the conjugation of anticancer drugs with carriers that target specific tumor-cell components. Finally, the outstanding potential of in silico structure-based methods as a means to evaluate the ability of antitumor drugs to interact with drug transporters is also highlighted in this review. Structure-based design methods, which utilize 3D structural data of proteins and their complexes with ligands, are the most effective of the in silico methods available, as they provide a prediction regarding the interaction between transport proteins and their substrates and inhibitors. The recently resolved X-ray structure of human P-gp can help predict the interaction sites of designed compounds, providing insight into their binding mode and directing possible rational modifications to prevent them from becoming P-gp drug substrates. In summary, although major efforts were invested in the search for new tools to combat drug resistant tumors, they all require further implementation and methodological development. Further investigation and progress in the abovementioned strategies will provide significant advances in the rational combat against cancer MDR.
Collapse
Affiliation(s)
- Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Vladimir Dobričić
- Department of Pharmaceutical Chemistry, University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - Loretta Lazzarato
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Elena Gazzano
- Department of Oncology, Università degli Studi di Torino, Via Santena 5/bis, 10126 Turin, Italy
| | - Miguel Machuqueiro
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, C8 Building, Campo Grande, 1749-016, Lisbon, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Ilza Pajeva
- QSAR and Molecular Modelling Department, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 105, 1113 Sofia, Bulgaria
| | - Ivanka Tsakovska
- QSAR and Molecular Modelling Department, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 105, 1113 Sofia, Bulgaria
| | - Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Roberta Fruttero
- Department of Drug Science and Technology, Università degli Studi di Torino, Via Pietro Giuria 9, 10125 Turin, Italy.
| |
Collapse
|
25
|
Abolhasani A, Biria D, Abolhasani H, Zarrabi A, Komeili T. Investigation of the Role of Glucose Decorated Chitosan and PLGA Nanoparticles as Blocking Agents to Glucose Transporters of Tumor Cells. Int J Nanomedicine 2019; 14:9535-9546. [PMID: 31824149 PMCID: PMC6900274 DOI: 10.2147/ijn.s228652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/19/2019] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Glucose decorated PLGA and chitosan nanoparticles (GPNPs and GCNPs) have been developed to examine the possibility of preventing the facilitated glucose transport to the cells through blocking the glucose transporters (Gluts) overexpressed by tumor cells. METHODS The MTT assay was used to assess the cytotoxicity towards human colon tumor (HT-29) cells in 72 hrs. Fluorescence microscopy was employed to confirm the attachment of GPNPs to the cells. Moreover, the GPNPs effects on the apoptotic rate of HT-29 cells were analyzed. Finally, the expression levels of GLUT-1 and GLUT-4 by real-time polymerase chain reaction (RT-PCR) were assayed to investigate the response of HT-29 cells to blocking their Gluts by GPNPs. RESULTS The stability studies showed that the synthesized complexes were mostly stable (more than 80%) at various temperatures (4 to 40ºC) and pH (5.4 to 7.4) conditions. Results indicated that the survival rate of the cells was decreased to 43% and 46% after treatment with GCNPs and GPNPs, respectively. Also, the apoptosis assay results showed that the percentage of viable cells reduced to 47% after GPNPs treatment. These observations were justified by the specific interactions between the glucose terminals and the cells Gluts which resulted in blocking the entries of nutrients to the cells. It was revealed that the GLUT-1 mRNA expression after the first 24 h of treatment by GPNPs was upregulated to more than 145%, while the direction was reversed after 72 h (expression less than 45%), which coincided with the cells death. In the first 24 h, the glucose deprivation stimulated the expression of Glut-1 while the apoptotic enzymes expression was dominant at the end of 72 h treatment time. CONCLUSION Finally, it can be concluded that the glucose-nanoparticle complexes could be considered as promising agents in cancer therapy.
Collapse
Affiliation(s)
- Ahmad Abolhasani
- Department of Biotechnology, University of Isfahan, Isfahan, Iran
| | - Davoud Biria
- Department of Biotechnology, University of Isfahan, Isfahan, Iran
| | - Hoda Abolhasani
- Department of Physiology and Pharmacology, Qom University of Medical Sciences, Qom, Iran
| | - Ali Zarrabi
- Department of Biotechnology, University of Isfahan, Isfahan, Iran
| | - Tahereh Komeili
- Department of Physiology and Pharmacology, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
26
|
Abstract
Sugar ligand molecules, such as mannose, galactose and glucose, can bind to drug-delivery systems, making them targeted. These glycosylation ligands have the advantages of nontoxicity, no immunogenicity, good biocompatibility and biodegradation. They can be widely used in glycosylation-modified drug-delivery systems. Herein, the targeting mechanisms, synthesis methods and targeting characteristics of glycosylation-modified drug-delivery systems were reviewed.
Collapse
|
27
|
Chen F, Huang G. Application of glycosylation in targeted drug delivery. Eur J Med Chem 2019; 182:111612. [DOI: 10.1016/j.ejmech.2019.111612] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/26/2019] [Accepted: 08/09/2019] [Indexed: 01/10/2023]
|
28
|
Pettenuzzo N, Brustolin L, Coltri E, Gambalunga A, Chiara F, Trevisan A, Biondi B, Nardon C, Fregona D. Cu II and Au III Complexes with Glycoconjugated Dithiocarbamato Ligands for Potential Applications in Targeted Chemotherapy. ChemMedChem 2019; 14:1162-1172. [PMID: 31091012 DOI: 10.1002/cmdc.201900226] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/29/2019] [Indexed: 11/07/2022]
Abstract
This work is focused on the synthesis, characterization, and preliminary biological evaluation of bio-conjugated AuIII and CuII complexes with the aim of overcoming the well-known side effects of chemotherapy by improving the selective accumulation of an anticancer metal payload in malignant cells. For this purpose, carbohydrates were chosen as targeting agents, exploiting the Warburg effect that accounts for the overexpression of glucose-transporter proteins (in particular GLUTs) in the phospholipid bilayer of most neoplastic cells. We linked the dithiocarbamato moiety to the C1 position of three different monosaccharides: d-glucose, d-galactose, and d-mannose. Altogether, six complexes with a 1:2 metal-to-ligand stoichiometry were synthesized and in vitro tested as anticancer agents. One of them showed high cytotoxic activity toward the HCT116 colorectal human carcinoma cell line, paving the way to future in vivo studies aimed at evaluating the role of carbohydrates in the selective delivery of whole molecules into cancerous cells.
Collapse
Affiliation(s)
- Nicolò Pettenuzzo
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy.,Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Leonardo Brustolin
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy.,Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Elisa Coltri
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Alberto Gambalunga
- Department of Cardio-Thoraco-Vascular Sciences and Public Health (DCTV), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Federica Chiara
- Department of Cardio-Thoraco-Vascular Sciences and Public Health (DCTV), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Andrea Trevisan
- Department of Cardio-Thoraco-Vascular Sciences and Public Health (DCTV), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Via Marzolo 1, 35131, Padova, Italy
| | - Chiara Nardon
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Dolores Fregona
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
29
|
Wang L, Wang Y, Li Q, Tian K, Xu L, Liu G, Guo C. Exopolysaccharide, Isolated From a Novel Strain Bifidobacterium breve lw01 Possess an Anticancer Effect on Head and Neck Cancer - Genetic and Biochemical Evidences. Front Microbiol 2019; 10:1044. [PMID: 31143171 PMCID: PMC6520658 DOI: 10.3389/fmicb.2019.01044] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/25/2019] [Indexed: 12/31/2022] Open
Abstract
Probiotic bacteria exopolysaccharides (EPS) have been recognized as molecules that regulate immune development and have anti-inflammation and anticancer effects. Yet, these bioactivities are of interspecies diversity; thus, examining the gene clusters of EPS and biosynthesis pathways are essential for selecting the better application of specific EPS. In this study, we isolated a new Bifidobacterium strain, named B. breve lw01. A complete genome of B. breve lw01 was sequenced revealing a circular 2,313,172 bp chromosome. Furthermore, a deep excavation of genome sequence from different database based on the comparison-selected results was performed to explore the gene cluster responsible for EPS synthesis. We found that B. breve lw01 harbors a new EPS-encoding cluster with 14 predicted genes, which could be divided into three groups according to the biosynthesis pathway hypothesis. Using tertiary purification, high purity EPS were obtained. EPS is composed of rhamnose (Rha), arabinose (Ara), galactose (Gal), glucose (Glc), and mannose (Man) in a molar ratio of 0.35:0.44:1.38:0.67:1.65. With reference to its bioactivity, it showed to possess anticancer activity against Head and Neck Squamous Cell Carcinoma cell line by regulating cell cycle arrest and cell apoptosis promotion. To sum up, this study examined the biosynthesis and bioactivity of EPS using a new isolated B. breve strain, which could be used to clarify its further application in functional food or drug industry.
Collapse
Affiliation(s)
- Lin Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yifei Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Qingxiang Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Kaiyue Tian
- Department of Oral and Maxillofacial Plastic and Trauma Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Le Xu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Guorong Liu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Chuanbin Guo
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
30
|
Wang H, Yang X, Zhao C, Wang PG, Wang X. Glucose-conjugated platinum(IV) complexes as tumor-targeting agents: design, synthesis and biological evaluation. Bioorg Med Chem 2019; 27:1639-1645. [PMID: 30852077 DOI: 10.1016/j.bmc.2019.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 02/04/2023]
Abstract
A new series of glucose-conjugated Pt(IV) complexes that target tumor-specific glucose transporters (GLUTs) was designed, synthesized, and evaluated for their anticancer activities. All six compounds, namely, A1-A6, exhibited increased cytotoxicity that were almost six fold higher than that of oxaliplatin to MCF-7 cells. These Pt(IV) complexes can be reduced to release Pt(II) complexes and cause the death of tumor cells. Simultaneously, the glycosylated Pt(IV) complexes (30.21-91.33 μM) showed lower cytotoxicity that normal LO2 cells compared with cisplatin (5.25 μM) and oxaliplatin (8.34 μM). The intervention of phlorizin as a GLUTs inhibitor increased the IC50 value of the glycosylated Pt(IV) complexes, thereby indicating the potential GLUT transportability. The introduction of glucose moiety to Pt(IV) complexes can effectively enhance the Pt cellular uptake and DNA platination. Results suggested glucose-conjugated Pt(IV) complexes had potential for further study as new anticancer agents.
Collapse
Affiliation(s)
- Haifeng Wang
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, PR China
| | - Xiande Yang
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, PR China
| | - Caili Zhao
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, PR China
| | - Peng George Wang
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, PR China
| | - Xin Wang
- College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
31
|
Dal Pozzo DM, Azevedo Dos Santos JA, Júnior ES, Santos RF, Feiden A, Melegari de Souza SN, Burgardt I. Free fatty acids esterification catalyzed by acid Faujasite type zeolite. RSC Adv 2019; 9:4900-4907. [PMID: 35514630 PMCID: PMC9060674 DOI: 10.1039/c8ra10248a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/23/2019] [Indexed: 11/21/2022] Open
Abstract
The catalytic activity of the protonated form of H-Y(80) zeolite (Faujasite with high Si/Al ratio) was evaluated as an acid catalyst in the esterification step pre-treatment of FFA by means of the esterification reaction of oleic acid with methanol in soybean oil. The zeolite structure was characterized by XRD and FTIR. Textural characterization was carried out by N2 physisorption. The thermal stability was evaluated by TG-DTA and the acidity measured by NH3-TPD and Pyridine-FTIR. The limitations of the use of this zeolite in a pre-treatment for biodiesel production was investigated through oleic acid esterification in soybean oil, as a model reaction, performed with different temperatures, catalyst amounts and molar ratios. The results showed that the amount of remaining FFA decreased to values well below the initial amount. Under the optimal reactional conditions, conversions to methyl esters above 95% were achieved. Results support that such reactions can be performed under H-Y(80) zeolite catalysis and can be applied in a pre-treatment esterification of feedstocks with high contents of FFA. Catalyst reuse is feasible due to its easy separation from reaction products allowing new reaction cycles, as well as the application of the H-Y(80) zeolite in biodiesel production.
Collapse
Affiliation(s)
- Daniel Marcos Dal Pozzo
- Federal Technological University of Parana (UTFPR) Avenida Brasil 4232 85884-000 Medianeira Brazil
| | | | - Edward Seabra Júnior
- Federal Technological University of Parana (UTFPR) Avenida Brasil 4232 85884-000 Medianeira Brazil
| | - Reginaldo Ferreira Santos
- Engineering of Energy in Agriculture, State University of West Parana, Rua Universitária 2069 85819-110 Cascavel Brazil
| | - Armin Feiden
- Engineering of Energy in Agriculture, State University of West Parana, Rua Universitária 2069 85819-110 Cascavel Brazil
| | | | - Ismael Burgardt
- Federal Technological University of Parana (UTFPR) Avenida Brasil 4232 85884-000 Medianeira Brazil
| |
Collapse
|
32
|
Kenny RG, Marmion CJ. Toward Multi-Targeted Platinum and Ruthenium Drugs-A New Paradigm in Cancer Drug Treatment Regimens? Chem Rev 2019; 119:1058-1137. [PMID: 30640441 DOI: 10.1021/acs.chemrev.8b00271] [Citation(s) in RCA: 449] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While medicinal inorganic chemistry has been practised for over 5000 years, it was not until the late 1800s when Alfred Werner published his ground-breaking research on coordination chemistry that we began to truly understand the nature of the coordination bond and the structures and stereochemistries of metal complexes. We can now readily manipulate and fine-tune their properties. This had led to a multitude of complexes with wide-ranging biomedical applications. This review will focus on the use and potential of metal complexes as important therapeutic agents for the treatment of cancer. With major advances in technologies and a deeper understanding of the human genome, we are now in a strong position to more fully understand carcinogenesis at a molecular level. We can now also rationally design and develop drug molecules that can either selectively enhance or disrupt key biological processes and, in doing so, optimize their therapeutic potential. This has heralded a new era in drug design in which we are moving from a single- toward a multitargeted approach. This approach lies at the very heart of medicinal inorganic chemistry. In this review, we have endeavored to showcase how a "multitargeted" approach to drug design has led to new families of metallodrugs which may not only reduce systemic toxicities associated with modern day chemotherapeutics but also address resistance issues that are plaguing many chemotherapeutic regimens. We have focused our attention on metallodrugs incorporating platinum and ruthenium ions given that complexes containing these metal ions are already in clinical use or have advanced to clinical trials as anticancer agents. The "multitargeted" complexes described herein not only target DNA but also contain either vectors to enable them to target cancer cells selectively and/or moieties that target enzymes, peptides, and intracellular proteins. Multitargeted complexes which have been designed to target the mitochondria or complexes inspired by natural product activity are also described. A summary of advances in this field over the past decade or so will be provided.
Collapse
Affiliation(s)
- Reece G Kenny
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| | - Celine J Marmion
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| |
Collapse
|
33
|
Annunziata A, Cucciolito ME, Esposito R, Imbimbo P, Petruk G, Ferraro G, Pinto V, Tuzi A, Monti DM, Merlino A, Ruffo F. A highly efficient and selective antitumor agent based on a glucoconjugated carbene platinum(ii) complex. Dalton Trans 2019; 48:7794-7800. [DOI: 10.1039/c9dt01614g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A Pt(ii) complex with a glucosylated carbene shows very high in vitro cytotoxicity and selectivity toward malignant cells.
Collapse
|
34
|
Qin QP, Wang SL, Tan MX, Luo DM, Wang ZF, Wei QM, Wu XY, Zou BQ, Liu YC. 3-(1H-benzoimidazol-2-yl)-chromen-2-ylideneamine platinum(II) and ruthenium(II) complexes exert their high in vitro antitumor activity by inducing S-phase arrest and disrupting mitochondrial functions in SK-OV-3/DDP tumor cells. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Song XQ, Liu YH, Shao J, Zhang ZL, Xie CZ, Qiao X, Bao WG, Xu JY. Rapid induction of apoptosis in tumor cells treated with a new platinum(II) complex based on amino-thiazolidinone. Eur J Med Chem 2018; 157:188-197. [DOI: 10.1016/j.ejmech.2018.07.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/18/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
|
36
|
Ma P, Sun Y, Chen J, Li H, Zhu H, Gao X, Bi X, Zhang Y. Enhanced anti-hepatocarcinoma efficacy by GLUT1 targeting and cellular microenvironment-responsive PAMAM-camptothecin conjugate. Drug Deliv 2018; 25:153-165. [PMID: 29282992 PMCID: PMC6058575 DOI: 10.1080/10717544.2017.1419511] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The efficient targeting of drugs to tumor cell and subsequent rapid drug release remain primary challenges in the development of nanomedicines for cancer therapy. Here, we constructed a glucose transporter 1 (GLUT1)-targeting and tumor cell microenvironment-sensitive drug release Glucose–PEG–PAMAM-s-s–Camptothecin-Cy7 (GPCC) conjugate to tackle the dilemma. The conjugate was characterized by a small particle size, spherical shape, and glutathione (GSH)-sensitive drug release. In vitro tumor targeting was explored in monolayer (2D) and multilayer tumor spheroid (3D) HepG2 cancer cell models (GLUT1+). The cellular uptake of GPCC was higher than that in the control groups and that in normal L02 cells (GLUT1−), likely due to the conjugated glucose moiety. Moreover, the GPCC conjugate exhibited stronger cytotoxicity, higher S arrest and enhanced apoptosis and necrosis rate in HepG2 cells than control groups but not L02 cells. However, the cytotoxicity of GPCC was lower than that of free CPT, which could be explained by the slower release of CPT from the GPCC compared with free CPT. Additional in vivo tumor targeting experiments demonstrated the superior tumor-targeting ability of the GPCC conjugate, which significantly accumulated in tumor meanwhile minimize in normal tissues compared with control groups. The GPCC conjugate showed better pharmacokinetic properties, enabling a prolonged circulation time and increased camptothecin area under the curve (AUC). These features contributed to better therapeutic efficacy and lower toxicity in H22 hepatocarcinoma tumor-bearing mice. The GLUT1-targeting, GSH-sensitive GPCC conjugate provides an efficient, safe and economic approach for tumor cell targeted drug delivery.
Collapse
Affiliation(s)
- Pengkai Ma
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Yi Sun
- b Institute of Pharmacology & Toxicology , Academy of Military Medical Sciences , Beijing , China
| | - Jianhua Chen
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Hongpin Li
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Hongyu Zhu
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Xing Gao
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Xinning Bi
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Yujie Zhang
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| |
Collapse
|
37
|
Ma P, Chen J, Bi X, Li Z, Gao X, Li H, Zhu H, Huang Y, Qi J, Zhang Y. Overcoming Multidrug Resistance through the GLUT1-Mediated and Enzyme-Triggered Mitochondrial Targeting Conjugate with Redox-Sensitive Paclitaxel Release. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12351-12363. [PMID: 29569435 DOI: 10.1021/acsami.7b18437] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multidrug resistance (MDR) is thought to be the major obstacle leading to the failure of paclitaxel (PTX) chemotherapy. To solve this problem, a glucose transporter-mediated and matrix metalloproteinase 2 (MMP2)-triggered mitochondrion-targeting conjugate [glucose-polyethylene glycol (PEG)-peptide-triphenylphosponium-polyamidoamine (PAMAM)-PTX] composed of a PAMAM dendrimer and enzymatic detachable glucose-PEG was constructed for mitochondrial delivery of PTX. The conjugate was characterized by a 30 nm sphere particle, MMP2-sensitive PEG outer layer detachment from PAMAM, and glutathione (GSH)-sensitive PTX release. It showed higher cellular uptake both in glucose transporter 1 (GLUT1) overexpressing MCF-7/MDR monolayer cell (2D) and multicellular tumor spheroids (3D). The subcellular location study showed that it could specifically accumulate in the mitochondria. Moreover, it exhibited higher cytotoxicity against MCF-7/MDR cells, which significantly reverse the MDR of MCF-7/MDR cells. The MDR reverse might be caused by reducing the ATP content through destroying the mitochondrial membrane as well as by down-regulating P-gp expression. In vivo imaging and tissue distribution indicated more conjugate accumulated in the tumor of the tumor-bearing mice model. Consequently, the conjugate showed better tumor inhibition rate and lower body weight loss, which demonstrated that it possessed high efficiency and low toxicity. This study provides glucose-mediated GLUT targeting, MMP2-responsive PEG detachment, triphenylphosponium-mediated mitochondria targeting, and a GSH-sensitive intracellular drug release conjugate that has the potential to be exploited for overcoming MDR of PTX.
Collapse
Affiliation(s)
- Pengkai Ma
- School of Chinese Materia Medica , Beijing University of Chinese Medicine , Yangguang South Street , Beijing 102488 , China
| | - Jianhua Chen
- School of Chinese Materia Medica , Beijing University of Chinese Medicine , Yangguang South Street , Beijing 102488 , China
| | - Xinning Bi
- School of Chinese Materia Medica , Beijing University of Chinese Medicine , Yangguang South Street , Beijing 102488 , China
| | - Zhihui Li
- School of Chinese Materia Medica , Beijing University of Chinese Medicine , Yangguang South Street , Beijing 102488 , China
| | - Xing Gao
- School of Chinese Materia Medica , Beijing University of Chinese Medicine , Yangguang South Street , Beijing 102488 , China
| | - Hongpin Li
- School of Chinese Materia Medica , Beijing University of Chinese Medicine , Yangguang South Street , Beijing 102488 , China
| | - Hongyu Zhu
- School of Chinese Materia Medica , Beijing University of Chinese Medicine , Yangguang South Street , Beijing 102488 , China
| | - Yunfang Huang
- School of Chinese Materia Medica , Beijing University of Chinese Medicine , Yangguang South Street , Beijing 102488 , China
| | - Jing Qi
- School of Chinese Materia Medica , Beijing University of Chinese Medicine , Yangguang South Street , Beijing 102488 , China
| | - Yujie Zhang
- School of Chinese Materia Medica , Beijing University of Chinese Medicine , Yangguang South Street , Beijing 102488 , China
| |
Collapse
|
38
|
Yuan SS, Li ML, Chen JS, Zhou L, Zhou W. Application of Mono- and Disaccharides in Drug Targeting and Efficacy. ChemMedChem 2018; 13:764-778. [DOI: 10.1002/cmdc.201700762] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/10/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Si S. Yuan
- School of Pharmaceutical Sciences; Guangzhou University of Chinese Medicine; E. 232 University Town, Waihuan Road Panyu Guangzhou 510006 China
| | - Mao L. Li
- School of Pharmaceutical Sciences; Guangzhou University of Chinese Medicine; E. 232 University Town, Waihuan Road Panyu Guangzhou 510006 China
| | - Jian S. Chen
- College of Horticulture; South China Agricultural University; 483 Wushan Road Guangzhou 510642 China
| | - Li Zhou
- College of Science; Hunan Agricultural University; Furong Road Changsha 410128 China
| | - Wen Zhou
- School of Pharmaceutical Sciences; Guangzhou University of Chinese Medicine; E. 232 University Town, Waihuan Road Panyu Guangzhou 510006 China
| |
Collapse
|
39
|
Cucciolito ME, De Luca Bossa F, Esposito R, Ferraro G, Iadonisi A, Petruk G, D'Elia L, Romanetti C, Traboni S, Tuzi A, Monti DM, Merlino A, Ruffo F. C-Glycosylation in platinum-based agents: a viable strategy to improve cytotoxicity and selectivity. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00664d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The glycosylation of five-coordinate Pt(ii) compounds through a Pt–C linkage can be a very effective strategy for attacking cancer cells, while preserving the survival of the healthy ones.
Collapse
|
40
|
Huang Z, Li G, Wang X, Xu H, Zhang Y, Gao Q. Deciphering the origins of molecular toxicity of combretastatin A4 and its glycoconjugates: interactions with major drug transporters and their safety profiles in vitro and in vivo. MEDCHEMCOMM 2017; 8:1542-1552. [PMID: 30108866 PMCID: PMC6072490 DOI: 10.1039/c7md00246g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 06/03/2017] [Indexed: 12/19/2022]
Abstract
Cellular uptake and transport mechanisms directly correlate with the drug-like profiles of lead compounds. To decipher the molecular origin of the toxicity of combretastatin A4 (CA4), an important microtubule targeting agent, we investigated the interactions between CA4 and six key drug transporters, namely hOAT1, hOAT3, hOCT1, hOCT2, hOATP1B3, and hOATP2B1. Three combretastatin-based glycoconjugates, namely Glu-CA4, Man-CA4, and Gal-CA4 with glucose, mannose, and galactose respectively, were synthesized and their in vitro and in vivo biological characteristics were evaluated. CA4 exhibited significant inhibition against hOAT3 and hOATP2B1, moderate inhibition of hOAT1 and hOCT2, and weak inhibitory effects on hOCT1 and hOATP1B3. Compared to CA4, the inhibitory activities of Glu-CA4 on the six transporters were minimal. The glycoconjugates were found to have a superior safety profile with their maximum tolerated dose (MTD) values exhibiting a 16-34-fold increase compared to CA4. Given the drawbacks of CA4, the enhanced solubility and safety profiles of CA4 glycoconjugates augur well for further investigation into these intriguing candidates' in vivo efficacy.
Collapse
Affiliation(s)
- Zhenhua Huang
- School of Pharmaceutical Science and Technology , Tianjin University , Tianjin 300072 , P. R. China . ;
| | - Gentao Li
- School of Pharmaceutical Science and Technology , Tianjin University , Tianjin 300072 , P. R. China . ;
| | - Xue Wang
- School of Pharmaceutical Science and Technology , Tianjin University , Tianjin 300072 , P. R. China . ;
| | - Hu Xu
- Department of Biochemistry , Gudui BioPharma Technology Inc. , 5 Lanyuan Road , Huayuan Industrial Park , Tianjin 300384 , P. R. China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology , Tianjin University , Tianjin 300072 , P. R. China . ;
| | - Qingzhi Gao
- School of Pharmaceutical Science and Technology , Tianjin University , Tianjin 300072 , P. R. China . ;
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency , Collaborative Innovation Center of Chemical Science and Engineering , School of Pharmaceutical Science and Technology , Tianjin University , 92 Weijin Road , Nankai District , Tianjin 300072 , P. R. China
| |
Collapse
|
41
|
Zeng X, Wu P, Yao C, Liang J, Zhang S, Yin H. Small Molecule and Peptide Recognition of Protein Transmembrane Domains. Biochemistry 2017; 56:2076-2085. [DOI: 10.1021/acs.biochem.6b00909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Xianfeng Zeng
- Center
of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100082, China
| | - Peiyao Wu
- Center
of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100082, China
| | - Chengbo Yao
- Center
of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100082, China
| | - Jiaqi Liang
- Center
of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100082, China
| | - Shuting Zhang
- Center
of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100082, China
- School
of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Hang Yin
- Center
of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100082, China
| |
Collapse
|
42
|
Fluorescent 6-amino-6-deoxyglycoconjugates for glucose transporter mediated bioimaging. Biochem Biophys Res Commun 2016; 480:341-347. [DOI: 10.1016/j.bbrc.2016.10.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/15/2016] [Indexed: 11/19/2022]
|
43
|
Novel Improved Synthesis of HSP70 Inhibitor, Pifithrin-μ. In Vitro Synergy Quantification of Pifithrin-μ Combined with Pt Drugs in Prostate and Colorectal Cancer Cells. Molecules 2016; 21:molecules21070949. [PMID: 27455212 PMCID: PMC6273252 DOI: 10.3390/molecules21070949] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 11/25/2022] Open
Abstract
We describe a novel improved approach to the synthesis of the important and well-known heat shock protein 70 inhibitor (HSP70), pifithrin-μ, with corresponding and previously unreported characterisation. The first example of a combination study comprising HSP70 inhibitor pifithrin-μ and cisplatin or oxaliplatin is reported. We have determined, using the Chou-Talalay method, (i) moderate synergistic and synergistic effects in co-treating PC-3 prostate cancer cells with pifithrin-μ and cisplatin and (ii) significant synergistic effects including strong synergism in cotreating HT29 colorectal cancer cells with oxaliplatin and pifithrin-μ.
Collapse
|
44
|
Granchi C, Fortunato S, Minutolo F. Anticancer agents interacting with membrane glucose transporters. MEDCHEMCOMM 2016; 7:1716-1729. [PMID: 28042452 DOI: 10.1039/c6md00287k] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The altered metabolism observed in cancer cells generally consists in increased glucose uptake and glycolytic activity. This is associated with an overexpression of glucose transporter proteins (GLUTs), which facilitate glucose uptake across the plasma membrane and play a crucial role in the survival of cancer cells. Therefore GLUTs are considered as suitable targets for the treatment of cancer. Herein we review some of the most relevant GLUT inhibitors that have been recently developed as prospective anticancer agents.
Collapse
Affiliation(s)
- C Granchi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - S Fortunato
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - F Minutolo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy
| |
Collapse
|
45
|
Li T, Gao X, Yang L, Shi Y, Gao Q. Methyl 6-Amino-6-deoxy-d-pyranoside-Conjugated Platinum(II) Complexes for Glucose Transporter (GLUT)-Mediated Tumor Targeting: Synthesis, Cytotoxicity, and Cellular Uptake Mechanism. ChemMedChem 2016; 11:1069-77. [DOI: 10.1002/cmdc.201600079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Taoli Li
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology; Tianjin University; 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
| | - Xiangqian Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology; Tianjin University; 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
| | - Liu Yang
- Department of Biochemistry; Gudui BioPharma Technology Inc.; 5 Lanyuan Road, Huayuan Industrial Park Tianjin 300384 P.R. China
| | - Yunli Shi
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology; Tianjin University; 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
| | - Qingzhi Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology; Tianjin University; 92 Weijin Road, Nankai District Tianjin 300072 P.R. China
| |
Collapse
|
46
|
Cyanine-based 1-amino-1-deoxyglucose as fluorescent probes for glucose transporter mediated bioimaging. Biochem Biophys Res Commun 2016; 474:240-246. [DOI: 10.1016/j.bbrc.2016.03.133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 03/27/2016] [Indexed: 02/04/2023]
|
47
|
Giampà M, Lissel MB, Patschkowski T, Fuchser J, Hans VH, Gembruch O, Bednarz H, Niehaus K. Maleic anhydride proton sponge as a novel MALDI matrix for the visualization of small molecules (<250 m/z) in brain tumors by routine MALDI ToF imaging mass spectrometry. Chem Commun (Camb) 2016; 52:9801-4. [DOI: 10.1039/c6cc02387h] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel MALDI matrix MAPS, able to visualize deviating metabolism in glioma using a routine MALDI-ToF-MSI procedure, is presented.
Collapse
Affiliation(s)
- M. Giampà
- Center for Biotechnology and Department for Proteome and Metabolome Research
- Faculty of Biology
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - M. B. Lissel
- Center for Biotechnology and Department for Proteome and Metabolome Research
- Faculty of Biology
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - T. Patschkowski
- Center for Biotechnology and Department for Proteome and Metabolome Research
- Faculty of Biology
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - J. Fuchser
- Bruker Daltonics GmbH
- BU Pharma
- 28259 Bremen
- Germany
| | - V. H. Hans
- Institut für Pathologie Ruhr-Universität Bochum
- 44789 Bochum
- Germany
- Institut für Neuropathologie
- Universitätsklinikum Essen (AöR)
| | - O. Gembruch
- Klinik für Neurochirurgie
- Universitätsklinikum Essen (AöR)
- 45147 Essen
- Germany
| | - H. Bednarz
- Center for Biotechnology and Department for Proteome and Metabolome Research
- Faculty of Biology
- Bielefeld University
- 33615 Bielefeld
- Germany
| | - K. Niehaus
- Center for Biotechnology and Department for Proteome and Metabolome Research
- Faculty of Biology
- Bielefeld University
- 33615 Bielefeld
- Germany
| |
Collapse
|