1
|
Krátký M, Houngbedji NH, Vinšová J. Hydrazinecarboxamides: Comprehensive review of their anticancer, anticonvulsive, anti-inflammatory, enzyme inhibition, antioxidant and other activities. Eur J Med Chem 2024; 279:116835. [PMID: 39270449 DOI: 10.1016/j.ejmech.2024.116835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
This review comprehensively summarizes recent advances in the field of hydrazinecarboxamide (semicarbazide) derivatives, highlighting their significant therapeutic potential and a broad spectrum of biological activities. As a promising and privileged scaffold in medicinal chemistry, hydrazinecarboxamides have emerged as a versatile class of compounds with significant bioactive properties. Based on their substitutions, their structural diversity permits extensive chemical modifications to enhance their interactions with various biological targets to combat multiple disorders. Notable, this group of compounds has shown significant efficacy against numerous cancer cell lines through diverse mechanisms of action and potent inhibition of enzymes, including cholinesterases, carbonic anhydrases, cyclooxygenases, lipoxygenases, etc. Beyond these, they have also been investigated for their anticonvulsive, analgesic/anti-inflammatory, and antioxidant properties, with detailed structure-activity relationships. For many applications, the hybridization of hydrazinecarboxamides with other bioactive scaffolds, such as primaquine, is of particular interest and offers advantages. Despite their promises, challenges such as suboptimal physicochemical properties and selectivity issues of certain derivatives require further effort. The review aims to inspire future innovation in the design and development of new potential hydrazinecarboxamide-based drugs, addressing existing challenges and expanding their therapeutic applications.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic.
| | - Neto-Honorius Houngbedji
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| |
Collapse
|
2
|
Krátký M, Houngbedji NH, Vinšová J. Hidden potential of hydrazinecarboxamides (semicarbazides) as potential antimicrobial agents: A review. Biomed Pharmacother 2024; 180:117556. [PMID: 39405901 DOI: 10.1016/j.biopha.2024.117556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
Hydrazinecarboxamides (semicarbazides) are increasingly recognized as a versatile scaffold in developing potential antimicrobial agents. In addition to a brief overview of the synthetic methods to prepare them, this review comprehensively analyses their antimicrobial properties. These derivatives have demonstrated potent activity against a broad spectrum of mycobacteria, bacterial and fungal pathogens, highlighting their potential to address critical human health challenges, including neglected diseases, and to combat growing antimicrobial resistance. They have also been investigated for their antiviral and antiparasitic properties. The review also summarizes structure-activity relationships, known mechanisms of action and emphasizes the crucial role of the hydrazinecarboxamide moiety in facilitating interactions with biological targets. The combination of hydrazinecarboxamides with other bioactive scaffolds (primaquine, isoniazid, etc.) has led to an identification of promising drug candidates, including those active against resistant strains, offering a promising approach for future innovations in the field of antimicrobial therapy. Attention is also drawn to limitations of hydrazinecarboxamides (poor physicochemical properties, cytotoxicity to human cells, and insufficient target selectivity), which may hinder their clinical application.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 03 Hradec Králové, Czech Republic.
| | - Neto-Honorius Houngbedji
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 03 Hradec Králové, Czech Republic
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Akademika Heyrovského 1203, 500 03 Hradec Králové, Czech Republic
| |
Collapse
|
3
|
Khwaza V, Oselusi SO, Morifi E, Nwamadi M, Hlope KS, Ndinteh DT, Matsebatlela TM, Oyedeji OO, Aderibigbe BA. Synthesis of Ursolic Acid-based Hybrids: In Vitro Antibacterial, Cytotoxicity Studies, In Silico Physicochemical and Pharmacokinetic Properties. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2024; 19:232-253. [PMID: 38317466 DOI: 10.2174/0127724344272444231114103144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND There is a critical need for the discovery of novel and effective antibacterial or anticancer molecules. OBJECTIVES Amine-linked ursolic acid-based hybrid compounds were prepared in good yields in the range of 60-68%. METHODS Their molecular structures were successfully confirmed using different spectroscopic methods including 1H/13C NMR, UHPLC-HRMS and FTIR spectroscopy. The in vitro cytotoxicity of some of these hybrid molecules against three human tumour cells, such as MDA-MB23, MCF7, and HeLa was evaluated using the MTT colorimetric method. RESULT Their antibacterial efficacy was evaluated against eleven bacterial pathogens using a serial dilution assay. Majority of the bacterial strains were inhibited significantly by compounds 17 and 24, with the lowest MIC values in the range of 15.3-31.25 μg/mL. Compound 16 exhibited higher cytotoxicity against HeLa cells than ursolic acid, with an IC50 value of 43.64 g/mL. CONCLUSION The in vitro antibacterial activity and cytotoxicity of these hybrid compounds demonstrated that ursolic acid-based hybrid molecules are promising compounds. Further research into ursolic acid-based hybrid compounds is required.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice, Eastern Cape, South Africa
| | - Samson Olaitan Oselusi
- School of Pharmacy, University of the Western Cape, Bellville, Cape Town 7535, South Africa
| | - Eric Morifi
- School of Chemistry, Mass Spectrometry Division, University of Witwatersrand, Johannesburg, South Africa
| | - Mutshinyalo Nwamadi
- Department of Chemistry, University of Johannesburg, Auckland Park Campus, Johannesburg, South Africa
| | - Kamogelo S Hlope
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Science and Agriculture, University of Limpopo, South Africa
| | - Derek Tantoh Ndinteh
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Thabe Moses Matsebatlela
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Science and Agriculture, University of Limpopo, South Africa
| | - Opeoluwa Oyehan Oyedeji
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice, Eastern Cape, South Africa
| | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Alice, Eastern Cape, South Africa
| |
Collapse
|
4
|
Richa, Kushwaha N, Negi S, Kumar A, Zangrando E, Kataria R, Saini V. Synthesis, characterization and utility of a series of novel copper(II) complexes as excellent surface disinfectants against nosocomial infections. Dalton Trans 2021; 50:13699-13711. [PMID: 34013925 DOI: 10.1039/d1dt00199j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nosocomial infections are among the major public health concerns, especially during the ongoing Covid19 pandemic. There is a great demand for novel chemical agents that are capable of killing specific pathogens or augmenting the efficiency of existing disinfectants. Herein, we report the synthesis and comprehensive characterization (through FT-IR, HR-MS, SEM, TGA-DSC, CV, UV and SCXRD analyses) of six novel copper(II) complexes, [CuL(4X-An)] (5a-5d), [CuL(An)] (5e), and [CuL(benzhydrylamine)] (5f), and their evaluation as anti-microbial agents against WHO priority pathogens, confirming their possible use in hospital settings. The compounds were synthesized with a Schiff base (H2L) obtained by the condensation reaction of 3-acetyl-6-methyl-2H-pyran-2,4(3H)-dione (DHA) and benzohydrazide and further addition of different p-substituted aniline (An) molecules. Single crystal structure analyses revealed that the aniline derivatives are isostructural to the copper atom in a square planar coordination, while the benzhydrylamine complex forms a dimer (5f), with a square pyramidal coordination geometry for the metal. Time-kill kinetics and reduced microbial recovery studies revealed excellent bactericidal action against Staphylococcus aureus and Enterococcus faecalis. Particularly, the novel compound 5f significantly reduced microbial recovery compared to ethanol-based sanitisers. In fact, addition of 5f to 70% ethanol remarkably synergized the killing with >6-log reduction in microbial burden. Overall, our novel compounds would increase the disinfection efficacy in hospitals and industries, thereby improving the efficiency and minimizing the risk of infections.
Collapse
Affiliation(s)
- Richa
- Department of Chemistry & Centre of Advance Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| | - Namrata Kushwaha
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| | - Sheetal Negi
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| | - Ajay Kumar
- Department of Chemistry & Centre of Advance Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Ramesh Kataria
- Department of Chemistry & Centre of Advance Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| | - Vikram Saini
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India.
| |
Collapse
|
5
|
Molecular Dynamics Simulation of 2-Benzimidazolyl-Urea with DPPC Lipid Membrane and Comparison with a Copper(II) Complex Derivative. MEMBRANES 2021; 11:membranes11100743. [PMID: 34677508 PMCID: PMC8537910 DOI: 10.3390/membranes11100743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022]
Abstract
Benzimidazole derivatives have gained attention recently due to their wide pharmacological activity acting as anti-inflammatory, hypotensive, analgesic, and anti-aggregatory agents. They are also common ligands in transition metal coordination chemistry, forming complex compounds with enhanced biological properties, especially in targeted cancer therapy. A key issue to understand anti-tumour effects is drug permeability through cellular membranes, as poor permeability outcomes can avert further futile drug development. In this work, we conducted atomistic molecular dynamics (MD) simulations and biased MD simulations to explore the interactions of 2-benzimidazolyl-urea with a phospholipid bilayer (dipalmitoylphosphatidylcholine, DPPC) together with a previously synthesized copper(II) complex compound. The aim was to study the permeability of these compounds by assessing their free energy profile along the bilayer normal. The simulations indicated that both the ligand (2-benzimidazolyl-urea, BZIMU) and the complex show a similar behaviour, yielding high energy barriers for the permeation process. However, with increasing concentration of BZIMU, the molecules tend to aggregate and form a cluster, leading to the formation of a pore. Clustering and pore formation can possibly explain the previously observed cytotoxicity of the BZIMU molecule via membrane damage.
Collapse
|
6
|
Synthesis, characterization, and biological evaluations of substituted phenethylamine-based urea as anticancer and antioxidant agents. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02830-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Babin V, Sallustrau A, Loreau O, Caillé F, Goudet A, Cahuzac H, Del Vecchio A, Taran F, Audisio D. A general procedure for carbon isotope labeling of linear urea derivatives with carbon dioxide. Chem Commun (Camb) 2021; 57:6680-6683. [PMID: 34132265 DOI: 10.1039/d1cc02665h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Carbon isotope labeling is a traceless technology, which allows tracking the fate of organic compounds either in the environment or in living organisms. This article reports on a general approach to label urea derivatives with all carbon isotopes, including 14C and 11C, based on a Staudinger aza-Wittig sequence. It provides access to all aliphatic/aromatic urea combinations.
Collapse
Affiliation(s)
- Victor Babin
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Antoine Sallustrau
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Olivier Loreau
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Fabien Caillé
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | - Amélie Goudet
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Héloïse Cahuzac
- Université Paris-Saclay, Département Médicaments et Technologies pour la santé (DMTS), CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Antonio Del Vecchio
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Frédéric Taran
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Davide Audisio
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| |
Collapse
|
8
|
Perković I, Beus M, Schols D, Persoons L, Zorc B. Itaconic acid hybrids as potential anticancer agents. Mol Divers 2020; 26:1-14. [PMID: 33043404 PMCID: PMC7548052 DOI: 10.1007/s11030-020-10147-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
Abstract In this paper, we report the synthesis of novel hybrids 2–14 based on itaconic acid and fluoroaniline, pyridine, indole and quinoline scaffolds. Itaconic acid is a naturally occurring compound with a Michael acceptor moiety, a key structural feature in several anticancer and antiviral drugs, responsible for the covalent binding of a drug to the cysteine residue of a specific protein. Aromatic parts of the hybrids also come from the substances reported as anticancer or antiviral agents. The synthetic route employed to access the amido-ester hybrids 2–13 used monomethyl itaconate or monomethyl itaconyl chloride and corresponding amines as the starting materials. Dimers 14 and 15 with two aminoindole or mefloquine moieties were prepared from itaconic acid and corresponding amino derivative, using standard coupling conditions (HATU/DIEA). All hybrids exerted anticancer effects in vitro against almost all the tumour cell lines that were evaluated (MCF-7, HCT 116, H460, LN-229, Capan-1, DND-41, HL-60, K-562, Z-138). Solid tumour cells were, in general, more responsive than the haematological cancer cells. The MCF-7 breast adenocarcinoma cell line appeared the most sensitive. Amido-ester 12 with chloroquine core and mefloquine homodimer 15 showed the highest activity with GI50 values between 0.7 and 8.6 µM. In addition, compound 15 also exerted antiviral activity against Zika virus and Coxsackievirus B4 in low micromolar concentrations. Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s11030-020-10147-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ivana Perković
- Department of Medicinal Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000, Zagreb, Croatia
| | - Maja Beus
- Department of Medicinal Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000, Zagreb, Croatia
| | - Dominique Schols
- Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Leentje Persoons
- Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Branka Zorc
- Department of Medicinal Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000, Zagreb, Croatia.
| |
Collapse
|
9
|
Kumar P. A review on quinoline derivatives as anti-methicillin resistant Staphylococcus aureus (MRSA) agents. BMC Chem 2020; 14:17. [PMID: 32190843 PMCID: PMC7071757 DOI: 10.1186/s13065-020-00669-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 02/28/2020] [Indexed: 01/31/2023] Open
Abstract
Methicillin Resistant Staphylococcus aureus (MRSA) consists of strains of S. aureus which are resistant to methicillin. The resistance is due to the acquisition of mecA gene which encodes PBP2a unlike of any PBPs normally produced by S. aureus. PBP2a shows unusually low β-Lactam affinity and remains active to allow cell wall synthesis at normally lethal β-Lactam concentrations. MRSA can cause different types of infections like Healthcare associated MRSA, Community associated MRSA and Livestock associated MRSA infections. It causes skin lesions, osteomyelitis, endocarditis and furunculosis. To treat MRSA infections, only a few options are available like vancomycin, clindamycin, co-trimoxazole, fluoroquinolones or minocycline and there is a dire need of discovering new antibacterial agents that can effectively treat MRSA infections. In the current review, an attempt has been made to compile the data of quinoline derivatives possessing anti-MRSA potential reported to date.![]()
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151001 India
| |
Collapse
|
10
|
Olgen S, Kotra LP. Drug Repurposing in the Development of Anticancer Agents. Curr Med Chem 2019; 26:5410-5427. [PMID: 30009698 DOI: 10.2174/0929867325666180713155702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/14/2018] [Accepted: 06/28/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Research into repositioning known drugs to treat cancer other than the originally intended disease continues to grow and develop, encouraged in part, by several recent success stories. Many of the studies in this article are geared towards repurposing generic drugs because additional clinical trials are relatively easy to perform and the drug safety profiles have previously been established. OBJECTIVE This review provides an overview of anticancer drug development strategies which is one of the important areas of drug restructuring. METHODS Repurposed drugs for cancer treatments are classified by their pharmacological effects. The successes and failures of important repurposed drugs as anticancer agents are evaluated in this review. RESULTS AND CONCLUSION Drugs could have many off-target effects, and can be intelligently repurposed if the off-target effects can be employed for therapeutic purposes. In cancer, due to the heterogeneity of the disease, often targets are quite diverse, hence a number of already known drugs that interfere with these targets could be deployed or repurposed with appropriate research and development.
Collapse
Affiliation(s)
- Sureyya Olgen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul, Turkey
| | - Lakshmi P Kotra
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada.,Center for Molecular Design and Preformulations, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, M5G 1L7 Canada.,Multi-Organ Transplant Program, Toronto General Hospital, Toronto, Ontario, M5G 1L7 Canada
| |
Collapse
|
11
|
Antiproliferative evaluation of various aminoquinoline derivatives. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2019; 69:661-672. [PMID: 31639093 DOI: 10.2478/acph-2019-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/24/2019] [Indexed: 01/19/2023]
Abstract
Four classes of aminoquinoline derivatives were prepared: primaquine ureas 1a-f, primaquine bis-ureas 2a-f, chloroquine fumardiamides 3a-f and mefloquine fumardiamides 4a-f. Their antiproliferative activities against breast adeno-carcinoma (MCF-7), lung carcinoma (H460) and colon carcinoma (HCT 116 and SW620) cell lines were evaluated in vitro, using MTT cell proliferation assay. The results revealed a low activity of primaquine urea and bis-urea derivatives and high activity of all fumardiamides, with IC50 values in low micromolar range against all tested cancer cell lines.
Collapse
|
12
|
Zorc B, Perković I, Pavić K, Rajić Z, Beus M. Primaquine derivatives: Modifications of the terminal amino group. Eur J Med Chem 2019; 182:111640. [PMID: 31472472 PMCID: PMC7126120 DOI: 10.1016/j.ejmech.2019.111640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
Numerous modifications of the well-known antimalarial drug primaquine, both at the quinoline ring and at the primary amino group, have been reported, mostly to obtain antimalarial agents with improved bioavailability, reduced toxicity and/or prolonged activity. Modifications of the terminal amino group were made with the main idea to prevent the metabolic pathway leading to inactive and toxic carboxyprimaquine (follow-on strategy), but also to get compounds with different activity (repurposing strategy). The modifications undertaken until 2009 were included in a review published in the same year. The present review covers various classes of primaquine N-derivatives with diverse biological profiles, prepared in the last decade by our research group as well as the others. We have summarized the synthetic procedures applied for their preparation and discussed the main biological results. Several hits for the development of novel antiplasmodial, anticancer, antimycobacterial and antibiofilm agents were identified.
Collapse
Affiliation(s)
- Branka Zorc
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Medicinal Chemistry, A. Kovačića 1, HR-10 000, Zagreb, Croatia.
| | - Ivana Perković
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Medicinal Chemistry, A. Kovačića 1, HR-10 000, Zagreb, Croatia
| | - Kristina Pavić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Medicinal Chemistry, A. Kovačića 1, HR-10 000, Zagreb, Croatia
| | - Zrinka Rajić
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Medicinal Chemistry, A. Kovačića 1, HR-10 000, Zagreb, Croatia
| | - Maja Beus
- University of Zagreb Faculty of Pharmacy and Biochemistry, Department of Medicinal Chemistry, A. Kovačića 1, HR-10 000, Zagreb, Croatia
| |
Collapse
|
13
|
Wang CM, Du JY, Zhang JY, Tang KX, Gao TH, Xu YG, Sun LP. Regioselective bromination of aryl ureas with Phenyliodine(III) diacetate and potassium bromide. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Moawad AA, Hotzel H, Awad O, Roesler U, Hafez HM, Tomaso H, Neubauer H, El-Adawy H. Evolution of Antibiotic Resistance of Coagulase-Negative Staphylococci Isolated from Healthy Turkeys in Egypt: First Report of Linezolid Resistance. Microorganisms 2019; 7:microorganisms7100476. [PMID: 31652567 PMCID: PMC6843140 DOI: 10.3390/microorganisms7100476] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 01/09/2023] Open
Abstract
Coagulase-negative staphylococci (CoNS) are gaining much attention as causative agents of serious nosocomial infections in humans. This study aimed to determine the prevalence and phenotypic antimicrobial resistance of CoNS as well as the presence of resistance-associated genes in CoNS isolated from turkey farms in Egypt. Two hundred and fifty cloacal swabs were collected from apparently healthy turkeys in Egypt. Suspected isolates were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The susceptibility testing of CoNS isolates against 20 antimicrobial agents was performed using the broth microdilution test. The presence of resistance-associated genes like mecA, vanA, blaZ, erm(A), erm(B), erm(C), aac-aphD, optrA, valS, and cfr was determined. Thirty-nine CoNS were identified. All isolates were phenotypically resistant to trimethoprim/sulfamethoxazole, penicillin, ampicillin, and tetracycline. The resistance rates to erythromycin, chloramphenicol, oxacillin, daptomycin, and tigecycline were 97.4%, 94.9%, 92.3%, 89.7%, and 87.2%, respectively. Thirty-one isolates were resistant to linezolid (79.5%). Low resistance rate was detected for both imipenem and vancomycin (12.8%). The erm(C) gene was identified in all erythromycin phenotypically resistant isolates, whereas two resistant isolates possessed three resistance-conferring genes erm(A), erm(B), and erm(C). The cfr and optrA genes were detected in 11 (35.5%) and 12 (38.7%) of the 31 linezolid-resistant isolates. The mecA, aac-aphD, and blaZ genes were identified in 22.2%, 41.9%, and 2.6% of phenotypically resistant isolates to oxacillin, gentamicin, and penicillin, respectively. This is the first study revealing the correlation between linezolid resistance and presence of cfr and optrA genes in CoNS isolates from Egypt, and it can help to improve knowledge about the linezolid resistance mechanism.
Collapse
Affiliation(s)
- Amira A Moawad
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany.
- Mansoura Provincial Laboratory, Animal Health Research Institute, Mansoura 35516, Egypt.
| | - Helmut Hotzel
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany.
| | - Omnia Awad
- Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Uwe Roesler
- Institute for Animal Hygiene and Environmental Health, Free University Berlin, Robert-von Ostertag-Str. 7-13, 14163 Berlin, Germany.
| | - Hafez M Hafez
- Institute for Poultry Diseases, Free University Berlin, Königsweg 63, 14163 Berlin, Germany.
| | - Herbert Tomaso
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany.
| | - Heinrich Neubauer
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany.
| | - Hosny El-Adawy
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany.
- Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt.
| |
Collapse
|
15
|
Beus M, Fontinha D, Held J, Rajić Z, Uzelac L, Kralj M, Prudêncio M, Zorc B. Primaquine and Chloroquine Fumardiamides as Promising Antiplasmodial Agents. Molecules 2019; 24:E2812. [PMID: 31374989 PMCID: PMC6695747 DOI: 10.3390/molecules24152812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/02/2022] Open
Abstract
This paper describes a continuation of our efforts in the pursuit of novel antiplasmodial agents with optimized properties. Following our previous discovery of biologically potent asymmetric primaquine (PQ) and halogenaniline fumardiamides (1-6), we now report their significant in vitro activity against the hepatic stages of Plasmodium parasites. Furthermore, we successfully prepared chloroquine (CQ) analogue derivatives (11-16) and evaluated their activity against both the hepatic and erythrocytic stages of Plasmodium. Our results have shown that PQ fumardiamides (1-6) exert both higher activity against P. berghei hepatic stages and lower toxicity against human hepatoma cells than the parent drug and CQ derivatives (11-16). The favourable cytotoxicity profile of the most active compounds, 5 and 6, was corroborated by assays performed on human cells (human breast adenocarcinoma (MCF-7) and non-tumour embryonic kidney cells (HEK293T)), even when glucose-6-phosphate dehydrogenase (G6PD) was inhibited. The activity of CQ fumardiamides on P. falciparum erythrocytic stages was higher than that of PQ derivatives, comparable to CQ against CQ-resistant strain PfDd2, but lower than CQ when tested on the CQ-sensitive strain Pf3D7. In addition, both sets of compounds showed favourable drug-like properties. Hence, quinoline fumardiamides could serve as a starting point towards the development of safer and more effective antiplasmodial agents.
Collapse
Affiliation(s)
- Maja Beus
- University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovačića 1, HR-10 000 Zagreb, Croatia
| | - Diana Fontinha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Jana Held
- University of Tübingen, Institute of Tropical Medicine, Wilhelmstraße 27, 72074 Tübingen, Germany
| | - Zrinka Rajić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovačića 1, HR-10 000 Zagreb, Croatia.
| | - Lidija Uzelac
- Rudjer Bošković Institute, Division of Molecular Medicine, Laboratory of Experimental Therapy, 10 000 Zagreb, Croatia
| | - Marijeta Kralj
- Rudjer Bošković Institute, Division of Molecular Medicine, Laboratory of Experimental Therapy, 10 000 Zagreb, Croatia
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Branka Zorc
- University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovačića 1, HR-10 000 Zagreb, Croatia.
| |
Collapse
|
16
|
Synthesis and antiplasmodial evaluation of novel mefloquine-based fumardiamides. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2019; 69:233-248. [PMID: 31259728 DOI: 10.2478/acph-2019-0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/14/2019] [Indexed: 01/19/2023]
Abstract
The paper is focused on the synthesis and screening of the antiplasmodial activity of novel fumardiamides 5-10 with the mefloquine pharmacophore and a Michael acceptor motif. Multi-step reactions leading to the title compounds included two amide bond formations. The first amide bond was achieved by the reaction of (E)-ethyl 4-chloro-4-oxobut-2-enoate (1) and N1-(2,8-bis(trifluoromethyl)quinolin-4-yl) butane-1,4-diamine (2). The obtained ester 3 was hydrolyzed and gave acid 4, which then reacted with the selected halogenanilines in the presence of HATU/DIEA and formed products 5-10. Title compounds showed marked, dose dependent activity in vitro against hepatic stages of Plasmodium berghei. IC50 values of the most active compounds 5, 7 and 9 bearing 3-fluoro, 3-chloro and 3-trifluoromethyl substituents were 3.04-4.16 µmol L-1, respectively. On the other hand, the compounds exerted only weak activity against the erythrocytic stages of two P. falciparum strains (Pf3D7 and PfDd2) in vitro, with the exception of compound 5 (IC50 = 2.9 µmol L-1).
Collapse
|
17
|
The periodic table of urea derivative: small molecules of zinc(II) and nickel(II) of diverse antimicrobial and antiproliferative applications. Mol Divers 2019; 24:31-43. [PMID: 30798435 DOI: 10.1007/s11030-018-09909-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/13/2018] [Indexed: 01/13/2023]
Abstract
Two complexes of Zn(II) and Ni(II) ions with the urea derivative, 2-benzimidazolyl-urea (BZIMU), of formulae [ZnBZIMU)2(H2O)](NO3)2 (1) and [Ni(BZIMU)2(CH3CH2OH)2](NO3)2 (2) were synthesized and characterized by their melting point, elemental analysis, spectroscopic techniques (FTIR, UV-Vis and 1H-NMR), High-resolution mass spectroscopy (HRMS), molar conductivity and thermogravimetric analysis. The crystal structures of 1-2 were determined by X-ray diffraction analysis. The antiproliferative activity of 1-2 was tested in vitro against human adenocarcinoma cell lines: cervix (HeLa) and breast (MCF-7). Their toxicity was surveyed against normal human fetal lung fibroblast cells (MRC-5). The bioactivity mechanism of 1-2 and their related analogues of copper and silver metallodrugs are rationalized by the means of computations. The antimicrobial activity of 1-2 against Escherichia coli (E. coli) is also evaluated. The complexes [ZnBZIMU)2(H2O)](NO3)2 (1) and [Ni(BZIMU)2(CH3CH2OH)2](NO3)2 (2) (BZIMU= 2-Benzimidazolyl-urea), were tested in vitro against HeLa and MCF-7 cells. Their toxicity was surveyed against normal MRC-5 cells. The association of the microbiota with the antiproliferative activity of 1-2 was investigated against Escherichia coli.
Collapse
|
18
|
Second generation of primaquine ureas and bis-ureas as potential antimycobacterial agents. Mol Divers 2018; 23:657-667. [PMID: 30523579 DOI: 10.1007/s11030-018-9899-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/29/2018] [Indexed: 11/27/2022]
Abstract
Here, we describe design and synthesis of twelve novel compounds bearing primaquine motif and hydroxy- or halogenamine linked by an urea or bis-urea spacer. Preparation of ureas 3a-f started with the conversion of primaquine to benzotriazolide 2 and aminolysis of the later compound by 4-(2-aminoethyl)phenol or amino alcohols bearing fluorine atom, cycloalkyl or trifluoromethyl group under microwave irradiation. The four-step sequence leading to bis-ureas 6a-f included preparation of benzotriazolide 2 and two intermediates, semicarbazide 4 and benzotriazole bis-urea 5, which upon aminolysis with the same aminophenol or amino alcohols gave the title compounds. Antimycobacterial screening detected three active compounds against Mycobacterium marinum and M. tuberculosis, namely 3b, 3f and 6f, derived from cyclobutyl amino alcohol or amino phenol.
Collapse
|
19
|
Vlainić J, Kosalec I, Pavić K, Hadjipavlou-Litina D, Pontiki E, Zorc B. Insights into biological activity of ureidoamides with primaquine and amino acid moieties. J Enzyme Inhib Med Chem 2018; 33:376-382. [PMID: 29363364 PMCID: PMC6021035 DOI: 10.1080/14756366.2017.1423067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/13/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
Primaquine (PQ) ureidoamides 5a-f were screened for antimicrobial, biofilm eradication and antioxidative activities. Susceptibility of the tested microbial species towards tested compounds showed species- and compound-dependent activity. N-(diphenylmethyl)-2-[({4-[(6-methoxyquinolin-8-yl)amino]pentyl}carbamoyl)amino]-4-methylpentanamide (5a) and 2-(4-chlorophenyl)-N-(diphenylmethyl)-2-[({4-[(6-methoxyquinolin-8-yl)amino]pentyl}carbamoyl)amino]acetamide (5d) showed antibacterial activity against S. aureus strains (MIC = 6.5 µg/ml). Further, compounds 5c and 5d had weak antibacterial activity against Escherichia coli and Pseudomonas aeruginosa. None of the tested compounds showed a wide spectrum of antifungal activity. In contrast, most of the compounds exerted strong activity in a biofilm eradication assay against E. coli, P. aeruginosa and Candida albicans, comparable to or even higher than gentamycin, amphotericin B or parent PQ. The most active compounds were 5a and 5b. Tested compounds were inactive against biofilm formation by C. parapsylosis, Enterococcus faecalis, C. tropicalis and C. krusei. Compounds 5b-f significantly inhibited lipid peroxidation (80-99%), whereas compound 5c presented interesting LOX inhibition.
Collapse
Affiliation(s)
- Josipa Vlainić
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Rudjer Bošković Institute, Zagreb, Croatia
| | - Ivan Kosalec
- Faculty of Pharmacy and Biochemistry, Department of Microbiology, University of Zagreb, Zagreb, Croatia
| | - Kristina Pavić
- Faculty of Pharmacy and Biochemistry, Department of Medicinal Chemistry, University of Zagreb, Zagreb, Croatia
| | - Dimitra Hadjipavlou-Litina
- School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Pontiki
- School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Branka Zorc
- Faculty of Pharmacy and Biochemistry, Department of Medicinal Chemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
20
|
Insights into the mechanism of antiproliferative effects of primaquine-cinnamic acid conjugates on MCF-7 cells. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2018; 68:337-348. [PMID: 31259699 DOI: 10.2478/acph-2018-0021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/29/2018] [Indexed: 11/21/2022]
Abstract
In our previous paper, we showed that three primaquine-cinnamic acid conjugates composed of primaquine (PQ) residue and cinnamic acid derivatives (CADs) bound directly by an amide linkage (1) or through an acylsemicarbazide spacer (2 and 3) had significant growth inhibitory effects on some cancer cell lines. Compound 1 induced significant growth inhibition in the colorectal adenocarcinoma (SW620), human breast adenocarcinoma (MCF-7) and cervical carcinoma (HeLa) cell lines, while compounds 2 and 3 selectively inhibited the growth of MCF-7 cells. To better understand the underlying mechanisms of action of these PQ-CADs, morphological studies of the effects of test compounds on MCF-7 cells were undertaken using haematoxylin and eosin stain. Further analysis to determine the effects of test compounds on caspase activity and on the levels of apoptosis proteins were undertaken using the enzyme-linked immunosorbent assay (ELISA). Haematoxylin and eosin staining revealed that compounds 1 and 3 induced morphological changes in MCF-7 cells characteristic of apoptosis, while 2-treated cells were in interphase. Cell cycle analysis showed that cells treated with 1 and 3 were in sub-G1, while cells treated with 2 were mainly in interphase (G1 phase). Further, the study showed that the treatment of MCF-7 cells with 1 and 3 resulted in poly ADP ribose polymerase (PARP) cleavage as well as caspase-9 activation, indicating that they induced apoptotic cell death. We further investigated their effects on two important processes during metastasis, namely, migration and invasion. Compounds 1 and 3 inhibited the migration and invasion of MCF-7 cells, while compound 2 had a marginal effect.
Collapse
|
21
|
Beus M, Rajić Z, Maysinger D, Mlinarić Z, Antunović M, Marijanović I, Fontinha D, Prudêncio M, Held J, Olgen S, Zorc B. SAHAquines, Novel Hybrids Based on SAHA and Primaquine Motifs, as Potential Cytostatic and Antiplasmodial Agents. ChemistryOpen 2018; 7:624-638. [PMID: 30151334 PMCID: PMC6104433 DOI: 10.1002/open.201800117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Indexed: 12/19/2022] Open
Abstract
We report the synthesis of SAHAquines and related primaquine (PQ) derivatives. SAHAquines are novel hybrid compounds that combine moieties of suberoylanilide hydroxamic acid (SAHA), an anticancer agent with weak antiplasmodial activity, and PQ, an antimalarial drug with low antiproliferative activity. The preparation of SAHAquines is simple, cheap, and high yielding. It includes the following steps: coupling reaction between primaquine and a dicarboxylic acid monoester, hydrolysis, a new coupling reaction with O-protected hydroxylamine, and deprotection. SAHAquines 5 a-d showed significant reduction in cell viability. Among the three human cancer cell lines (U2OS, HepG2, and MCF-7), the most responsive were the MCF-7 cells. The antibodies against acetylated histone H3K9/H3K14 in MCF-7 cells revealed a significant enhancement following treatment with N-hydroxy-N'-{4-[(6-methoxyquinolin-8-yl)amino]pentyl}pentanediamide (5 b). Ethyl (2E)-3-({4-[(6-methoxyquinolin-8-yl)amino]pentyl}carbamoyl)prop-2-enoate (2 b) and SAHAquines were the most active compounds against both the hepatic and erythrocytic stages of Plasmodium parasites, some of them at sub-micromolar concentrations. The results of our research suggest that SAHAquines are promising leads for new anticancer and antimalarial agents.
Collapse
Affiliation(s)
- Maja Beus
- Faculty of Pharmacy and BiochemistryUniversity of ZagrebA. Kovačića 110 000ZagrebCroatia
| | - Zrinka Rajić
- Faculty of Pharmacy and BiochemistryUniversity of ZagrebA. Kovačića 110 000ZagrebCroatia
| | - Dusica Maysinger
- Department of Pharmacology and TherapeuticsMcGill University23655 Promenade Sir-William-Osler, McIntyre Medical Sciences BuildingMontrealQuebecH3G 1Y6Canada
| | - Zvonimir Mlinarić
- Faculty of Pharmacy and BiochemistryUniversity of ZagrebA. Kovačića 110 000ZagrebCroatia
| | - Maja Antunović
- Faculty of ScienceUniversity of ZagrebHorvatovac 102A10 000ZagrebCroatia
| | - Inga Marijanović
- Faculty of ScienceUniversity of ZagrebHorvatovac 102A10 000ZagrebCroatia
| | - Diana Fontinha
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de LisboaAv. Prof. Egas Moniz1649-028LisboaPortugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de LisboaAv. Prof. Egas Moniz1649-028LisboaPortugal
| | - Jana Held
- Institute of Tropical MedicineUniversity of TübingenWilhelmstraße 2772074TübingenGermany
| | - Sureyya Olgen
- Faculty of PharmacyBiruni University10th street No: 4534010 TopkapiIstanbulTurkey
| | - Branka Zorc
- Faculty of Pharmacy and BiochemistryUniversity of ZagrebA. Kovačića 110 000ZagrebCroatia
| |
Collapse
|
22
|
Rajić Z, Beus M, Michnová H, Vlainić J, Persoons L, Kosalec I, Jampílek J, Schols D, Keser T, Zorc B. Asymmetric Primaquine and Halogenaniline Fumardiamides as Novel Biologically Active Michael Acceptors. Molecules 2018; 23:E1724. [PMID: 30011922 PMCID: PMC6100582 DOI: 10.3390/molecules23071724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 11/17/2022] Open
Abstract
Novel primaquine (PQ) and halogenaniline asymmetric fumardiamides 4a⁻f, potential Michael acceptors, and their reduced analogues succindiamides 5a⁻f were prepared by simple three-step reactions: coupling reaction between PQ and mono-ethyl fumarate (1a) or mono-methyl succinate (1b), hydrolysis of PQ-dicarboxylic acid mono-ester conjugates 2a,b to corresponding acids 3a,b, and a coupling reaction with halogenanilines. 1-[bis(Dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate (HATU) was used as a coupling reagent along with Hünig's base. Compounds 4 and 5 were evaluated against a panel of bacteria, several Mycobacterium strains, fungi, a set of viruses, and nine different human tumor cell lines. p-Chlorofumardiamide 4d showed significant activity against Staphylococcus aureus,Streptococcus pneumoniae and Acinetobacter baumannii, but also against Candida albicans (minimum inhibitory concentration (MIC) 6.1⁻12.5 µg/mL). Together with p-fluoro and p-CF₃ fumardiamides 4b,f, compound 4d showed activity against Mycobacterium marinum and 4b,f against M. tuberculosis. In biofilm eradication assay, most of the bacteria, particularly S. aureus, showed susceptibility to fumardiamides. m-CF₃ and m-chloroaniline fumardiamides 4e and 4c showed significant antiviral activity against reovirus-1, sindbis virus and Punta Toro virus (EC50 = 3.1⁻5.5 µM), while 4e was active against coxsackie virus B4 (EC50 = 3.1 µM). m-Fluoro derivative 4a exerted significant cytostatic activity (IC50 = 5.7⁻31.2 μM). Acute lymphoblastic leukemia cells were highly susceptible towards m-substituted derivatives 4a,c,e (IC50 = 6.7⁻8.9 μM). Biological evaluations revealed that fumardiamides 4 were more active than succindiamides 5 indicating importance of Michael conjugated system.
Collapse
Affiliation(s)
- Zrinka Rajić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia.
| | - Maja Beus
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia.
| | - Hana Michnová
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, 83232 Bratislava, Slovakia.
| | - Josipa Vlainić
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Rudjer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Leentje Persoons
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Ivan Kosalec
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia.
| | - Josef Jampílek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, 83232 Bratislava, Slovakia.
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia.
| | - Branka Zorc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia.
| |
Collapse
|
23
|
Levatić J, Pavić K, Perković I, Uzelac L, Ester K, Kralj M, Kaiser M, Rottmann M, Supek F, Zorc B. Machine learning prioritizes synthesis of primaquine ureidoamides with high antimalarial activity and attenuated cytotoxicity. Eur J Med Chem 2018; 146:651-667. [DOI: 10.1016/j.ejmech.2018.01.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 01/24/2023]
|
24
|
Pavić K, Perković I, Pospíšilová Š, Machado M, Fontinha D, Prudêncio M, Jampilek J, Coffey A, Endersen L, Rimac H, Zorc B. Primaquine hybrids as promising antimycobacterial and antimalarial agents. Eur J Med Chem 2017; 143:769-779. [PMID: 29220797 DOI: 10.1016/j.ejmech.2017.11.083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
Abstract
Four series of primaquine (PQ) derivatives were screened for antitubercular and antiplasmodial activity: amides 1a-k, ureas 2a-s, semicarbazides 3a-c and bis-ureas 4a-u. Antimycobacterial activity of PQ derivatives against Mycobacterium tuberculosis (MTB), M. avium complex (MAC) and M. avium subsp. paratuberculosis (MAP) were evaluated in vitro and compared with PQ and the standard antitubercular drugs. In general, the PQ derivatives showed higher potency than the parent compound. Most of the compounds of series 1 and 2 showed high activity against MAP, comparable or even higher than the relevant drug ciprofloxacin, and weak or no activity against MTB and MAC. bis-Trifluoromethylated cinnamamide 1k showed low cytotoxicity and high activity against all three Mycobacterium species and their activities were comparable or slightly higher than those of the reference drugs. PQ urea derivatives with hydroxyl, halogen and trifluoromethyl substituents on benzene ring 2f-p exerted very strong antimycobacterial activity towards all tested mycobacteria, stronger than PQ and the relevant standard drug(s). Unfortunately, these compounds had relatively high cytotoxicity, except bromo 2l and trifluoromethyl 2m, 2n derivatives. In general, meta-substituted derivatives were more active than analogues para-derivatives. Phenyl ureas were also more active than cycloalkyl or hydroxyalkyl ureas. Semicarbazide 3a showed similar activity as PQ, while the other two semicarbazides were inactive. Bis-urea derivatives 4 were generally less active than the urea derivatives sharing the same scaffold, differing only in the spacer type. Out of 21 evaluated bis-urea derivatives, only p-Cl/m-CF3 phenyl derivative 4p, benzhydryl derivatives 4t and 4u and bis-PQ derivative 4s showed high activity, higher than all three reference drugs. After comparison of activity and cytotoxicity, urea 2m and bis-urea 4u could be considered as the most promising agents. Antimalarial potential of PQ derivatives in vitro against the liver stage of P. berghei was evaluated as well. 3-(4-Chlorophenyl)-1-[({4-[(6-methoxyquinolin-8-yl)amino]pentyl}carbamoyl)amino]urea (4l) was the most active compound (IC50 = 42 nM; cytotoxicity/activity ratio >2000). Our results bring new insights into development of novel anti-TB and antimalarial compounds.
Collapse
Affiliation(s)
- Kristina Pavić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Ivana Perković
- University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Šárka Pospíšilová
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Marta Machado
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Diana Fontinha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Josef Jampilek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, 83232 Bratislava, Slovakia.
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Lorraine Endersen
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Hrvoje Rimac
- University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Branka Zorc
- University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10 000 Zagreb, Croatia.
| |
Collapse
|
25
|
Poyraz M, Sari M, Banti CN, Hadjikakou SK. Synthesis, characterization and biological activities of copper(II) complex of 2-Benzimidazolyl-urea and the nitrate salt of 2-Benzimidazolyl-urea. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.06.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Poyraz M, Berber H, Banti CN, Kourkoumelis N, Manos MJ, Hadjikakou SK. Synthesis characterization and biological activity of mixed ligand silver(I) complex of 2-benzimidazolylurea and triphenylphosphine. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Pavić K, Perković I, Gilja P, Kozlina F, Ester K, Kralj M, Schols D, Hadjipavlou-Litina D, Pontiki E, Zorc B. Design, Synthesis and Biological Evaluation of Novel Primaquine-Cinnamic Acid Conjugates of the Amide and Acylsemicarbazide Type. Molecules 2016; 21:E1629. [PMID: 27916811 PMCID: PMC6273687 DOI: 10.3390/molecules21121629] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/16/2016] [Accepted: 11/24/2016] [Indexed: 11/17/2022] Open
Abstract
In this paper design and synthesis of a scaffold comprising primaquine (PQ) motif and cinnamic acid derivatives (CADs) bound directly (compounds 3a-k) or via a spacer (compounds 7a-k) are reported. In the first series of compounds, PQ and various CADs were connected by amide bonds and in the second series by acylsemicarbazide functional groups built from the PQ amino group, CONHNH spacer and the carbonyl group originating from the CADs. PQ-CAD amides 3a-k were prepared by a simple one-step condensation reaction of PQ with a series of CAD chlorides (method A) or benzotriazolides 2 (method B). The synthesis of acylsemicarbazides 7a-k included activation of PQ with benzotriazole, preparation of PQ-semicarbazide 6 and its condensation with CAD chlorides 4. All synthesized PQ-CAD conjugates were evaluated for their anticancer, antiviral and antioxidative activities. Almost all compounds from series 3 were selective towards the MCF-7 cell line and active at micromolar concentrations. The o-fluoro derivative 3h showed high activity against HeLa, MCF-7 and in particular against the SW 620 cell line, while acylsemicarbazide 7f with a benzodioxole ring and 7c, 7g and especially 7j with methoxy-, chloro- or trifluoromethyl-substituents in the para position showed high selectivity and high inhibitory activity against MCF-7 cell line at micromolar (7c, 7f, 7g) and nanomolar (7j) levels. Acylsemicarbazide derivatives with trifluoromethyl group(s) 7i, 7j and 7k showed specific activity against human coronavirus (229E) at concentrations which did not alter the normal cell morphology. The same compounds exerted the most potent reducing activity in the DPPH test, together with 7d and 7g, while methoxy (compounds 7c-e), benzodioxole (7f), p-Cl (7g) and m-CF₃ (7i) acylsemicarbazides and amide 3f presented the highest LP inhibition (83%-89%). The dimethoxy derivative 7d was the most potent LOX inhibitor (IC50 = 10 μΜ). The performed biological tests gave evidence of acylsemicarbazide functional group as superior binding group in PQ-CAD conjugates.
Collapse
Affiliation(s)
- Kristina Pavić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, HR-10 000 Zagreb, Croatia.
| | - Ivana Perković
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, HR-10 000 Zagreb, Croatia.
| | - Petra Gilja
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, HR-10 000 Zagreb, Croatia.
| | - Filip Kozlina
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, HR-10 000 Zagreb, Croatia.
| | - Katja Ester
- Division of Molecular Medicine, Rudjer Bošković Institute, Bijenička cesta 54, HR-10 000 Zagreb, Croatia.
| | - Marijeta Kralj
- Division of Molecular Medicine, Rudjer Bošković Institute, Bijenička cesta 54, HR-10 000 Zagreb, Croatia.
| | - Dominique Schols
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium.
| | - Dimitra Hadjipavlou-Litina
- Faculty of Health Sciences, School of Pharmacy, Aristotles University of Thessaloniki, Thessaloniki 54 124, Greece.
| | - Eleni Pontiki
- Faculty of Health Sciences, School of Pharmacy, Aristotles University of Thessaloniki, Thessaloniki 54 124, Greece.
| | - Branka Zorc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, HR-10 000 Zagreb, Croatia.
| |
Collapse
|