1
|
Zorrilla JG, Evidente A. Structures and Biological Activities of Alkaloids Produced by Mushrooms, a Fungal Subgroup. Biomolecules 2022; 12:biom12081025. [PMID: 35892335 PMCID: PMC9332295 DOI: 10.3390/biom12081025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Alkaloids are a wide family of basic N-containing natural products, whose research has revealed bioactive compounds of pharmacological interest. Studies on these compounds have focused more attention on those produced by plants, although other types of organisms have also been proven to synthesize bioactive alkaloids, such as animals, marine organisms, bacteria, and fungi. This review covers the findings of the last 20 years (2002–2022) related to the isolation, structures, and biological activities of the alkaloids produced by mushrooms, a fungal subgroup, and their potential to develop drugs and agrochemicals. In some cases, the synthesis of the reviewed compounds and structure−activity relationship studies have been described.
Collapse
Affiliation(s)
- Jesús G. Zorrilla
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), School of Science, University of Cadiz, C/Republica Saharaui, s/n, 11510 Puerto Real, Spain
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Napoli, Italy;
- Correspondence:
| | - Antonio Evidente
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Napoli, Italy;
| |
Collapse
|
2
|
Szabó T, Volk B, Milen M. Recent Advances in the Synthesis of β-Carboline Alkaloids. Molecules 2021; 26:663. [PMID: 33513936 PMCID: PMC7866041 DOI: 10.3390/molecules26030663] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/31/2022] Open
Abstract
β-Carboline alkaloids are a remarkable family of natural and synthetic indole-containing heterocyclic compounds and they are widely distributed in nature. Recently, these alkaloids have been in the focus of interest, thanks to their diverse biological activities. Their pharmacological activity makes them desirable as sedative, anxiolytic, hypnotic, anticonvulsant, antitumor, antiviral, antiparasitic or antimicrobial drug candidates. The growing potential inherent in them encourages many researchers to address the challenges of the synthesis of natural products containing complex β-carboline frameworks. In this review, we describe the recent developments in the synthesis of β-carboline alkaloids and closely related derivatives through selected examples from the last 5 years. The focus is on the key steps with improved procedures and synthetic approaches. Furthermore the pharmacological potential of the alkaloids is also highlighted.
Collapse
Affiliation(s)
| | | | - Mátyás Milen
- Egis Pharmaceuticals Plc., Directorate of Drug Substance Development, P.O. Box 100, H-1475 Budapest, Hungary; (T.S.); (B.V.)
| |
Collapse
|
3
|
Heravi MM, Zadsirjan V, Hamidi H, Daraie M, Momeni T. Recent applications of the Wittig reaction in alkaloid synthesis. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2020; 84:201-334. [PMID: 32416953 DOI: 10.1016/bs.alkal.2020.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Wittig reaction is the chemical reaction of an aldehyde or ketone with a triphenyl phosphonium ylide (the Wittig reagent) to afford an alkene and triphenylphosphine oxide. Noteworthy, this reaction results in the synthesis of alkenes in a selective and predictable fashion. Thus, it became as one of the keystone of synthetic organic chemistry, especially in the total synthesis of natural products, where the selectivity of a reaction is paramount of importance. A literature survey disclosed the existence of vast numbers of related reports and comprehensive reviews on the applications of this important name reaction in the total synthesis of natural products. However, the aim of this chapter is to underscore, the applications of the Wittig reaction in the total synthesis of one the most important and prevalent classes of natural products, the alkaloids, especially those showing important and diverse biological activities.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran.
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran
| | - Hoda Hamidi
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran
| | - Mansoureh Daraie
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran
| | - Tayebeh Momeni
- Department of Chemistry, School of Science, Alzahra University, Tehran, Iran
| |
Collapse
|
4
|
Design, synthesis and biological evaluation of homoerythrina alkaloid derivatives bearing a triazole moiety as PARP-1 inhibitors and as potential antitumor drugs. Bioorg Chem 2020; 94:103385. [DOI: 10.1016/j.bioorg.2019.103385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 11/22/2022]
|
5
|
Alves Esteves CH, Koyioni M, Christensen KE, Smith PD, Donohoe TJ. OBO-Protected Pyruvates as Reagents for the Synthesis of Functionalized Heteroaromatic Compounds. Org Lett 2018; 20:4048-4051. [DOI: 10.1021/acs.orglett.8b01614] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C. Henrique Alves Esteves
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Maria Koyioni
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Kirsten E. Christensen
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| | - Peter D. Smith
- Early Chemical Development, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Timothy J. Donohoe
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
6
|
Meng TZ, Zheng J, Trieu TH, Zheng B, Wu JJ, Zhang Y, Shi XX. CuBr 2-Catalyzed Mild Oxidation of 3,4-Dihydro-β-Carbolines and Application in Total Synthesis of 6-Hydroxymetatacarboline D. ACS OMEGA 2018; 3:544-553. [PMID: 31457912 PMCID: PMC6641302 DOI: 10.1021/acsomega.7b01908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 12/26/2017] [Indexed: 06/10/2023]
Abstract
A green chemical method for the conversion of 3,4-dihydro-β-carbolines to β-carbolines has been developed using air as the oxidant. With 15 mol % CuBr2 as the catalyst, 3,4-dihydro-β-carbolines could be efficiently oxidized to β-carbolines in dimethyl sulfoxide at room temperature in the presence of 1,8-diazabicyclo[5,4,0]undec-7-ene (or Et3N). By applying this method, the first total synthesis of 6-hydroxymetatacarboline D was performed through 12 steps in 22% overall yield starting from l-5-hydroxy-tryptophan.
Collapse
Affiliation(s)
- Tian-Zhuo Meng
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Jie Zheng
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Tien Ha Trieu
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Bo Zheng
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Jia-Jia Wu
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Yi Zhang
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Xiao-Xin Shi
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| |
Collapse
|
7
|
Devi N, Kumar S, Pandey SK, Singh V. 1(3)-Formyl-β-carbolines: Potential Aldo-X Precursors for the Synthesis of β-Carboline-Based Molecular Architectures. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700477] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Nisha Devi
- Department of Chemistry; Dr B. R. Ambedkar National Institute of Technology, Jalandhar (NITJ); 144011 Punjab India
| | - Sunit Kumar
- Department of Chemistry; Dr B. R. Ambedkar National Institute of Technology, Jalandhar (NITJ); 144011 Punjab India
| | | | - Virender Singh
- Department of Chemistry; Dr B. R. Ambedkar National Institute of Technology, Jalandhar (NITJ); 144011 Punjab India
| |
Collapse
|
8
|
Abstract
Mushrooms are known to produce over 140 natural products bearing an indole heterocycle. In this review, the isolation of these mushroom-derived indole alkaloids is discussed, along with their associated biological activities.
Collapse
Affiliation(s)
- Joshua A Homer
- School of Chemical Sciences, University of Auckland , 23 Symonds Street, Auckland 1142, New Zealand
| | - Jonathan Sperry
- School of Chemical Sciences, University of Auckland , 23 Symonds Street, Auckland 1142, New Zealand
| |
Collapse
|
9
|
Wang KB, Li DH, Bao Y, Cao F, Wang WJ, Lin C, Bin W, Bai J, Pei YH, Jing YK, Yang D, Li ZL, Hua HM. Structurally Diverse Alkaloids from the Seeds of Peganum harmala. JOURNAL OF NATURAL PRODUCTS 2017; 80:551-559. [PMID: 28128938 PMCID: PMC5518681 DOI: 10.1021/acs.jnatprod.6b01146] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Investigation of the alkaloids from Peganum harmala seeds yielded two pairs of unique racemic pyrroloindole alkaloids, (±)-peganines A-B (1-2); two rare thiazole derivatives, peganumals A-B (3-4); six new β-carboline alkaloids, pegaharmines F-K (5-10); and 12 known analogues. Their structures, including stereochemistry, were elucidated through spectroscopic analyses, quantum chemistry calculations, and single-crystal X-ray diffraction. Notably, the incorporation of pyrrole and indole moieties in peganines A-B, thiazole fragments in peganumals A-B, and a C-1 α,β-unsaturated ester motif in pegaharmine F (5) are all rare, and their presence in the genus Peganum were demonstrated for the first time. All isolates were tested for antiproliferative activities against the HL-60, PC-3, and SGC-7901 cancer cell lines, and compounds 9, 11, 12, and 13 exhibited moderate cytotoxicity against HL-60 cancer cell lines with IC50 values in the range of 4.36-9.25 μM.
Collapse
Affiliation(s)
- Kai-Bo Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning People’s Republic of China
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Da-Hong Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning People’s Republic of China
| | - Yu Bao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning People’s Republic of China
| | - Fei Cao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, People’s Republic of China
| | - Wen-Jing Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning People’s Republic of China
| | - Clement Lin
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Wen Bin
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning People’s Republic of China
| | - Jiao Bai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning People’s Republic of China
| | - Yue-Hu Pei
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning People’s Republic of China
| | - Yong-Kui Jing
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning People’s Republic of China
| | - Danzhou Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhan-Lin Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning People’s Republic of China
| | - Hui-Ming Hua
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning People’s Republic of China
| |
Collapse
|
10
|
Pon Sathieshkumar P, Nagarajan R. Total Synthesis of Metagenetriindole A and Deoxytopsentin. ChemistrySelect 2017. [DOI: 10.1002/slct.201602014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|