1
|
Elnagar MM, Abou‐El‐Sherbini KS, Samir S, Sharmoukh W, Abdel‐Aziz MS, Shaker YM. Synthesis, Characterization, and Biological Activity of New 4'-Functionalized Bis-Terpyridine Ruthenium(II) Complexes: Anti-Inflammatory Activity Advances. ChemMedChem 2025; 20:e202400680. [PMID: 39417784 PMCID: PMC11793853 DOI: 10.1002/cmdc.202400680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Ruthenium complexes incorporating 2,2' : 6',2''-terpyridine ligands have emerged as promising candidates due to their versatile biological activities including DNA-binding, anti-inflammatory, antimicrobial, and anticancer properties. In this study, three new 4'-functionalized bis(terpyridine) Ru(II) complexes were synthesized. These complexes feature one ligand as 4-(2,2' : 6',2''-terpyridine-4'-yl) benzoic acid and the second ligand as either 4'-(2-thienyl)-2,2' : 6',2''-terpyridine, 4'-(3,4-dimethoxyphenyl)-2,2' : 6',2''-terpyridine, or 4'-(4-dimethylaminophenyl)-2,2' : 6',2''-terpyridine. Besides the chemical characterization by 1H and 13C NMR, mass spectrometry, and absorption and emission spectroscopy, the complexes were tested for their biological activity as anti-inflammatory, anticancer, and antimicrobial agents. Moreover, the toxicity of the Ru(II) complexes was assessed and benchmarked against diclofenac potassium and ibuprofen using a haemolysis assay. Biological evaluations demonstrate that these ruthenium complexes exhibit promising therapeutic potential with reduced haemolytic activity compared to standard drugs. They demonstrate substantial anti-inflammatory effects through inhibition of albumin denaturation along with moderate cytotoxicity against cancer cell lines and broad-spectrum antimicrobial activity. These findings highlight the multifaceted biomedical applications of 4'-functionalized bis(terpyridine) Ru(II) complexes, suggesting their potential for further development as effective and safe therapeutic agents.
Collapse
Affiliation(s)
- Mohamed M. Elnagar
- Institute of ElectrochemistryUlm UniversityAlbert-Einstein-Allee 4789081UlmGermany
- Department of Inorganic ChemistryNational Research Centre33 El Bohouth St. (former Tahrir St.)12622Dokki, GizaEgypt
| | - Khaled S. Abou‐El‐Sherbini
- Department of Inorganic ChemistryNational Research Centre33 El Bohouth St. (former Tahrir St.)12622Dokki, GizaEgypt
| | - Safia Samir
- Department of Biochemistry and Molecular BiologyTheodor Bilharz Research InstituteP.O. Box 30GizaEgypt
| | - Walid Sharmoukh
- Department of Inorganic ChemistryNational Research Centre33 El Bohouth St. (former Tahrir St.)12622Dokki, GizaEgypt
| | - Mohamed S. Abdel‐Aziz
- Department of Microbial ChemistryNational Research Centre33 El Bohouth St. (former Tahrir St.)12622Dokki, GizaEgypt
| | - Yasser M. Shaker
- Division of Pharmaceutical and Drug IndustriesDepartment of the Chemistry of Natural and Microbial ProductsNational Research CentreEl Buhouth StreetDokki, Cairo12622Egypt
| |
Collapse
|
2
|
Khudhur HKA, Hussein AJ. Catalytic One-pot Solvent Free Synthesis, Biological Activity, and Docking Study of New Series of 1, 3-thiazolidine-4-one Derivatives Derived from 2- (P-tolyl) Benzoxazol-5-amine. Curr Org Synth 2024; 21:210-223. [PMID: 37990856 DOI: 10.2174/1570179420666230428125251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVE In this study, a simple triethylammonium salt of phosphoric acid (triethylammonium dihydrogen phosphate) (4) in the liquid state was utilized as an inexpensive, efficient one-pot three components, solvent-free synthesis of thiazolidine-4-one derivatives, with good to excellent yields. Techniques such as FT-IR, 1H-NMR, 13C-NMR, 13C-NMR-DEPT-135, and MS. were used for the structural elucidation. The high biotic efficiency of the newly obtained compounds was confirmed by in vitro antimicrobial action against Gram-positive (S. Aureus), Gram-negative bacteria (P. Aeruginosa and E. Coli) and antifungal activity (C. Albicans) via microplate titer dilution technique. Finally, a molecular docking study was performed with a resolved crystal structure of S. Aureus D-alanine alanyl carrier protein ligase (PDB ID: 7VHV). This investigation aimed to synthesize a new series of thiazolidine-4-one derivatives combined with benzoxazole moiety. MATERIAL AND METHODS Ionic liquid assistance one-pot solvent-free synthesis method used to synthesize a new series of thiazolidine-4-one derivative 10(a-e). RESULTS Structural identification of new synthesis and biological evaluation via techniques of (IR, 1H-NMR, 13C-NMR, 13C-NMR-DEPT-135, and MS). CONCLUSION Ionic liquid is utilized as an inexpensive, efficient one-pot three-component solvent-free synthesis of thiazolidine-4-one derivatives with good to excellent yields. Most of the synthesized compounds showed high biological and anti-fungal activity, in line with the docking study against mentioned microorganism and crystal structure of PDB (ID: 7VHV), respectively.
Collapse
Affiliation(s)
| | - Awaz Jamil Hussein
- Department of Chemistry, College of Education, Salahaddin University, Erbil, Kurdistan, Iraq
| |
Collapse
|
3
|
Design, synthesis, and biological evaluation of dual-target COX-2/5-LOX inhibitors for the treatment of inflammation. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02995-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Alshammari NAH, Bakhotmah DA. Synthesis, reactivity, antimicrobial, and anti-biofilm evaluation of fluorinated 4-amino-3-mercapto-1,2,4-triazin-5(4 H)-one and their derivatives. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2150856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Nawaa Ali H. Alshammari
- Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, Northern Border University, Rafha, Saudi Arabia
| | - Dina A. Bakhotmah
- Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Vandyshev DY, Shikhaliev KS. Recyclization of Maleimides by Binucleophiles as a General Approach for Building Hydrogenated Heterocyclic Systems. Molecules 2022; 27:5268. [PMID: 36014507 PMCID: PMC9416709 DOI: 10.3390/molecules27165268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The building of heterocyclic systems containing hydrogenated fragments is an important step towards the creation of biologically-active compounds with a wide spectrum of pharmacological activity. Among the numerous methods for creating such systems, a special place is occupied by processes using N-substituted maleimides as the initial substrate. This molecule easily reacts in Diels-Alder/retro-Diels-Alder reactions, Michael additions with various nucleophiles, and co-polymerization processes, as have been described in numerous detailed reviews. However, information on the use of maleimides in cascade heterocyclization reactions is currently limited. This study is devoted to a review and analysis of existing literature data on the processes of recyclization of N-substituted maleimides with various C,N-/N,N-/S,N-di- and polynucleophilic agents, such as amidines, guanidines, diamines, aliphatic ketazines, aminouracils, amino- and mercaptoazoles, aminothiourea, and thiocarbomoyl pyrazolines, among others. The significant structural diversity of the recyclization products described in this study illustrates the powerful potential of maleimides as a building block in the organic synthesis of biologically-active compounds with hydrogenated heterocyclic fragments.
Collapse
Affiliation(s)
- Dmitriy Yu. Vandyshev
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Universitetskaya Sq. 1, 394018 Voronezh, Russia
| | - Khidmet S. Shikhaliev
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Universitetskaya Sq. 1, 394018 Voronezh, Russia
- TekhnoKhim, 50 Let Sovetskoi Vlasti Str. 8, 394050 Voronezh, Russia
| |
Collapse
|
6
|
Oyeka EE, Babahan I, Eboma B, Ifeanyieze KJ, Okpareke OC, Coban EP, Özmen A, Coban B, Aksel M, Özdemir N, Groutso T, Ayogu JI, Yildiz U, Dinçer Bilgin M, Halil Biyik H, Schrage BR, Ziegler CJ, Asegbeloyin JN. Biologically active acylthioureas and their Ni(II) and Cu(II) Complexes: Structural, spectroscopic, anti-proliferative, nucleolytic and antimicrobial studies. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Elzahhar PA, Alaaeddine RA, Nassra R, Ismail A, Labib HF, Temraz MG, Belal ASF, El-Yazbi AF. Challenging inflammatory process at molecular, cellular and in vivo levels via some new pyrazolyl thiazolones. J Enzyme Inhib Med Chem 2021; 36:669-684. [PMID: 33618602 PMCID: PMC7901699 DOI: 10.1080/14756366.2021.1887169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The work reported herein describes the synthesis of a new series of anti-inflammatory pyrazolyl thiazolones. In addition to COX-2/15-LOX inhibition, these hybrids exerted their anti-inflammatory actions through novel mechanisms. The most active compounds possessed COX-2 inhibitory activities comparable to celecoxib (IC50 values of 0.09-0.14 µM) with significant 15-LOX inhibitory activities (IC50s 1.96 to 3.52 µM). Upon investigation of their in vivo anti-inflammatory activities and ulcerogenic profiles, these compounds showed activity patterns equivalent or more superior to diclofenac and/or celecoxib. Intriguingly, the most active compounds were more effective than diclofenac in suppressing monocyte-to-macrophage differentiation and inflammatory cytokine production by activated macrophages, as well as their ability to induce macrophage apoptosis. The latter finding potentially adds a new dimension to the previously reported anti-inflammatory mechanisms of similar compounds. These compounds were effectively docked into COX-2 and 15-LOX active sites. Also, in silico predictions confirmed the appropriateness of these compounds as drug-like candidates.
Collapse
Affiliation(s)
- Perihan A Elzahhar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Rana A Alaaeddine
- Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Centre, American University of Beirut, Beirut, Lebanon
| | - Rasha Nassra
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Azza Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Hala F Labib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Arab Academy of Science Technology and Maritime Transport, Alexandria, Egypt
| | | | - Ahmed S F Belal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine and Medical Centre, American University of Beirut, Beirut, Lebanon.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, E gypt
| |
Collapse
|
8
|
New nitric oxide-releasing indomethacin derivatives with 1,3-thiazolidine-4-one scaffold: Design, synthesis, in silico and in vitro studies. Biomed Pharmacother 2021; 139:111678. [PMID: 33964802 DOI: 10.1016/j.biopha.2021.111678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
In this study we present design and synthesis of nineteen new nitric oxide-releasing indomethacin derivatives with 1,3-thiazolidine-4-one scaffold (NO-IND-TZDs) (6a-s), as a new safer and efficient multi-targets strategy for inflammatory diseases. The chemical structure of all synthesized derivatives (intermediaries and finals) was proved by NMR and mass spectroscopic analysis. In order to study the selectivity of NO-IND-TZDs for COX isoenzymes (COX-1 and COX-2) a molecular docking study was performed using AutoDock 4.2.6 software. Based on docking results, COX-2 inhibitors were designed and 6o appears as the most selective derivative which showed an improved selective index compared with indomethacin (IND) and diclofenac (DCF), used as reference drugs. The biological evaluation of 6a-s, using in vitro assays has included the anti-inflammatory and antioxidant effects as well as the nitric oxide (NO) release. Referring to the anti-inflammatory effects, the most active compound was 6i, which was more active than IND and aspirin (ASP) in term of denaturation effect, on bovine serum albumin (BSA), as indirect assay to predict the anti-inflammatory effect. An appreciable anti-inflammatory effect, in reference with IND and ASP, was also showed by 6k, 6c, 6q, 6o, 6j, 6d. The antioxidant assay revealed the compound 6n as the most active, being 100 times more active than IND. The compound 6n showed also the most increase capacity to release NO, which means is safer in terms of gastro-intestinal side effects. The ADME-Tox study revealed also that the NO-IND-TZDs are generally proper for oral administration, having optimal physico-chemical and ADME properties. We can conclude that the compounds 6i and 6n are promising agents and could be included in further investigations to study in more detail their pharmaco-toxicological profile.
Collapse
|
9
|
Anti-inflammatory activity of novel thiosemicarbazone compounds indole-based as COX inhibitors. Pharmacol Rep 2021; 73:907-925. [PMID: 33590474 DOI: 10.1007/s43440-021-00221-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND In this article, a series of 20 new thiosemicarbazone derivatives containing indole were synthesized and evaluated for their anti-inflammatory potential. METHODS The compounds were obtained through a synthetic route of only two steps, with yields that varied between 33.6 and 90.4%, and characterized by spectroscopic and spectrometric techniques. RESULTS An initial screening through the lymphoproliferation assay revealed that compounds LT76, LT81, and LT87 were able to inhibit lymphocyte proliferation, with CC50 of 0.56 ± 0.036, 0.9 ± 0.01 and 0.5 ± 0.07 µM, respectively, better results than indomethacin (CC50 > 12 µM). In addition, these compounds were able to suppress the in-vitro production of TNF-α and NO, in addition to stimulating the production of IL-4. Reinforcing in-vitro assays, the compounds were able to inhibit COX-2 similar to Celecoxib showing greater selectivity for this isoform (LT81 SI: 23.06 versus Celecoxib SI: 11.88). Animal studies showed that compounds LT76 (64.8% inhibition after 6 h), LT81 (89% inhibition after 6 h) and LT87 (100% inhibition after 4 h) were able to suppress edema in mice after inoculation carrageenan with greater potency than indomethacin, and immunohistochemistry revealed that the groups treated with LT76, LT81 and LT87 reduced the expression of COX-2, similar or better results when compared to indomethacin. Complementarily, in-silico studies have shown that these compounds have a good pharmacokinetic profile, for respecting the parameters of Lipinski and Veber, showing their good bioavailability. CONCLUSIONS These results demonstrate the potency of thiosemicarbazone derivatives containing indole and confirm their importance as scaffolds of molecules with notorious anti-inflammatory activity.
Collapse
|
10
|
Antidiabetic effects and safety profile of chitosan delivery systems loaded with new xanthine-thiazolidine-4-one derivatives: in vivo studies. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Synthesis of Novel Sulfamethaoxazole 4-Thiazolidinone Hybrids and Their Biological Evaluation. Molecules 2020; 25:molecules25163570. [PMID: 32781534 PMCID: PMC7464187 DOI: 10.3390/molecules25163570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
A search for potent antitubercular agents prompted us to design and synthesize sulfamethaoxazole incorporated 4-thiazolidinone hybrids (7a–l) by using a cyclocondensation reaction between 4-amino-N-(5-methylisoxazol-3-yl)benzenesulfonamide (4), aryl aldehyde (5a–l), and mercapto acetic acid (6) resulting in good to excellent yields. All the newly synthesized 4-thiazolidinone derivatives were screened for their in vitro antitubercular activity against M. Bovis BCG and M. tuberculosis H37Ra (MTB) strains. The compounds 7d, 7g, 7i, 7k, and 7l revealed promising antimycobacterial activity against M. Bovis and MTB strains with IC90 values in the range of 0.058–0.22 and 0.43–5.31 µg/mL, respectively. The most active compounds were also evaluated for their cytotoxicity against MCF-7, HCT 116, and A549 cell lines and were found to be non-cytotoxic. Moreover, the synthesized compounds were also analyzed for ADME (absorption, distribution, metabolism, and excretion) properties and showed potential as good oral drug candidates.
Collapse
|
12
|
Ultrasound-assisted synthesis and antibacterial activity of novel 1,3,4-thiadiazole-1H-pyrazol-4-yl-thiazolidin-4-one derivatives. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02625-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Abumelha HMA, Saeed A. Synthesis of some 5‐arylidene‐2‐(4‐acetamidophenylimino)‐thiazolidin‐4‐one derivatives and exploring their breast anticancer activity. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hana M. A. Abumelha
- Department of Chemistry, Faculty of SciencePrincess Nourah Bint Abdulrahman University Riyadh Saudi Arabia
| | - Ali Saeed
- Department of Chemistry, Faculty of ScienceMansoura University Mansoura Egypt
| |
Collapse
|
14
|
|
15
|
Nithyabalaji R, Krishnan H, Subha J, Sribalan R. Synthesis, molecular structure, in vitro and in silico studies of 4-phenylmorpholine-heterocyclic amides. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
das Neves AM, Berwaldt GA, Avila CT, Goulart TB, Moreira BC, Ferreira TP, Soares MSP, Pedra NS, Spohr L, dE Souza AAA, Spanevello RM, Cunico W. Synthesis of thiazolidin-4-ones and thiazinan-4-ones from 1-(2-aminoethyl)pyrrolidine as acetylcholinesterase inhibitors. J Enzyme Inhib Med Chem 2020; 35:31-41. [PMID: 31645149 PMCID: PMC6818106 DOI: 10.1080/14756366.2019.1680659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The present study describes the synthesis of a novel series of thiazolidin-4-one and thiazinan-4-one using 1-(2-aminoethyl)pyrrolidine as amine precursor. All compounds were synthesised by one-pot three component cyclocondensation reaction from the amine, a substituted benzaldehyde and a mercaptocarboxylic acid. The compounds were obtained in moderate to good yields and were identified and characterised by 1H, 13 C, 2 D NMR and GC/MS techniques. The compounds also were screened for their in vitro acetylcholinesterase (AChE) activity in hippocampus and cerebral cortex on Wistar rats. The six most potent compounds have been investigated for their cytotoxicity by cell viability assay of astrocyte primary culture, an important cell of central nervous system. We highlighted two compounds (6a and 6k) that had the lowest IC50 in hippocampus (5.20 and 4.46 µM) and cerebral cortex (7.40 and 6.83 µM). These preliminary and important results could be considered a starting point for the development of new AChE inhibitory agents.
Collapse
Affiliation(s)
- Adriana M das Neves
- Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Capão do Leão , Brazil
| | - Gabriele A Berwaldt
- Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Capão do Leão , Brazil
| | - Cinara T Avila
- Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Capão do Leão , Brazil
| | - Taís B Goulart
- Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Capão do Leão , Brazil
| | - Bruna C Moreira
- Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Capão do Leão , Brazil
| | - Taís P Ferreira
- Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Capão do Leão , Brazil
| | - Mayara S P Soares
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Capão do Leão , Brazil
| | - Nathalia S Pedra
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Capão do Leão , Brazil
| | - Luiza Spohr
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Capão do Leão , Brazil
| | - Anita A A dE Souza
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Capão do Leão , Brazil
| | - Roselia M Spanevello
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Capão do Leão , Brazil
| | - Wilson Cunico
- Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Capão do Leão , Brazil
| |
Collapse
|
17
|
Genc Bilgicli H, Taslimi P, Akyuz B, Tuzun B, Gulcin İ. Synthesis, characterization, biological evaluation, and molecular docking studies of some piperonyl‐based 4‐thiazolidinone derivatives. Arch Pharm (Weinheim) 2019; 353:e1900304. [DOI: 10.1002/ardp.201900304] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/30/2019] [Accepted: 11/15/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Hayriye Genc Bilgicli
- Department of Chemistry, Faculty of Arts and SciencesSakarya University Servidan Sakarya Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of ScienceBartin University Bartin Turkey
| | - Busra Akyuz
- Department of Chemistry, Faculty of Arts and SciencesSakarya University Servidan Sakarya Turkey
| | - Burak Tuzun
- Department of Chemistry, Faculty of ScienceCumhuriyet University Sivas Turkey
| | - İlhami Gulcin
- Department of Chemistry, Faculty of SciencesAtaturk University Erzurum Turkey
| |
Collapse
|
18
|
Chalcone derivatives bearing chromen or benzo[f]chromen moieties: Design, synthesis, and evaluations of anti-inflammatory, analgesic, selective COX-2 inhibitory activities. Bioorg Med Chem Lett 2019; 29:1909-1912. [DOI: 10.1016/j.bmcl.2019.05.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/16/2019] [Accepted: 05/27/2019] [Indexed: 12/20/2022]
|
19
|
Mohamed AH, Shaker RM. An Efficient Method for the Synthesis of N‐uracil‐4‐oxo‐thiazolidines without Catalyst. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Asmaa H. Mohamed
- Chemistry Department, Faculty of ScienceMinia University El‐Minia Egypt
| | - Raafat M. Shaker
- Chemistry Department, Faculty of ScienceMinia University El‐Minia Egypt
| |
Collapse
|
20
|
Arshad F, Khan MF, Akhtar W, Alam MM, Nainwal LM, Kaushik SK, Akhter M, Parvez S, Hasan SM, Shaquiquzzaman M. Revealing quinquennial anticancer journey of morpholine: A SAR based review. Eur J Med Chem 2019; 167:324-356. [PMID: 30776694 DOI: 10.1016/j.ejmech.2019.02.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
Morpholine, a six-membered heterocycle containing one nitrogen and one oxygen atom, is a moiety of great significance. It forms an important intermediate in many industrial and organic syntheses. Morpholine containing drugs are of high therapeutic value. Its wide array of pharmacological activity includes anti-diabetic, anti-emetic, growth stimulant, anti-depressant, bronchodilator and anticancer. Multi-drug resistance in cancer cases have emerged in the last few years and have led to the failure of many chemotherapeutic drugs. Newer treatment methods and drugs are being developed to overcome this problem. Target based drug discovery is an effective method to develop novel anticancer drugs. To develop newer drugs, previously reported work needs to be studied. Keeping this in mind, last five year's literature on morpholine used as anticancer agents has been reviewed and summarized in the paper herein.
Collapse
Affiliation(s)
- Fatima Arshad
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohemmed Faraz Khan
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Wasim Akhtar
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Mumtaz Alam
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Lalit Mohan Nainwal
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sumit Kumar Kaushik
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mymoona Akhter
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | | | - Mohammad Shaquiquzzaman
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
21
|
Berwaldt GA, Gouvêa DP, da Silva DS, das Neves AM, Soares MSP, Azambuja JH, Siqueira GM, Spanevello RM, Cunico W. Synthesis and biological evaluation of benzothiazin-4-ones: a possible new class of acetylcholinesterase inhibitors. J Enzyme Inhib Med Chem 2019; 34:197-203. [PMID: 30482059 PMCID: PMC6263113 DOI: 10.1080/14756366.2018.1543286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
A series of nineteen benzothiazin-4-ones from N-(3-aminopropyl) piperidine, 4-(2-aminoethyl)morpholine or 1-(2-aminoethyl)piperidine, aliphatic or aromatic aldehyde and thiosalicylic acid, were synthesized in good yields by multicomponent one-pot reactions. The solvent was toluene and this efficient procedure afforded the desired heterocycles in 5 h. Identification and characterization were achieved by NMR and GC-MS techniques. In vitro AChE activities of all compounds were evaluated in cerebral cortex and hippocampus of rats and in general, the results in cortex were more promising than hippocampus. The benzothiazinone 5Bd showed the best AChE inhibition activity IC50 8.48 μM (cortex) and IC50 39.80 μM (hippocampus). The cytotoxicity of seven compounds in MCR-5 human fibroblast cell by SRB test in 24 h were evaluated and 5Bd suggest preliminary safety, showing no cytotoxicity at 100 µM. Finally, these important findings could be a starting point for the development of new AChE inhibitors agents and will provide the basis for new studies.
Collapse
Affiliation(s)
- Gabriele A Berwaldt
- a Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Prédio 32, Laboratório 410, Campus Universitário S/N , Capão do Leão , RS , CEP 96160-000 , Brazil
| | - Daniela P Gouvêa
- a Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Prédio 32, Laboratório 410, Campus Universitário S/N , Capão do Leão , RS , CEP 96160-000 , Brazil
| | - Daniel S da Silva
- a Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Prédio 32, Laboratório 410, Campus Universitário S/N , Capão do Leão , RS , CEP 96160-000 , Brazil.,b Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Prédio 29, Sala 303, Campus Universitário S/N , Capão do Leão , RS , CEP 96160-000 , Brazil
| | - Adriana M das Neves
- a Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Prédio 32, Laboratório 410, Campus Universitário S/N , Capão do Leão , RS , CEP 96160-000 , Brazil
| | - Mayara S P Soares
- b Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Prédio 29, Sala 303, Campus Universitário S/N , Capão do Leão , RS , CEP 96160-000 , Brazil
| | - Juliana H Azambuja
- b Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Prédio 29, Sala 303, Campus Universitário S/N , Capão do Leão , RS , CEP 96160-000 , Brazil
| | - Geonir M Siqueira
- a Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Prédio 32, Laboratório 410, Campus Universitário S/N , Capão do Leão , RS , CEP 96160-000 , Brazil
| | - Roselia M Spanevello
- b Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Prédio 29, Sala 303, Campus Universitário S/N , Capão do Leão , RS , CEP 96160-000 , Brazil
| | - Wilson Cunico
- a Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Prédio 32, Laboratório 410, Campus Universitário S/N , Capão do Leão , RS , CEP 96160-000 , Brazil
| |
Collapse
|
22
|
Neves AM, Campos JC, Gouvêa DP, Berwaldt GA, Goulart TB, Avila CT, Machado P, Zimmer GC, Cunico W. Synthesis of Novel Thiazolidin‐4‐ones and Thiazinan‐4‐ones Analogous to Rosiglitazone. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Adriana M. Neves
- LaQuiABio, Centro de Ciências Químicas, Farmacêuticas e de AlimentosUniversidade Federal de Pelotas Campos Universitário s/no 96010‐900 Pelotas RS Brazil
| | - José C. Campos
- LaQuiABio, Centro de Ciências Químicas, Farmacêuticas e de AlimentosUniversidade Federal de Pelotas Campos Universitário s/no 96010‐900 Pelotas RS Brazil
| | - Daniela P. Gouvêa
- MESOLab, Departamento de QuímicaUniversidade Federal de Santa Catarina 88040‐900 Florianopolis SC Brazil
| | - Gabriele A. Berwaldt
- LaQuiABio, Centro de Ciências Químicas, Farmacêuticas e de AlimentosUniversidade Federal de Pelotas Campos Universitário s/no 96010‐900 Pelotas RS Brazil
| | - Taís B. Goulart
- LaQuiABio, Centro de Ciências Químicas, Farmacêuticas e de AlimentosUniversidade Federal de Pelotas Campos Universitário s/no 96010‐900 Pelotas RS Brazil
| | - Cinara T. Avila
- LaQuiABio, Centro de Ciências Químicas, Farmacêuticas e de AlimentosUniversidade Federal de Pelotas Campos Universitário s/no 96010‐900 Pelotas RS Brazil
| | - Pablo Machado
- Instituto Nacional de Ciência e Tecnologia em TuberculosePontifícia Universidade Católica do Rio Grande do Sul 90619‐900 Porto Alegre RS Brazil
| | - Geórgia C. Zimmer
- Núcleo de Química de Heterociclos (NUQUIMHE) Department of ChemistryFederal University of Santa Maria (UFSM) CEP 97105‐900 Santa Maria RS Brazil
| | - Wilson Cunico
- LaQuiABio, Centro de Ciências Químicas, Farmacêuticas e de AlimentosUniversidade Federal de Pelotas Campos Universitário s/no 96010‐900 Pelotas RS Brazil
| |
Collapse
|
23
|
Zehetmeyr FK, da Silva MAMP, Pereira KM, Berne MEA, Cunico W, Campos JC, Gouvea DP, da Silva Nascente P, de Oliveira Hübner S, Siqueira GM. Ovicidal in vitro activity of 2-aryl-3-(2-morpholinoethyl)thiazolidin-4-ones and 2-aryl-3-(3-morpholinopropyl)thiazolidin-4-ones against Fasciola hepatica (Linnaeus, 1758). Exp Parasitol 2018; 192:60-64. [PMID: 30040962 DOI: 10.1016/j.exppara.2018.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/14/2018] [Accepted: 07/20/2018] [Indexed: 11/16/2022]
Abstract
Although there is a variety of biological activity reports regarding compounds derived from thiazolidin-4-ones, no data related to ovicidal activity against trematodes, particularly Fasciola hepatica are available. Since there are reports about anthelmintic resistance in F. hepatica, new drugs are required. Thus, this study evaluated ovicidal action in vitro against F. hepatica eggs in two systematic series of thiazolidin-4-ones: 2-aryl-3-(2-morpholinoethyl)thiazolidin-4-ones (1a-h) and 2-aryl-3-(3-morpholinopropyl)thiazolidin-4-ones (2a-h) at different concentrations (20, 2, 0.2, 0.02 and 0.002 μg/ml). The egg hatch assay (EHA) was used to evaluate the ovicidal action property of such compounds. In addition, potential negative effects of the compounds on metabolic activity of bovine kidney (MDBK) cells were evaluated by determining mitochondrial dehydrogenase activity. The eggs used in the EHA were obtained from parasites removed from the liver of cattle, which were discarded by slaugh after sanitary inspection. The results of EHA showed that compounds 2a-h exhibited ovicidal activity, especially compounds 2b which showed 90% ovicidal activity and viability of 93% MDBK cells at the concentration of 2 μg/ml; and 2e with 96-99% ovicidal activity at 0.2 μg/ml, 0.02 μg/ml and 0.002 μg/ml. The results show the potential of compound 2b to continue the studies in the production of new compounds with anthelmintic action.
Collapse
Affiliation(s)
- Fabiane Knepper Zehetmeyr
- Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas, Brazil; Laboratório de Química Aplicada a Bioativos (LaQuiABio), Universidade Federal de Pelotas, Brazil
| | | | - Karine Massia Pereira
- Departamento de Microbiologia e Parasitologia, Instituto de Biologia, Universidade Federal de Pelotas, Brazil
| | | | - Wilson Cunico
- Laboratório de Química Aplicada a Bioativos (LaQuiABio), Universidade Federal de Pelotas, Brazil
| | - José Coan Campos
- Laboratório de Química Aplicada a Bioativos (LaQuiABio), Universidade Federal de Pelotas, Brazil
| | - Daniela Pires Gouvea
- Laboratório de Química Aplicada a Bioativos (LaQuiABio), Universidade Federal de Pelotas, Brazil
| | | | | | - Geonir Machado Siqueira
- Laboratório de Química Aplicada a Bioativos (LaQuiABio), Universidade Federal de Pelotas, Brazil.
| |
Collapse
|
24
|
Kaboudin B, Abbasi Shiran J. Novel one-pot four-component condensation cyclization reactions for the synthesis of thiazolidine-4-one and 3H-thiazoles. J Sulphur Chem 2018. [DOI: 10.1080/17415993.2018.1497168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Babak Kaboudin
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Jafar Abbasi Shiran
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| |
Collapse
|
25
|
Hwu JR, Gupta NK, Tsay SC, Huang WC, Albulescu IC, Kovacikova K, van Hemert MJ. Bis(benzofuran-thiazolidinone)s and bis(benzofuran-thiazinanone)s as inhibiting agents for chikungunya virus. Antiviral Res 2017; 146:96-101. [PMID: 28830714 DOI: 10.1016/j.antiviral.2017.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 11/20/2022]
Abstract
There are currently still no approved antiviral drugs to treat or prevent chikungunya virus (CHIKV) infections despite the fact that this arbovirus continues to cause outbreaks in Africa, Asia, and South- and Central-America. Thus 20 new conjugated compounds in the families of bis(benzofuran-1,3-thiazolidin-4-one)s and bis(benzofuran-1,3-thiazinan-4-one)s were designed based on the structural features of suramin. These new compounds were synthesized by chemical methods and their structures were confirmed spectroscopically. In CPE reduction assays, six of these new bis-conjugates inhibited CHIKV replication in Vero E6 cells with EC50 in the range of 1.9-2.7 μM and selectivity index values of ∼75 or higher. These results and compounds provide a starting point for further optimization, design, and synthesis of new antiviral agents for this (re)emerging disease.
Collapse
Affiliation(s)
- Jih Ru Hwu
- Department of Chemistry & Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Central University, Jhongli City 32001, Taiwan.
| | - Nitesh K Gupta
- Department of Chemistry & Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shwu-Chen Tsay
- Department of Chemistry & Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Central University, Jhongli City 32001, Taiwan
| | - Wen-Chieh Huang
- Department of Chemistry & Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Irina C Albulescu
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kristina Kovacikova
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn J van Hemert
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
26
|
Design and synthesis of some new 2,3′-bipyridine-5-carbonitriles as potential anti-inflammatory/antimicrobial agents. Future Med Chem 2017; 9:1413-1450. [DOI: 10.4155/fmc-2017-0071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aim: Inflammation may cause accumulation of fluid in the injured area, which may promote bacterial growth. Other reports disclosed that non-steroidal anti-inflammatory drugs may enhance progression of bacterial infection. Results: This work describes synthesis of new series of 2,3′-bipyridine-5-carbonitriles as structural analogs of etoricoxib, linked at position-6 to variously substituted thio or oxo moieties. Biological screening results revealed that compounds 2b, 4b, 7e and 8 showed significant acute and chronic AI activities and broad spectrum of antimicrobial activity. In addition, similarity ensemble approach was applied to predict potential biological targets of the tested compounds. Then, pharmacophore modeling study was employed to determine the most important structural parameters controlling bioactivity. Moreover, title compounds showed physicochemical properties within those considered adequate for drug candidates. Conclusion: This study explored the potential of such series of compounds as structural leads for further modification to develop a new class of dual AI-antimicrobial agents.
Collapse
|
27
|
Guan LP, Xia YN, Jin QH, Liu BY, Wang SH. Synthesis, potential anti-inflammatory and analgesic activities study of ( S )- N -substituted-1-phenyl-3,4-dihydroisoquinoline-2(1 H )-carboxamides. Bioorg Med Chem Lett 2017; 27:3378-3381. [DOI: 10.1016/j.bmcl.2017.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/15/2017] [Accepted: 06/02/2017] [Indexed: 11/28/2022]
|
28
|
Subhedar DD, Shaikh MH, Shingate BB, Nawale L, Sarkar D, Khedkar VM. Novel tetrazoloquinoline–thiazolidinone conjugates as possible antitubercular agents: synthesis and molecular docking. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00278a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Synthesis of new tetrazoloquinoline–thiazolidinone conjugates were achieved via one-pot three-component cyclocondensation in the presence of [DBUH][OAc] and studied antitubercular activity.
Collapse
Affiliation(s)
| | - Mubarak H. Shaikh
- Department of Chemistry
- Dr. Babasaheb Ambedkar Marathwada University
- Aurangabad
- India
| | - Bapurao B. Shingate
- Department of Chemistry
- Dr. Babasaheb Ambedkar Marathwada University
- Aurangabad
- India
| | - Laxman Nawale
- Combichem Bioresource Centre
- National Chemical Laboratory
- Pune
- India
| | - Dhiman Sarkar
- Combichem Bioresource Centre
- National Chemical Laboratory
- Pune
- India
| | - Vijay M. Khedkar
- School of Health Sciences
- University of KwaZulu Natal
- Durban
- South Africa
| |
Collapse
|