1
|
Devi AM, Sankeshi V, Ravali A, Bandaru S, Theendra VK, Sagurthi SR. Inhibitory effect of Nifedipine on aldose reductase delays cataract progression. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:161-171. [PMID: 37395794 DOI: 10.1007/s00210-023-02588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
Aldose reductase (ALR2) is a rate-limiting component of the polyol pathway, which is essential for the NADPH-mediated conversion from glucose to sorbitol. ALR2 dysregulation has been linked to α-crystallin aggregation, increased oxidative stress, and calcium inflow, all of which contribute to a diabetic cataract. Given its crucial role in occular pathologies, ALR2 has emerged as a promising target to treat oxidative stress and hyperglycaemic condition which form the underlying cause of diabetic cataracts. However, several of them had issues with sensitivity and specificity to ALR2, despite being screened as effective ALR2 inhibitors from a wide range of structurally varied molecules. The current study investigates the inhibitory potential of Nifedipine, an analog of the dihydro nicotinamide class of compounds against ALR2 activity. The enzyme inhibition studies were supported by in vitro biomolecular interactions, molecular modeling approaches, and in vivo validation in diabetic rat models. Nifedipine demonstrated appreciable inhibitory potential with the purified recombinant hAR (human aldose reductase; with an IC50 value of 2.5 µM), which was further supported by Nifedipine-hAR binding affinity (Kd = 2.91 ± 1.87 × 10-4 M) by ITC and fluorescence quenching assays. In the in vivo models of STZ-induced diabetic rats, Nifedipine delayed the onset progression of cataracts by preserving the antioxidant enzyme activity (SOD, CAT, and GPX GSH, TBARS, and protein carbonyls) and was shown to retain the α-crystallin chaperone activity by reducing the calcium levels in the diabetic rat lens. In conclusion, our results demonstrate effective inhibition of ALR2 by Nifedipine, resulting in amelioration of diabetic cataract conditions by lowering oxidative and osmotic stress while retaining the chaperone activity of α-crystallins. The present study could be envisaged to improve the eye condition in older adults upon Nifedipine treatment.
Collapse
Affiliation(s)
- Alaparthi Malini Devi
- Drug Design & Molecular Medicine Laboratory, Department of Genetics & Biotechnology, Osmania University, Hyderabad, 500007, India
| | - Venu Sankeshi
- Drug Design & Molecular Medicine Laboratory, Department of Genetics & Biotechnology, Osmania University, Hyderabad, 500007, India
| | - Arugonda Ravali
- Drug Design & Molecular Medicine Laboratory, Department of Genetics & Biotechnology, Osmania University, Hyderabad, 500007, India
| | - Srinivas Bandaru
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (Deemed to be University), Guntur, 522302, India
| | | | - Someswar Rao Sagurthi
- Drug Design & Molecular Medicine Laboratory, Department of Genetics & Biotechnology, Osmania University, Hyderabad, 500007, India.
| |
Collapse
|
2
|
Kang B, Ikeda K. 4-Dimethylaminopyridine (DMAP), A Superior Mediator for Morita-Balylis-Hillman Reaction-Triggered Annulative Condensation of Salicylaldehydes and Acrylonitrile to Form 3-Cyano-2H-chromenes. Chem Pharm Bull (Tokyo) 2023; 71:318-325. [PMID: 36805528 DOI: 10.1248/cpb.c23-00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
We unveiled superior base mediators for the annulative condensation of salicylaldehydes and acrylonitrile to give 3-cyano-2H-chromenes, which has been mediated only by 1,4-diazabicyclo[2.2.2]octane (DABCO) over the past two decades. The reactions were most efficiently mediated by 4-dimethylaminopyridine (DMAP), which yielded 3-cyano-2H-chromenes in higher yields than DABCO in most cases. We also confirmed that the reaction remained high yielding in a decagram-scale experiment with a catalytic amount of DMAP. The utility of this reaction was also exemplified by derivatization of an obtained 3-cyano-2H-chromene into a known 2H-chromene-3-carboxylic acid, which was previously synthesized with a non-readily available reagent.
Collapse
Affiliation(s)
- Bubwoong Kang
- Graduate School of Agricultural Science, Kobe University
| | - Kaede Ikeda
- Graduate School of Agricultural Science, Kobe University
| |
Collapse
|
3
|
Yahya S, Haider K, Pathak A, Choudhary A, Hooda P, Shafeeq M, Shahar Yar M. Strategies in synthetic design and structure-activity relationship studies of novel heterocyclic scaffolds as aldose reductase-2 inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200167. [PMID: 36125217 DOI: 10.1002/ardp.202200167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/10/2022]
Abstract
Heterocyclic scaffolds of natural as well as synthetic origin provide almost all categories of drugs exhibiting a wide range of pharmacological activities, such as antibiotics, antidiabetic and anticancer agents, and so on. Under normal homeostasis, aldose reductase 2 (ALR2) regulates vital metabolic functions; however, in pathological conditions like diabetes, ALR2 is unable to function and leads to secondary diabetic complications. ALR2 inhibitors are a novel target for the treatment of retinopathy (cataract) influenced by diabetes. Epalrestat (stat), an ALR2 inhibitor, is the only drug candidate that was approved in the last four decades; the other drugs from the stat class were retracted after clinical trial studies due to untoward iatrogenic effects. The present study summarizes the recent development (2014 and onwards) of this pharmacologically active ALR2 heterocyclic scaffold and illustrates the rationale behind the design, structure-activity relationships, and biological studies performed on these molecules. The aim of the current review is to pave a straight path for medicinal chemists and chemical biologists, and, in general, to the drug discovery scientists to facilitate the synthesis and development of novel ALR2 inhibitors that may serve as lead molecules for the treatment of diseases related to the ALR2 enzyme.
Collapse
Affiliation(s)
- Shaikh Yahya
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Ankita Pathak
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Akram Choudhary
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Pooja Hooda
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohd Shafeeq
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
4
|
Kumar Pasala V, Gudipudi G, Sankeshi V, Basude M, Gundla R, Singh Jadav S, Srinivas B, Yadaiah Goud E, Nareshkumar D. Design, synthesis and biological evaluation of selective hybrid coumarin-thiazolidinedione aldose reductase-II inhibitors as potential antidiabetics. Bioorg Chem 2021; 114:104970. [PMID: 34120026 DOI: 10.1016/j.bioorg.2021.104970] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/21/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Thiazolidinediones (TZD), benzopyrans are the proven scaffolds for inhibiting Aldose reductase (ALR2) activity and their structural confluence with the retention of necessary fragments helped in designing a series of hybrid compounds 2-(5-cycloalkylidene-2,4-dioxothiazolidin-3-yl)-N-(2-oxo-2H-chromen-3-yl)acetamide (10a-n) for better ALR2 inhibition. The compounds were synthesized by treating substituted 3-(N-bromoacetyl amino)coumarins (9a-d) with potassium salt of 5-cyclo alkylidene-1,3-thiazolidine-2,4-diones (4a-d). The inhibition activity against ALR2 with IC50 values range from 0.012 ± 0.001 to 0.056 ± 0.007 μM. N-[(6-Bromo-3-coumarinyl)-2-(5-cyclopentylidene-2,4-dioxothiazolidin-3-yl)] acetamide (10c) with cyclopentylidene group on one end and the 6-bromo group on the other end showed better inhibitory property (IC50 = 0.012 μM) and selectivity index (324.166) against the ALR2, a forty fold superiority over sorbinil, a better molecule over epalrestat and rest of the analogues exhibited a far superior response over sorbinil and slightly better as compared with epalrestat. It was further confirmed by the insilico studies that compound 10c showed best inhibition activity among the synthesized compounds with a high selectivity index against the ALR2. In invivo experiments, supplementation of compound 10c to STZ induced rats delayed the progression of cataract in a dose-dependent manner warranting its further development as a potential agent to treat thediabetic secondary complications especially cataract.
Collapse
Affiliation(s)
- Vijay Kumar Pasala
- Department of Chemistry, Osmania University, Hyderabad (T.S) 500 007, India.
| | - Gopinath Gudipudi
- Department of Chemistry, Osmania University, Hyderabad (T.S) 500 007, India
| | - Venu Sankeshi
- Department of Biophysics, Centre for Cellular and Molecular Biology, Hyderabad (T.S) 500 007, India
| | - Manohar Basude
- Department of Chemistry, Osmania University, Hyderabad (T.S) 500 007, India
| | - Rambabu Gundla
- Department of Chemistry, School of Technology, GITAM University, Hyderabad (T.S) 502 102, India
| | - Surendar Singh Jadav
- Centre for Molecular Cancer Research, Vishnu Institute of Pharmaceutical Education and Research (VIPER), Narsapur, Medak 502313, India
| | - Burra Srinivas
- Department of Chemistry, Osmania University, Hyderabad (T.S) 500 007, India
| | - E Yadaiah Goud
- Department of Chemistry, Osmania University, Hyderabad (T.S) 500 007, India
| | | |
Collapse
|
5
|
|
6
|
Verma SK, Kumar N, Thareja S. Gaussian field-based comparative 3D QSAR modelling for the identification of favourable pharmacophoric features of chromene derivatives as selective inhibitors of ALR2 over ALR1. Struct Chem 2021. [DOI: 10.1007/s11224-020-01714-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Raj V, Lee J. 2H/4H-Chromenes-A Versatile Biologically Attractive Scaffold. Front Chem 2020; 8:623. [PMID: 32850645 PMCID: PMC7419998 DOI: 10.3389/fchem.2020.00623] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
2H/4H-chromene (2H/4H-ch) is an important class of heterocyclic compounds with versatile biological profiles, a simple structure, and mild adverse effects. Researchers discovered several routes for the synthesis of a variety of 2H/4H-ch analogs that exhibited unusual activities by multiple mechanisms. The direct assessment of activities with the parent 2H/4H-ch derivative enables an orderly analysis of the structure-activity relationship (SAR) among the series. Additionally, 2H/4H-ch have numerous exciting biological activities, such as anticancer, anticonvulsant, antimicrobial, anticholinesterase, antituberculosis, and antidiabetic activities. This review is consequently an endeavor to highlight the diverse synthetic strategies, synthetic mechanism, various biological profiles, and SARs regarding the bioactive heterocycle, 2H/4H-ch. The presented scaffold work compiled in this article will be helpful to the scientific community for designing and developing potent leads of 2H/4H-ch analogs for their promising biological activities.
Collapse
Affiliation(s)
- Vinit Raj
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, South Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, South Korea
| |
Collapse
|
8
|
Rasouli H, Yarani R, Pociot F, Popović-Djordjević J. Anti-diabetic potential of plant alkaloids: Revisiting current findings and future perspectives. Pharmacol Res 2020; 155:104723. [PMID: 32105756 DOI: 10.1016/j.phrs.2020.104723] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/07/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease which causes millions of death all over the world each year, and its incidence is on increase. The most prevalent form, type 2 DM, is characterized by insulin resistance and β-cell dysfunction, whereas type 1 DM is due to insulin deficiency as a result of β-cell destruction. Various classes of synthetic drugs have been developed to regulate glucose homeostasis and combat the development of late-diabetic complications. However, several of these chemical agents are either sub-optimal in their effect and/or may have side effects. Biologically, alkaloids unveiled a wide range of therapeutic effects including anti-diabetic properties. The chemical backbones of these compounds have the potential to interact with a wide range of proteins involved in glucose homeostasis, and thus they have received increasing attention as reliable candidates for drug development. This review sets out to investigate the anti-diabetic potential of plant alkaloids (PAs), and therefore, scientific databases were comprehensively screened to highlight the biological activity of 78 PAs with a considerable anti-diabetic profile. There are not enough clinical data available for these phytochemicals to follow their fingerprint in human, but current studies generally recommending PAs as potent α-glucosidase inhibitors. Except for some classes of monoterpene alkaloids, other compounds showed similar features as well as the presently available anti-diabetic drugs such as amino sugars and other relevant drugs. Moreover, the evidence suggests that PAs have the potential to be used as alternative additives for the treatment of DM, however, further in vitro and in vivo studies are needed to validate these findings.
Collapse
Affiliation(s)
- Hassan Rasouli
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Science, Kermanshah, Iran; Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Reza Yarani
- T1D Biology, Department of Clinical Research, Steno Diabetes Center Copenhagen, Denmark
| | - Flemming Pociot
- T1D Biology, Department of Clinical Research, Steno Diabetes Center Copenhagen, Denmark; Copenhagen Diabetes Research Center, Department of Pediatrics, Herlev University Hospital, Herlev Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Jelena Popović-Djordjević
- University of Belgrade, Faculty of Agriculture, Department of Food Technology and Biochemistry, 11080 Belgrade, Serbia
| |
Collapse
|
9
|
Dowarah J, Singh VP. Anti-diabetic drugs recent approaches and advancements. Bioorg Med Chem 2020; 28:115263. [PMID: 32008883 DOI: 10.1016/j.bmc.2019.115263] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/20/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Diabetes is one of the major diseases worldwide and is the third leading cause of death in the United States. Anti-diabetic drugs are used in the treatment of diabetes mellitus to control glucose levels in the blood. Most of the drugs are administered orally, except for a few of them, such as insulin, exenatide, and pramlintide. In this review, we are going to discuss seven major types of anti-diabetic drugs: Peroxisome proliferator-activated receptor (PPAR) agonist, protein tyrosine phosphatase 1B (PTP1B) inhibitors, aldose reductase inhibitors, α-glucosidase inhibitors, dipeptidyl peptidase IV (DPP-4) inhibitors, G protein-coupled receptor (GPCR) agonists and sodium-glucose co-transporter (SGLT) inhibitors. Here, we are also discussing some of the recently reported anti-diabetic agents with its multi-target pharmacological actions. This review summarises recent approaches and advancement in anti-diabetes treatment concerning characteristics, structure-activity relationships, functional mechanisms, expression regulation, and applications in medicine.
Collapse
Affiliation(s)
- Jayanta Dowarah
- Department of Chemistry, Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Ved Prakash Singh
- Department of Chemistry, Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India.
| |
Collapse
|
10
|
Iridium complexes with P-stereogenic phosphino imidazole ligands: Synthesis, structure and catalysis. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Daraji DG, Prajapati NP, Patel HD. Synthesis and Applications of 2‐Substituted Imidazole and Its Derivatives: A Review. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3641] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Drashti G. Daraji
- Department of Chemistry, School of SciencesGujarat University Navarangpura Ahmedabad Gujarat India
| | - Neelam P. Prajapati
- Department of Chemistry, School of SciencesGujarat University Navarangpura Ahmedabad Gujarat India
| | - Hitesh D. Patel
- Department of Chemistry, School of SciencesGujarat University Navarangpura Ahmedabad Gujarat India
| |
Collapse
|
12
|
Zhou Y, Li L, Li S, Li S, Zhao M, Zhou Q, Gong X, Yang J, Chang J. Autoregenerative redox nanoparticles as an antioxidant and glycation inhibitor for palliation of diabetic cataracts. NANOSCALE 2019; 11:13126-13138. [PMID: 31268450 DOI: 10.1039/c9nr02350j] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Diabetic cataracts (DCs) are one of the most common ocular complications of diabetes, and easily causes blindness among diabetics. However, there are limited drugs to delay and prevent DCs. Research studies indicate that oxidative damage of the crystalline lens and nonenzymatic glycosylation of the lens protein play a key role in the pathogenesis of DCs. Hence, we developed a kind of autoregenerative redox nanoparticle, which was CeO2 NPs coated with PEG-PLGA (PCNPs). We first found that PCNPs could work not only as an antioxidant to protect lens epithelial cells from oxidative stress based on the repetitive elimination of reactive oxygen species (ROS), but also as a glycation inhibitor effectively restraining α-crystallin glycation and crosslinking, thereby keeping the lens transparent and alleviating DCs. Experimental results successfully validated the fact that the PCNPs were able to operate in eyes for a long time to attenuate lens opacity. We expect that this strategy will provide promising potential for the treatment of DCs.
Collapse
Affiliation(s)
- Yurui Zhou
- School of Life Sciences, Tianjin University, Tianjin Engineering Research Center for Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin 300072, China.
| | - Lu Li
- School of Life Sciences, Tianjin University, Tianjin Engineering Research Center for Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin 300072, China.
| | - Shenghui Li
- Key Laboratory of Post-Neurotrauma Neurorepair and Regeneration in Central Nervous System Ministry of Education in China and Tianjin, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shufei Li
- Department of Toxicology, Tianjin Center for Disease Control and Prevention, Tianjin 300011, China
| | - Miao Zhao
- Department of Toxicology, Tianjin Center for Disease Control and Prevention, Tianjin 300011, China
| | - Qinghong Zhou
- Department of Toxicology, Tianjin Center for Disease Control and Prevention, Tianjin 300011, China
| | - Xiaoqun Gong
- School of Life Sciences, Tianjin University, Tianjin Engineering Research Center for Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin 300072, China.
| | - Jin Yang
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University Myopia Key Laboratory of Health PR China, Shanghai, 200031, China.
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin Engineering Research Center for Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin 300072, China.
| |
Collapse
|
13
|
Ebrahimi Z, Davoodnia A, Motavalizadehkakhky A, Mehrzad J. Synthesis of Benzo[f]chromeno[2,3-d]pyrimidines via the Tandem Intramolecular Pinner/Dimroth Rearrangement and their Antibacterial and Antioxidant Evaluation. ORG PREP PROCED INT 2019. [DOI: 10.1080/00304948.2019.1596472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Zohreh Ebrahimi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | | | - Jamshid Mehrzad
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| |
Collapse
|
14
|
Kaoukabi A, Belachemi L, Lahcini M, Massuard MV, Croix C. Efficient Synthesis of New 2H‐Chromene Retinoids Hybrid Derivatives by Suzuki Cross‐coupling Reactions. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Asma Kaoukabi
- Laboratory of Organometallic and Macromolecular Chemistry—Composites Materials, Department of Chemistry, Faculty of Sciences and Technology University Cadi Ayyad of Marrakech Marrakesh Morocco
| | - Larbi Belachemi
- Laboratory of Organometallic and Macromolecular Chemistry—Composites Materials, Department of Chemistry, Faculty of Sciences and Technology University Cadi Ayyad of Marrakech Marrakesh Morocco
| | - Mohammed Lahcini
- Laboratory of Organometallic and Macromolecular Chemistry—Composites Materials, Department of Chemistry, Faculty of Sciences and Technology University Cadi Ayyad of Marrakech Marrakesh Morocco
| | - Marie‐Claude Viaud Massuard
- CNRS UMR 7292 GICC, Molecular and Therapeutical Innovation University of Tours 31, Avenue Monge Tours France
| | - Cécile Croix
- CNRS UMR 7292 GICC, Molecular and Therapeutical Innovation University of Tours 31, Avenue Monge Tours France
| |
Collapse
|
15
|
Jooya A, Davoodnia A, Fattahi M, Tavakoli-Hoseini N. Rapid Synthesis of N-Alkyl-2-imino-2H-chromene-3-carboxamides Catalyzed by a Keplerate-type Giant Nanoporous Isopolyoxomolybdate. ORG PREP PROCED INT 2019. [DOI: 10.1080/00304948.2018.1537732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Arsalan Jooya
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad 91756-87119, Iran
| | - Abolghasem Davoodnia
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad 91756-87119, Iran
| | - Mehri Fattahi
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad 91756-87119, Iran
| | | |
Collapse
|
16
|
Isolation of intermediates in the synthesis of new 3,4-dihydro-2 H-chromeno[2,3- d]pyrimidines. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2018. [DOI: 10.1515/znb-2018-0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractReaction ofN-alkyl-2-imino-2H-chromene-3-carboxamides with dimethyl acetylenedicarboxylate (DMAD) in the presence of sodium carbonate as catalyst in refluxing ethanol gave new tricyclic products identified as methyl 3-alkyl-2-(2-methoxy-2-oxoethyl)-4-oxo-3,4-dihydro-2H-chromeno[2,3-d]pyrimidine-2-carboxylates. In the absence of sodium carbonate, dimethyl 2-((E)-3-(alkylcarbamoyl)-2H-chromen-2-ylideneamino)fumarates were isolated as intermediates. These intermediates could be successfully converted to the same new tricyclic products by heating in ethanol containing sodium carbonate. All new synthetic compounds were characterized on the basis of their FT-IR,1H and13C NMR spectra, and microanalytical data. To identify the correct stereoisomer of the intermediates, in one case a 2D nuclear Overhauser effect (2D-NOESY) spectrum together with density functional theory (DFT) calculation at the B3LYP/6-311+G(d,p) level of theory was used.
Collapse
|
17
|
Kerru N, Singh-Pillay A, Awolade P, Singh P. Current anti-diabetic agents and their molecular targets: A review. Eur J Med Chem 2018; 152:436-488. [PMID: 29751237 DOI: 10.1016/j.ejmech.2018.04.061] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/17/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus is a medical condition characterized by the body's loss of control over blood sugar. The frequency of diagnosed cases and consequential increases in medical costs makes it a rapidly growing chronic disease that threatens human health worldwide. In addition, its unnerving statistical projections are perilous to both the economy of the nation and man's life expectancy. Type-I and type-II diabetes are the two clinical forms of diabetes mellitus. Type-II diabetes mellitus (T2DM) is illustrated by the abnormality of glucose homeostasis in the body, resulting in hyperglycemia. Although significant research attention has been devoted to the development of diabetes regimens, which demonstrates success in lowering blood glucose levels, their efficacies are unsustainable due to undesirable side effects such as weight gain and hypoglycemia. Over the years, heterocyclic scaffolds have been the basis of anti-diabetic chemotherapies; hence, in this review we consolidate the use of bioactive scaffolds, which have been evaluated for their biological response as inhibitors against their respective anti-diabetic molecular targets over the past five years (2012-2017). Our investigation reveals a diverse target set which includes; protein tyrosine phosphatase 1 B (PTP1B), dipeptidly peptidase-4 (DPP-4), free fatty acid receptors 1 (FFAR1), G protein-coupled receptors (GPCR), peroxisome proliferator activated receptor-γ (PPARγ), sodium glucose co-transporter-2 (SGLT2), α-glucosidase, aldose reductase, glycogen phosphorylase (GP), fructose-1,6-bisphosphatase (FBPase), glucagon receptor (GCGr) and phosphoenolpyruvate carboxykinase (PEPCK). This review offers a medium on which future drug design and development toward diabetes management may be modelled (i.e. optimization via structural derivatization), as many of the drug candidates highlighted show promise as an effective anti-diabetic chemotherapy.
Collapse
Affiliation(s)
- Nagaraju Kerru
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Ashona Singh-Pillay
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa.
| | - Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa.
| |
Collapse
|
18
|
Karimi N, Davoodnia A, Pordel M. Synthesis of new 3H-chromeno[2,3-d]pyrimidine-4,6(5H,7H)-diones via the tandem intramolecular Pinner/Dimroth rearrangement. HETEROCYCL COMMUN 2018. [DOI: 10.1515/hc-2017-0228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Abstract
The reaction of 2-amino-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitriles with excess aliphatic carboxylic acids in the presence of phosphoryl chloride (POCl3) afforded new 2-alkyl-5-aryl-8,8-dimethyl-8,9-dihydro-3H-chromeno[2,3-d]pyrimidine-4,6(5H,7H)-diones in high yields. The suggested mechanism involves a tandem intramolecular Pinner/Dimroth rearrangement. The synthesized compounds were characterized by infrared (IR), proton nuclear magnetic resonance (1H NMR), carbon-13 nuclear magnetic resonance (13C NMR) and elemental analysis.
Collapse
|
19
|
Behalo MS. Facile Synthesis of Novel Amino Acids Derivatives as Potential Antibacterial Agents using Sustainable Materials. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201700054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mohamed S. Behalo
- Chemistry Department, Faculty of Science; Benha University; Benha P. O. Box 13518 Egypt
| |
Collapse
|
20
|
Behalo MS. A convenient synthesis of novel amino acid derivatives with potential antibacterial activity using sustainable materials. JOURNAL OF CHEMICAL RESEARCH 2017. [DOI: 10.3184/174751917x14925986241061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Following the principles of green chemistry, cardanol derivatives have been used as renewable, low-cost and easily available natural starting materials to construct a variety of protected and unprotected amino acid derivatives. The reaction of cardanol derivatives with different phthalylamino acids including glycine, alanine, phenylalanine and valine in the presence of N,N′-dicyclohexylcarbodiimide (DCC) as coupling reagent yielded the target compounds in high yields. Deprotection of phthalylamino acid derivatives was achieved by heating with hydrazine hydrate. The chemical structures of all products were confirmed by spectral (FTIR, MS, 1H NMR, 13C NMR) and elemental analyses. The synthesised products were evaluated for their antibacterial activity, and the compounds exhibited potent to weak activity in comparison with a standard drug.
Collapse
Affiliation(s)
- Mohamed S. Behalo
- Chemistry Department, Faculty of Science, Benha University, Benha, PO Box 13518, Egypt
| |
Collapse
|
21
|
Papastavrou N, Chatzopoulou M, Ballekova J, Cappiello M, Moschini R, Balestri F, Patsilinakos A, Ragno R, Stefek M, Nicolaou I. Enhancing activity and selectivity in a series of pyrrol-1-yl-1-hydroxypyrazole-based aldose reductase inhibitors: The case of trifluoroacetylation. Eur J Med Chem 2017; 130:328-335. [DOI: 10.1016/j.ejmech.2017.02.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/25/2017] [Accepted: 02/20/2017] [Indexed: 11/25/2022]
|
22
|
Wu J, Li X, Wan W, Yang Q, Ma W, Chen D, Hu J, Chen CYO, Wei X. Gigantol from Dendrobium chrysotoxum Lindl. binds and inhibits aldose reductase gene to exert its anti-cataract activity: An in vitro mechanistic study. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:255-261. [PMID: 28104409 DOI: 10.1016/j.jep.2017.01.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 01/10/2017] [Accepted: 01/15/2017] [Indexed: 05/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium. chrysotoxum Lindl is a commonly used species of medicinal Dendrobium which belongs to the family of Orchidaceae, locally known as "Shihu" or "Huangcao". D. chrysotoxum Lindl is widely known for medicinal values in traditional Chinese medicine as it possesses anti-inflammatory, anti-hyperglycemic induction, antitumor and antioxidant properties. STUDY AIM To characterize the interaction between gigantol extracted from D. chrysotoxum Lindl and the AR gene, and determine gigantol's efficacy against cataractogenesis. MATERIALS AND METHODS Human lens epithelial cells (HLECs) were induced by glucose as the model group. Reverse transcription polymerase chain reaction (RT-PCR) was used to assess AR gene expression. Then, the mode of interaction of gigantol with the AR gene was evaluated by UV-visible spectroscopy, atomic force microscope (AFM) and surface-enhanced Raman spectroscopy (SERS). The binding constant was determined by UV-visible. RESULTS Gigantol depressed AR gene expression in HLECs. UV-visible spectra preliminarily indicated that interaction between the AR gene and gigantol may follow the groove mode, with a binding constant of 1.85×103L/mol. Atomic force microscope (AFM) data indicated that gigantol possibly bound to insert AR gene base pairs of the double helix. Surface-enhanced Raman spectroscopy (SERS) studies further supported these observations. CONCLUSION Gigantol extracted from D. chrysotoxum Lindl not only has inhibitory effects on aldose reductase, but also inhibits AR gene expression. These findings provide a more comprehensive theoretical basis for the use of Dendrobium for the treatment of diabetic cataract.
Collapse
Affiliation(s)
- Jie Wu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xue Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wencheng Wan
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qiaohong Yang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Weifeng Ma
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Dan Chen
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jiangmiao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
| | - C-Y Oliver Chen
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Xiaoyong Wei
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| |
Collapse
|