1
|
Zhang J, Yu J, Liu M, Xie Z, Lei X, Yang X, Huang S, Deng X, Wang Z, Tang G. Small-molecule modulators of tumor immune microenvironment. Bioorg Chem 2024; 145:107251. [PMID: 38442612 DOI: 10.1016/j.bioorg.2024.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
In recent years, tumor immunotherapy, aimed at increasing the activity of immune cells and reducing immunosuppressive effects, has attracted wide attention. Among them, immune checkpoint blocking (ICB) is the most commonly explored therapeutic approach. All approved immune checkpoint inhibitors (ICIs) are clinically effective monoclonal antibodies (mAbs). Compared with biological agents, small-molecule drugs have many unique advantages in tumor immunotherapy. Therefore, they also play an important role. Immunosuppressive signals such as PD-L1, IDO1, and TGF-β, etc. overexpressed in tumor cells form the tumor immunosuppressive microenvironment. In addition, the efficacy of multi-pathway combined immunotherapy has also been reported and verified. Here, we mainly reviewed the mechanism of tumor immunotherapy, analyzed the research status of small-molecule modulators, and discussed drug candidates' structure-activity relationship (SAR). It provides more opportunities for further research to design more immune small-molecule modulators with novel structures.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jia Yu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Meijing Liu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan 410007, China
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Röhrig UF, Majjigapu SR, Vogel P, Reynaud A, Pojer F, Dilek N, Reichenbach P, Ascenção K, Irving M, Coukos G, Michielin O, Zoete V. Structure-based optimization of type III indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. J Enzyme Inhib Med Chem 2022; 37:1773-1811. [PMID: 35758198 PMCID: PMC9246256 DOI: 10.1080/14756366.2022.2089665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The haem enzyme indoleamine 2,3-dioxygenase 1 (IDO1) catalyses the rate-limiting step in the kynurenine pathway of tryptophan metabolism and plays an essential role in immunity, neuronal function, and ageing. Expression of IDO1 in cancer cells results in the suppression of an immune response, and therefore IDO1 inhibitors have been developed for use in anti-cancer immunotherapy. Here, we report an extension of our previously described highly efficient haem-binding 1,2,3-triazole and 1,2,4-triazole inhibitor series, the best compound having both enzymatic and cellular IC50 values of 34 nM. We provide enzymatic inhibition data for almost 100 new compounds and X-ray diffraction data for one compound in complex with IDO1. Structural and computational studies explain the dramatic drop in activity upon extension to pocket B, which has been observed in diverse haem-binding inhibitor scaffolds. Our data provides important insights for future IDO1 inhibitor design.
Collapse
Affiliation(s)
- Ute F Röhrig
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland
| | - Somi Reddy Majjigapu
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland.,Laboratory of Glycochemistry and Asymmetric Synthesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pierre Vogel
- Laboratory of Glycochemistry and Asymmetric Synthesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Aline Reynaud
- Protein Production and Structure Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Florence Pojer
- Protein Production and Structure Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nahzli Dilek
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland
| | - Patrick Reichenbach
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, Epalinges, Switzerland
| | - Kelly Ascenção
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, Epalinges, Switzerland
| | - George Coukos
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, Epalinges, Switzerland
| | - Olivier Michielin
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne (CHUV), Ludwig Cancer Research-Lausanne Branch, Lausanne, CH-1011, Switzerland
| | - Vincent Zoete
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland.,Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, Epalinges, Switzerland
| |
Collapse
|
3
|
Tang K, Wang B, Yu B, Liu HM. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors and PROTAC-based degraders for cancer therapy. Eur J Med Chem 2021; 227:113967. [PMID: 34752953 DOI: 10.1016/j.ejmech.2021.113967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 12/30/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1), a known immunosuppressive enzyme that catalyzes the rate-limiting step in the oxidation of tryptophan (Trp) to kynurenine (Kyn), has received increasing attention as an attractive immunotherapeutic target for cancer therapy. Up to now, eleven small-molecule IDO1 inhibitors have entered clinical trials for the treatment of cancers. In addition, proteolysis targeting chimera (PROTAC) based degraders also provide prospects for cancer therapy. Herein we present a comprehensive overview of the medicinal chemistry strategies and potential therapeutic applications of IDO1 inhibitors in nonclinical trials and IDO1-PROTAC degraders.
Collapse
Affiliation(s)
- Kai Tang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Bo Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Chauhan J, Maddi SR, Dubey KD, Sen S. Developing C2-Aroyl Indoles as Novel Inhibitors of IDO1 and Understanding Their Mechanism of Inhibition via Mass Spectroscopy, QM/MM Calculations and Molecular Dynamics Simulation. Front Chem 2021; 9:691319. [PMID: 34336787 PMCID: PMC8319603 DOI: 10.3389/fchem.2021.691319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/25/2021] [Indexed: 11/13/2022] Open
Abstract
Indoleamine-2,3-dioxygenase (IDO1) and tryptophan dioxygenases are two heme based metalloenzymes that catalyze the tryptophan oxidation reaction by inserting molecular dioxygen to cleave the pyrrole ring. The mechanism of such ring cleavage reaction is of carcinogenic importance as the malignant tumors recruit this mechanism for immune invasion. In the presence study, we have synthesized a Novel C2 aroyl indoles inhibitor, 8d, which shows significant inhibition of 180 nM at IC50 scale. The binding and conformational changes that transpire after inhibitor binding were thoroughly studied by molecular docking and MD simulations. The subsequent QM/MM (Quantum Mechanical/Molecular Mechanical) calculations were used to proposed the mechanism of inhibition. The QM/MM calculations show that the reaction proceeds via multistep processes where the dioxygen insertion to the substrate 8a is the rate determining process. Theoretical mechanism is further supported by mass spectroscopy, and drug metabolism/pharmacokinetics study (DMPK) and metabolic stability of compound 8d was investigated in rat and human liver microsomes.
Collapse
Affiliation(s)
- Jyoti Chauhan
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | | | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Subhabrata Sen
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| |
Collapse
|
5
|
Zheng Y, Stafford PM, Stover KR, Mohan DC, Gupta M, Keske EC, Schiavini P, Villar L, Wu F, Kreft A, Thomas K, Raaphorst E, Pasangulapati JP, Alla SR, Sharma S, Mittapalli RR, Sagamanova I, Johnson SL, Reed MA, Weaver DF. A Series of 2-((1-Phenyl-1H-imidazol-5-yl)methyl)-1H-indoles as Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitors. ChemMedChem 2021; 16:2195-2205. [PMID: 33759400 DOI: 10.1002/cmdc.202100107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/19/2021] [Indexed: 12/17/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a promising therapeutic target in cancer immunotherapy and neurological disease. Thus, searching for highly active inhibitors for use in human cancers is now a focus of widespread research and development efforts. In this study, we report the structure-based design of 2-(5-imidazolyl)indole derivatives, a series of novel IDO1 inhibitors which have been designed and synthesized based on our previous study using N1-substituted 5-indoleimidazoles. Among these, we have identified one with a strong IDO1 inhibitory activity (IC50 =0.16 μM, EC50 =0.3 μM). Structural-activity relationship (SAR) and computational docking simulations suggest that a hydroxyl group favorably interacts with a proximal Ser167 residue in Pocket A, improving IDO1 inhibitory potency. The brain penetrance of potent compounds was estimated by calculation of the Blood Brain Barrier (BBB) Score and Brain Exposure Efficiency (BEE) Score. Many compounds had favorable scores and the two most promising compounds were advanced to a pharmacokinetic study which demonstrated that both compounds were brain penetrant. We have thus discovered a flexible scaffold for brain penetrant IDO1 inhibitors, exemplified by several potent, brain penetrant, agents. With this promising scaffold, we provide herein a basis for further development of brain penetrant IDO1 inhibitors.
Collapse
Affiliation(s)
- Yong Zheng
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Paul M Stafford
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Kurt R Stover
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Darapaneni Chandra Mohan
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Mayuri Gupta
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Eric C Keske
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Paolo Schiavini
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Laura Villar
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Fan Wu
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Alexander Kreft
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Kiersten Thomas
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Elana Raaphorst
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Jagadeesh P Pasangulapati
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Siva R Alla
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Simmi Sharma
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Ramana R Mittapalli
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Irina Sagamanova
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Shea L Johnson
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada
| | - Mark A Reed
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada.,Department of Chemistry, University of Toronto, Toronto, ON M55 3H6, Canada
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 2S8, Canada.,Department of Chemistry, University of Toronto, Toronto, ON M55 3H6, Canada.,Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
6
|
Röhrig UF, Majjigapu SR, Reynaud A, Pojer F, Dilek N, Reichenbach P, Ascencao K, Irving M, Coukos G, Vogel P, Michielin O, Zoete V. Azole-Based Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitors. J Med Chem 2021; 64:2205-2227. [PMID: 33557523 DOI: 10.1021/acs.jmedchem.0c01968] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The heme enzyme indoleamine 2,3-dioxygenase 1 (IDO1) plays an essential role in immunity, neuronal function, and aging through catalysis of the rate-limiting step in the kynurenine pathway of tryptophan metabolism. Many IDO1 inhibitors with different chemotypes have been developed, mainly targeted for use in anti-cancer immunotherapy. Lead optimization of direct heme iron-binding inhibitors has proven difficult due to the remarkable selectivity and sensitivity of the heme-ligand interactions. Here, we present experimental data for a set of closely related small azole compounds with more than 4 orders of magnitude differences in their inhibitory activities, ranging from millimolar to nanomolar levels. We investigate and rationalize their activities based on structural data, molecular dynamics simulations, and density functional theory calculations. Our results not only expand the presently known four confirmed chemotypes of sub-micromolar heme binding IDO1 inhibitors by two additional scaffolds but also provide a model to predict the activities of novel scaffolds.
Collapse
Affiliation(s)
- Ute F Röhrig
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Somi Reddy Majjigapu
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Laboratory of Glycochemistry and Asymmetric Synthesis, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Aline Reynaud
- Protein Production and Structure Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Florence Pojer
- Protein Production and Structure Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Nahzli Dilek
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Patrick Reichenbach
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| | - Kelly Ascencao
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| | - George Coukos
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland.,Department of Oncology, Ludwig Cancer Research-Lausanne Branch, University Hospital of Lausanne (CHUV), 1011 Lausanne, Switzerland
| | - Pierre Vogel
- Laboratory of Glycochemistry and Asymmetric Synthesis, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Olivier Michielin
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Department of Oncology, Ludwig Cancer Research-Lausanne Branch, University Hospital of Lausanne (CHUV), 1011 Lausanne, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.,Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| |
Collapse
|
7
|
Pradhan N, Akhtar N, Nath B, Peña-García J, Gupta A, Pérez-Sánchez H, Kumar S, Manna D. Inhibition of immunosuppressive indoleamine 2,3-dioxygenase by targeting the heme and apo-form. Chem Commun (Camb) 2021; 57:395-398. [DOI: 10.1039/d0cc06942f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antimalarial to immunomodulator: the potent quinine derivatives not only bind to apo-IDO1 but also undergo complexation with the free heme and perturb its rebinding, which could provide an inimitable advantage over other reported IDO1 inhibitors.
Collapse
Affiliation(s)
| | - Nasim Akhtar
- Indian Institute of Technology Guwahati
- Chemistry
- Guwahati
- India
| | - Barnali Nath
- Indian Institute of Technology Guwahati
- Biosciences and Bioengineering
- Guwahati
- India
| | - Jorge Peña-García
- Universidad Católica de Murcia
- Computer Engineering Department
- Guadalupe-30107
- Spain
| | - Anjali Gupta
- Indian Institute of Technology Guwahati
- Biosciences and Bioengineering
- Guwahati
- India
| | | | - Sachin Kumar
- Indian Institute of Technology Guwahati
- Biosciences and Bioengineering
- Guwahati
- India
| | - Debasis Manna
- Indian Institute of Technology Guwahati
- Chemistry
- Guwahati
- India
| |
Collapse
|
8
|
Singh R, Salunke DB. Diverse chemical space of indoleamine-2,3-dioxygenase 1 (Ido1) inhibitors. Eur J Med Chem 2020; 211:113071. [PMID: 33341650 DOI: 10.1016/j.ejmech.2020.113071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/26/2020] [Accepted: 11/28/2020] [Indexed: 12/20/2022]
Abstract
Indoleamine-2,3-dioxygenase 1 (IDO1) catalyses the first and rate limiting step of kynurenine pathway accounting for the major contributor of L-Tryptophan degradation. The Kynurenine metabolites are identified as essential cofactors, antagonists, neurotoxins, immunomodulators, antioxidants as well as carcinogens. The catalytic active site of IDO1 enzyme consists of hydrophobic Pocket-A positioned in the distal heme site and remains connected to a second hydrophobic Pocket-B towards the entrance of the active site. IDO1 enzyme also relates directly to the modulation of the innate and adaptive immune system. Various studies proved that the over expression of IDO1 enzyme play a predominant role in the escape of immunity during cancer progression. Recently, there has been considerable interest in evaluating the potential of IDO1 inhibitors to mobilize the body's immune system against solid tumours. In the last two decades, enormous attempts to advance new IDO1 inhibitors are on-going both in pharmaceutical industries and in academia which resulted in the discovery of a diverse range of selective and potent IDO1 inhibitors. The IDO1 inhibitors have therapeutic utility in various diseases and in the near future, it may have utility in the treatment of COVID-19. Despite various reviews on IDO1 inhibitors in last five years, none of the reviews provide a complete overview of diverse chemical space including naturally occurring and synthetic IDO1 inhibitors with detailed structure activity relationship studies. The present work provides a complete overview on the IDO1 inhibitors known in the literature so far along with the Structure-Activity Relationship (SAR) in each class of compounds.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160 014, India
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160 014, India; National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
9
|
Feng X, Liao D, Liu D, Ping A, Li Z, Bian J. Development of Indoleamine 2,3-Dioxygenase 1 Inhibitors for Cancer Therapy and Beyond: A Recent Perspective. J Med Chem 2020; 63:15115-15139. [PMID: 33215494 DOI: 10.1021/acs.jmedchem.0c00925] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) has received increasing attention due to its immunosuppressive function in connection with various diseases, including cancer. A recent increase in the understanding of IDO1 has significantly contributed to the discovery of numerous novel inhibitors, but the latest clinical outcomes raised questions and have indicated a future direction of IDO1 inhibition for therapeutic approaches. Herein, we present a comprehensive review of IDO1, discussing the latest advances in understanding the IDO1 structure and mechanism, an overview of recent IDO1 inhibitor discoveries and potential therapeutic applications to provide helpful information for medicinal chemists investigating IDO1 inhibitors.
Collapse
Affiliation(s)
- Xi Feng
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Dongdong Liao
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Dongyu Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - An Ping
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, People's Republic of China
| |
Collapse
|
10
|
Identification of potential indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitors by an FBG-based 3D QSAR pharmacophore model. J Mol Graph Model 2020; 99:107628. [DOI: 10.1016/j.jmgm.2020.107628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 01/08/2023]
|
11
|
Cui G, Lai F, Wang X, Chen X, Xu B. Design, synthesis and biological evaluation of indole-2-carboxylic acid derivatives as IDO1/TDO dual inhibitors. Eur J Med Chem 2019; 188:111985. [PMID: 31881488 DOI: 10.1016/j.ejmech.2019.111985] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are involved in the key steps of tryptophan metabolism and are potential new targets for tumor immunotherapy. In this work, a variety of indole-2-carboxylic acid derivatives were synthesized, and their inhibitory activities against both enzymes along with structure-activity relationships were investigated. As a result, a number of 6-acetamido-indole-2-carboxylic acid derivatives were found to be potent dual inhibitors with IC50 values at low micromolar levels. Among them, compound 9o-1 was the most potent inhibitor with an IC50 value of 1.17 μM for IDO1, and 1.55 μM for TDO, respectively. In addition, a para-benzoquinone derivative 9p-O, resulted from the oxidation of compound 9p, was also identified and it showed strong inhibition against the two enzymes with IC50 values at the double digit nanomolar level. Using molecular docking and molecular dynamic simulations, we predicted the binding modes of this class of compounds within IDO1 and TDO binding pocket. The results provide insights for further structural optimization of this series of IDO1/TDO dual inhibitors.
Collapse
Affiliation(s)
- Guonan Cui
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing, 100050, China
| | - Fangfang Lai
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing, 100050, China
| | - Xiaoyu Wang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing, 100050, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing, 100050, China.
| | - Bailing Xu
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
12
|
Panda S, Pradhan N, Chatterjee S, Morla S, Saha A, Roy A, Kumar S, Bhattacharyya A, Manna D. 4,5-Disubstituted 1,2,3-triazoles: Effective Inhibition of Indoleamine 2,3-Dioxygenase 1 Enzyme Regulates T cell Activity and Mitigates Tumor Growth. Sci Rep 2019; 9:18455. [PMID: 31804586 PMCID: PMC6895048 DOI: 10.1038/s41598-019-54963-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/21/2019] [Indexed: 01/29/2023] Open
Abstract
The improvement of body's own immune system is considered one of the safest approaches to fight against cancer and several other diseases. Excessive catabolism of the essential amino acid, L-tryptophan (L-Trp) assists the cancer cells to escape normal immune obliteration. The formation of disproportionate kynurenine and other downstream metabolites suppress the T cell functions. Blocking of this immunosuppressive mechanism is considered as a promising approach against cancer, neurological disorders, autoimmunity, and other immune-mediated diseases. Overexpression of indoleamine 2,3-dioxygenase 1 (IDO1) enzyme is directly related to the induction of immunosuppressive mechanisms and represents an important therapeutic target. Several classes of small molecule-based IDO1 inhibitors have been already reported, but only few compounds are currently being evaluated in various stages of clinical trials as adjuvants or in combination with chemo- and radiotherapies. In the quest for novel structural class(s) of IDO1 inhibitors, we developed a series of 4,5-disubstituted 1,2,3-triazole derivatives. The optimization of 4,5-disubstituted 1,2,3-triazole scaffold and comprehensive biochemical and biophysical studies led to the identification of compounds, 3i, 4i, and 4k as potent and selective inhibitors of IDO1 enzyme with IC50 values at a low nanomolar level. These potent compounds also showed strong IDO1 inhibitory activities in MDA-MB-231 cells with no/negligible level of cytotoxicity. The T cell activity studies revealed that controlled regulation of IDO1 enzyme activity in the presence of these potent compounds could induce immune response against breast cancer cells. The compounds also showed excellent in vivo antitumor efficacy (of tumor growth inhibition = 79-96%) in the female Swiss albino mice. As a consequence, this study describes the first example of 4,5-disubstituted 1,2,3-triazole based IDO1 inhibitors with potential applications for immunotherapeutic studies.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/chemistry
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- Carcinoma, Ehrlich Tumor/drug therapy
- Carcinoma, Ehrlich Tumor/immunology
- Carcinoma, Ehrlich Tumor/pathology
- Cell Line, Tumor
- Drug Screening Assays, Antitumor
- Enzyme Assays
- Female
- HEK293 Cells
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Inhibitory Concentration 50
- Kynurenine/immunology
- Kynurenine/metabolism
- Metabolic Networks and Pathways/drug effects
- Metabolic Networks and Pathways/immunology
- Mice
- Molecular Docking Simulation
- Primary Cell Culture
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Triazoles/chemistry
- Triazoles/pharmacology
- Triazoles/therapeutic use
- Tryptophan/immunology
- Tryptophan/metabolism
- Tryptophan Oxygenase/antagonists & inhibitors
- Tryptophan Oxygenase/chemistry
- Tryptophan Oxygenase/metabolism
- Tumor Escape/drug effects
Collapse
Affiliation(s)
- Subhankar Panda
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nirmalya Pradhan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Soumya Chatterjee
- Department of Zoology, University of Calcutta, Kolkata, 700019, West Bengal, India
| | - Sudhir Morla
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Abhishek Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Ashalata Roy
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sachin Kumar
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | | | - Debasis Manna
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
13
|
Chen S, Guo W, Liu X, Sun P, Wang Y, Ding C, Meng L, Zhang A. Design, synthesis and antitumor study of a series of N-Cyclic sulfamoylaminoethyl substituted 1,2,5-oxadiazol-3-amines as new indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitors. Eur J Med Chem 2019; 179:38-55. [DOI: 10.1016/j.ejmech.2019.06.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 11/16/2022]
|
14
|
Röhrig UF, Reynaud A, Majjigapu SR, Vogel P, Pojer F, Zoete V. Inhibition Mechanisms of Indoleamine 2,3-Dioxygenase 1 (IDO1). J Med Chem 2019; 62:8784-8795. [PMID: 31525930 DOI: 10.1021/acs.jmedchem.9b00942] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the rate-limiting step in the kynurenine pathway of tryptophan metabolism, which is involved in immunity, neuronal function, and aging. Its implication in pathologies such as cancer and neurodegenerative diseases has stimulated the development of IDO1 inhibitors. However, negative phase III clinical trial results of the IDO1 inhibitor epacadostat in cancer immunotherapy call for a better understanding of the role and the mechanisms of IDO1 inhibition. In this work, we investigate the molecular inhibition mechanisms of four known IDO1 inhibitors and of two quinones in detail, using different experimental and computational approaches. We also determine for the first time the X-ray structure of the highly efficient 1,2,3-triazole inhibitor MMG-0358. Based on our results and a comprehensive literature overview, we propose a classification scheme for IDO1 inhibitors according to their inhibition mechanism, which will be useful for further developments in the field.
Collapse
Affiliation(s)
- Ute F Röhrig
- Molecular Modeling Group , SIB Swiss Institute of Bioinformatics , 1015 Lausanne , Switzerland
| | - Aline Reynaud
- Protein Production and Structure Core Facility, School of Life Sciences , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Somi Reddy Majjigapu
- Molecular Modeling Group , SIB Swiss Institute of Bioinformatics , 1015 Lausanne , Switzerland.,Laboratory of Glycochemistry and Asymmetric Synthesis , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Pierre Vogel
- Laboratory of Glycochemistry and Asymmetric Synthesis , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Florence Pojer
- Protein Production and Structure Core Facility, School of Life Sciences , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland
| | - Vincent Zoete
- Molecular Modeling Group , SIB Swiss Institute of Bioinformatics , 1015 Lausanne , Switzerland.,Department of Fundamental Oncology , University of Lausanne, Ludwig Lausanne Branch , 1066 Epalinges , Switzerland
| |
Collapse
|
15
|
Bai Z, Huang H, Chen J, Zhang X, Ding Y. Identification of novel imidazoles as IDO1 inhibitors through microwave‐assisted one‐pot multicomponent reactions. Arch Pharm (Weinheim) 2019; 352:e1900165. [DOI: 10.1002/ardp.201900165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Zhizheng Bai
- School of Pharmacy Nanjing Tech University Nanjing China
| | - Huidan Huang
- College of Engineering, China Pharmaceutical University Nanjing China
| | - Jianqiu Chen
- College of Engineering, China Pharmaceutical University Nanjing China
| | - Xiaoyun Zhang
- Jiangsu Pharmaceutical Research Institute Jiangsu China
| | - Yimei Ding
- School of Pharmacy Nanjing Tech University Nanjing China
| |
Collapse
|
16
|
Jain S, Bhardwaj B, Amin SA, Adhikari N, Jha T, Gayen S. Exploration of good and bad structural fingerprints for inhibition of indoleamine-2,3-dioxygenase enzyme in cancer immunotherapy using Monte Carlo optimization and Bayesian classification QSAR modeling. J Biomol Struct Dyn 2019; 38:1683-1696. [PMID: 31057090 DOI: 10.1080/07391102.2019.1615000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Indoleamine-2,3-dioxygenase 1 (IDO1) is an extrahepatic, heme-containing and tryptophan-catalyzing enzyme responsible for causing blockade of T-cell proliferation and differentiation by depleting tryptophan level in cancerous cells. Therefore, inhibition of IDO1 may be a useful strategy for immunotherapy against cancer. In this study, 448 structurally diverse IDO1 inhibitors with a wide range of activity has been taken into consideration for classification QSAR analysis through Monte Carlo Optimization by using different splits as well as different combinations of SMILES-based, graph-based and hybrid descriptors. The best model from Monte Carlo optimization was interpreted to find out the good and bad structural fingerprints for IDO1 and further justified by using Bayesian classification QSAR modeling. Among the three splits in Monte Carlo optimization, the statistics of the best model was obtained from Split 3: sensitivity = 0.87, specificity = 0.91, accuracy = 0.89 and MCC = 0.78. In Bayesian classification modeling, the ROC scores for training and test set were found to be 0.91 and 0.86, respectively. The combined modeling analysis revealed that the presence of aryl hydrazyl sulphonyl moiety, furazan ring, halogen substitution, nitro group and hetero atoms in aromatic system can be very useful in designing IDO1 inhibitors. All the good and bad structural fingerprints for IDO1 were identified and are justified by correlating these fragments to the inhibition of IDO1 enzyme. These structural fingerprints will guide the researchers in this field to design better inhibitors against IDO1 enzyme for cancer immunotherapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sanskar Jain
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. HarisinghGour University, Sagar, Madhya Pradesh, India
| | - Bhagwati Bhardwaj
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. HarisinghGour University, Sagar, Madhya Pradesh, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal and Pharmaceutical Chemistry, Jadavpur University, Kolkata, West Bengal, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal and Pharmaceutical Chemistry, Jadavpur University, Kolkata, West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Department of Pharmaceutical Technology, Division of Medicinal and Pharmaceutical Chemistry, Jadavpur University, Kolkata, West Bengal, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. HarisinghGour University, Sagar, Madhya Pradesh, India
| |
Collapse
|
17
|
Acúrcio RC, Scomparin A, Satchi‐Fainaro R, Florindo HF, Guedes RC. Computer‐aided drug design in new druggable targets for the next generation of immune‐oncology therapies. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rita C. Acúrcio
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv Israel
| | - Helena F. Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
| | - Rita C. Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy Universidade de Lisboa Lisbon Portugal
| |
Collapse
|
18
|
Xu X, Ren J, Ma Y, Liu H, Rong Q, Feng Y, Wang Y, Cheng Y, Ge R, Li Z, Bian J. Discovery of cyanopyridine scaffold as novel indoleamine-2,3-dioxygenase 1 (IDO1) inhibitors through virtual screening and preliminary hit optimisation. J Enzyme Inhib Med Chem 2019; 34:250-263. [PMID: 30734612 PMCID: PMC6327983 DOI: 10.1080/14756366.2018.1480614] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
With the aim of discovering novel IDO1 inhibitors, a combined similarity search and molecular docking approach was employed to the discovery of 32 hit compounds. Testing the screened hit compounds has led to several novel submicromolar inhibitors. Especially for compounds LVS-019 with cyanopyridine scaffold, showed good IDO1 inhibitory activity. To discover more compounds with similar structures to LVS-019, a shape-based model was then generated on the basis of it and the second-round virtual screening was carried out leading to 23 derivatives. Molecular docking studies suggested a possible binding mode of LVS-019, which provides a good starting point for the development of cyanopyridine scaffold compounds as potent IDO1 inhibitor. To improve potency of these hits, we further designed and synthesised another 14 derivatives of LVS-019. Among these compounds, LBJ-10 showed improved potency compared to the hits and displayed comparable potency to the control GDC-0919 analogue. LBJ-10 can serve as ideal leads for further modifications as IDO1 inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Xi Xu
- a State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing , People's Republic of China.,b Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing , People's Republic of China
| | - Jie Ren
- a State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing , People's Republic of China.,b Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing , People's Republic of China
| | - Yinghe Ma
- a State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing , People's Republic of China.,b Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing , People's Republic of China
| | - Hongting Liu
- a State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing , People's Republic of China
| | - Quanjin Rong
- a State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing , People's Republic of China
| | - Yifan Feng
- a State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing , People's Republic of China
| | - Yameng Wang
- a State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing , People's Republic of China
| | - Yu Cheng
- a State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing , People's Republic of China
| | - Ruijia Ge
- c The Madeira School , McLean , VA , USA
| | - Zhiyu Li
- a State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing , People's Republic of China.,b Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing , People's Republic of China
| | - Jinlei Bian
- a State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing , People's Republic of China.,b Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing , People's Republic of China
| |
Collapse
|
19
|
Panda S, Pradhan N, Manna D. Ring-Opening of Indoles: An Unconventional Route for the Transformation of Indoles to 1 H-Pyrazoles Using Lewis Acid. ACS COMBINATORIAL SCIENCE 2018; 20:573-578. [PMID: 30199224 DOI: 10.1021/acscombsci.8b00071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An unusual transformation of indoles to pyrazoles via an aromatic ring-opening strategy has been developed. The salient feature of this strategy involves the C2-N1 bond opening and concomitant cyclization reaction of the C2═C3 bond of the indole moiety with the tosylhydrazone, which proceeds under transition-metal and ligand free conditions. This ring-opening functionalization of indoles provides a wide scope of differently substituted pyrazoles.
Collapse
Affiliation(s)
- Subhankar Panda
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Nirmalya Pradhan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Debasis Manna
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
20
|
Roy A, Das S, Manna D. Effect of Molecular Crowding Agents on the Activity and Stability of Immunosuppressive Enzyme Indoleamine 2,3‐Dioxygenase 1. ChemistrySelect 2018. [DOI: 10.1002/slct.201801366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ashalata Roy
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati-781039 Assam India
| | - Sreeparna Das
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati-781039 Assam India
| | - Debasis Manna
- Department of ChemistryIndian Institute of Technology Guwahati Guwahati-781039 Assam India
| |
Collapse
|
21
|
Abstract
Iron-containing enzymes such as heme enzymes play crucial roles in biological systems. Three distinct heme-containing dioxygenase enzymes, tryptophan 2,3-dioxygenase (TDO), indoleamine 2,3-dioxygenase 1 (IDO1) and indoleamine 2,3-dioxygenase 2 (IDO2) catalyze the initial and rate-limiting step of l-tryptophan catabolism through the kynurenine pathway in mammals. Overexpression of these enzymes causes depletion of tryptophan and the accumulation of metabolic products, which contributes to tumor immune tolerance and immune dysregulation in a variety of disease pathologies. In the past few decades, IDO1 has garnered the most attention as a therapeutic target with great potential in cancer immunotherapy. Many potential inhibitors of IDO1 have been designed, synthesized and evaluated, among which indoximod (d-1-MT), INCB024360, GDC-0919 (formerly NLG-919), and an IDO1 peptide-based vaccine have advanced to the clinical trial stage. However, recently, the roles of TDO and IDO2 have been elucidated in immune suppression. In this review, the current drug discovery landscape for targeting TDO, IDO1 and IDO2 is highlighted, with particular attention to the recent use of drugs in clinical trials. Moreover, the crystal structures of these enzymes, in complex with inhibitors, and the mechanisms of Trp catabolism in the first step, are summarized to provide information for facilitating the discovery of new enzyme inhibitors.
Collapse
Affiliation(s)
- Daojing Yan
- Department of Chemistry & Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China.
| | | | | |
Collapse
|
22
|
Weng T, Qiu X, Wang J, Li Z, Bian J. Recent discovery of indoleamine-2,3-dioxygenase 1 inhibitors targeting cancer immunotherapy. Eur J Med Chem 2018; 143:656-669. [DOI: 10.1016/j.ejmech.2017.11.088] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/04/2017] [Accepted: 11/28/2017] [Indexed: 12/23/2022]
|
23
|
Pradhan N, Paul S, Deka SJ, Roy A, Trivedi V, Manna D. Identification of Substituted 1H
-Indazoles as Potent Inhibitors for Immunosuppressive Enzyme Indoleamine 2,3-Dioxygenase 1. ChemistrySelect 2017. [DOI: 10.1002/slct.201700906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Nirmalya Pradhan
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati- 781039, Assam India
| | - Saurav Paul
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati- 781039, Assam India
| | - Suman Jyoti Deka
- Department of Bioscience and Bioengineering; Indian Institute of Technology Guwahati; Guwahati- 781039, Assam India
| | - Ashalata Roy
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati- 781039, Assam India
| | - Vishal Trivedi
- Department of Bioscience and Bioengineering; Indian Institute of Technology Guwahati; Guwahati- 781039, Assam India
| | - Debasis Manna
- Department of Chemistry; Indian Institute of Technology Guwahati; Guwahati- 781039, Assam India
| |
Collapse
|
24
|
Coletti A, Greco FA, Dolciami D, Camaioni E, Sardella R, Pallotta MT, Volpi C, Orabona C, Grohmann U, Macchiarulo A. Advances in indoleamine 2,3-dioxygenase 1 medicinal chemistry. MEDCHEMCOMM 2017; 8:1378-1392. [PMID: 30108849 PMCID: PMC6072487 DOI: 10.1039/c7md00109f] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) mediates multiple immunoregulatory processes including the induction of regulatory T cell differentiation and activation, suppression of T cell immune responses and inhibition of dendritic cell function, which impair immune recognition of cancer cells and promote tumor growth. On this basis, this enzyme is widely recognized as a valuable drug target for the development of immunotherapeutic small molecules in oncology. Although medicinal chemistry has made a substantial contribution to the discovery of numerous chemical classes of potent IDO1 inhibitors in the past 20 years, only very few compounds have progressed in clinical trials. In this review, we provide an overview of the current understanding of structure-function relationships of the enzyme, and discuss structure-activity relationships of selected classes of inhibitors that have shaped the hitherto few successes of IDO1 medicinal chemistry. An outlook opinion is also given on trends in the design of next generation inhibitors of the enzyme.
Collapse
Affiliation(s)
- Alice Coletti
- Department of Pharmaceutical Sciences , University of Perugia , via del Liceo 1 , 06123 Perugia , Italy . ; ; Tel: +39 075 585 5160
| | - Francesco Antonio Greco
- Department of Pharmaceutical Sciences , University of Perugia , via del Liceo 1 , 06123 Perugia , Italy . ; ; Tel: +39 075 585 5160
| | - Daniela Dolciami
- Department of Pharmaceutical Sciences , University of Perugia , via del Liceo 1 , 06123 Perugia , Italy . ; ; Tel: +39 075 585 5160
| | - Emidio Camaioni
- Department of Pharmaceutical Sciences , University of Perugia , via del Liceo 1 , 06123 Perugia , Italy . ; ; Tel: +39 075 585 5160
| | - Roccaldo Sardella
- Department of Pharmaceutical Sciences , University of Perugia , via del Liceo 1 , 06123 Perugia , Italy . ; ; Tel: +39 075 585 5160
| | - Maria Teresa Pallotta
- Department of Experimental Medicine , University of Perugia , P.le Gambuli , 06132 Perugia , Italy
| | - Claudia Volpi
- Department of Experimental Medicine , University of Perugia , P.le Gambuli , 06132 Perugia , Italy
| | - Ciriana Orabona
- Department of Experimental Medicine , University of Perugia , P.le Gambuli , 06132 Perugia , Italy
| | - Ursula Grohmann
- Department of Experimental Medicine , University of Perugia , P.le Gambuli , 06132 Perugia , Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences , University of Perugia , via del Liceo 1 , 06123 Perugia , Italy . ; ; Tel: +39 075 585 5160
| |
Collapse
|
25
|
Paul S, Roy A, Deka SJ, Panda S, Srivastava GN, Trivedi V, Manna D. Synthesis and evaluation of oxindoles as promising inhibitors of the immunosuppressive enzyme indoleamine 2,3-dioxygenase 1. MEDCHEMCOMM 2017; 8:1640-1654. [PMID: 30108875 DOI: 10.1039/c7md00226b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/15/2017] [Indexed: 01/29/2023]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is considered as an important therapeutic target for the treatment of cancer, chronic infections and other diseases that are associated with immune suppression. Recent developments in understanding the catalytic mechanism of the IDO1 enzyme revealed that conversion of l-tryptophan (l-Trp) to N-formylkynurenine proceeded through an epoxide intermediate state. Accordingly, we synthesized a series of 3-substituted oxindoles from l-Trp, tryptamine and isatin. Compounds with C3-substituted oxindole moieties showed moderate inhibitory activity against the purified human IDO1 enzyme. Their optimization led to the identification of potent compounds, 6, 22, 23 and 25 (IC50 = 0.19 to 0.62 μM), which are competitive inhibitors of IDO1 with respect to l-Trp. These potent compounds also showed IDO1 inhibition potencies in the low-micromolar range (IC50 = 0.33-0.49 μM) in MDA-MB-231 cells. The cytotoxicity of these potent compounds was trivial in different model cancer (MDA-MB-231, A549 and HeLa) cells and macrophage (J774A.1) cells. Stronger selectivity for the IDO1 enzyme (124 to 210-fold) over the tryptophan 2,3-dioxygenase (TDO) enzyme was also observed for these compounds. These results suggest that the oxindole moiety of the compounds could mimic the epoxide intermediate state of l-Trp. Therefore, the structural simplicity and low-micromolar inhibition potencies of these 3-substituted oxindoles make them quite attractive for further investigation of IDO1 function and immunotherapeutic applications.
Collapse
Affiliation(s)
- Saurav Paul
- Department of Chemistry , Indian Institute of Technology Guwahati , Assam 781039 , India . dmanna@iitg. ernet.in
| | - Ashalata Roy
- Department of Chemistry , Indian Institute of Technology Guwahati , Assam 781039 , India . dmanna@iitg. ernet.in
| | - Suman Jyoti Deka
- Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Assam 781039 , India
| | - Subhankar Panda
- Department of Chemistry , Indian Institute of Technology Guwahati , Assam 781039 , India . dmanna@iitg. ernet.in
| | - Gopal Narayan Srivastava
- Department of Chemistry , Indian Institute of Technology Guwahati , Assam 781039 , India . dmanna@iitg. ernet.in
| | - Vishal Trivedi
- Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Assam 781039 , India
| | - Debasis Manna
- Department of Chemistry , Indian Institute of Technology Guwahati , Assam 781039 , India . dmanna@iitg. ernet.in
| |
Collapse
|
26
|
Panda S, Roy A, Deka SJ, Trivedi V, Manna D. Fused Heterocyclic Compounds as Potent Indoleamine-2,3-dioxygenase 1 Inhibitors. ACS Med Chem Lett 2016; 7:1167-1172. [PMID: 27994758 DOI: 10.1021/acsmedchemlett.6b00359] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/15/2016] [Indexed: 01/24/2023] Open
Abstract
Uncontrolled metabolism of l-tryptophan (l-Trp) in the immune system has been recognized as a critical cellular process in immune tolerance. Indoleamine 2,3-dioxygenase 1 (IDO1) enzyme plays an important role in the metabolism of a local l-Trp through the kynurenine pathway in the immune systems. In this regard, IDO1 has emerged as a therapeutic target for the treatment of diseases that are associated with immune suppression like chronic infections, cancer, and others. In this study, we synthesized a series of pyridopyrimidine, pyrazolopyranopyrimidine, and dipyrazolopyran derivatives. Further lead optimizations directed to the identification of potent compounds, 4j and 4l (IC50 = 260 and 151 nM, respectively). These compounds also exhibited IDO1 inhibitory activities in the low nanomolar range in MDA-MB-231 cells with very low cytotoxicity. Stronger selectivity for the IDO1 enzyme (>300-fold) over tryptophan 2,3-dioxygenase (TDO) enzyme was also observed for these compounds. Hence, these fused heterocyclic compounds are attractive candidates for the advanced study of IDO1-dependent cellular function and immunotherapeutic applications.
Collapse
Affiliation(s)
- Subhankar Panda
- Department
of Chemistry and ‡Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Ashalata Roy
- Department
of Chemistry and ‡Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| | | | | | - Debasis Manna
- Department
of Chemistry and ‡Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|