1
|
Ye C, Wang X, Lin J, Wu C, Gao Y, Guo C, Liao Y, Rao Z, Huang S, Chen W, Huang Y, Sun J, Zhao D, Jiang C. Systematical identification of regulatory GPCRs by single-cell trajectory inference reveals the role of ADGRD1 and GPR39 in adipogenesis. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1057-1072. [PMID: 39821834 DOI: 10.1007/s11427-024-2732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/15/2024] [Indexed: 01/19/2025]
Abstract
Adipogenesis is the healthy expansion of white adipose tissue (WAT), serving as a compensatory response to maintain metabolic homeostasis in the presence of excess energy in the body. Therefore, the identification of novel regulatory molecules in adipogenesis, specifically membrane receptors such as G protein-coupled receptors (GPCRs), holds significant clinical promise. These receptors can serve as viable targets for pharmaceuticals, offering potential for restoring metabolic homeostasis in individuals with obesity. We utilized trajectory inference methods to analyze three distinct single-nucleus sequencing (sNuc-seq) datasets of adipose tissue and systematically identified GPCRs with the potential to regulate adipogenesis. Through verification in primary adipose progenitor cells (APCs) of mice, we discovered that ADGRD1 promoted the differentiation of APCs, while GPR39 inhibits this process. In the obese mouse model induced by a high-fat diet (HFD), both gain-of-function and loss-of-function studies validated that ADGRD1 promoted adipogenesis, thereby improving metabolic homeostasis, while GPR39 inhibited adipogenesis, leading to metabolic dysfunction. Additionally, through the analysis of 2,400 ChIP-seq data and 1,204 bulk RNA-seq data, we found that the transcription factors (TFs) MEF2D and TCF12 regulated the expression of ADGRD1 and GPR39, respectively. Our study revealed the regulatory role of GPCRs in adipogenesis, providing novel targets for clinical intervention of metabolic dysfunction in obese patients.
Collapse
Affiliation(s)
- Chuan Ye
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Xuemei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Jun Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Chenyang Wu
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Yuhua Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Chenghao Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yunxi Liao
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Ziyan Rao
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Shaodong Huang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Weixuan Chen
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Ying Huang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, 100191, China
| | - Jinpeng Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250100, China
| | - Dongyu Zhao
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
2
|
Bazzazzadehgan S, Shariat-Madar Z, Mahdi F. Distinct Roles of Common Genetic Variants and Their Contributions to Diabetes: MODY and Uncontrolled T2DM. Biomolecules 2025; 15:414. [PMID: 40149950 PMCID: PMC11940602 DOI: 10.3390/biom15030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/26/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) encompasses a range of clinical manifestations, with uncontrolled diabetes leading to progressive or irreversible damage to various organs. Numerous genes associated with monogenic diabetes, exhibiting classical patterns of inheritance (autosomal dominant or recessive), have been identified. Additionally, genes involved in complex diabetes, which interact with environmental factors to trigger the disease, have also been discovered. These genetic findings have raised hopes that genetic testing could enhance diagnostics, disease surveillance, treatment selection, and family counseling. However, the accurate interpretation of genetic data remains a significant challenge, as variants may not always be definitively classified as either benign or pathogenic. Research to date, however, indicates that periodic reevaluation of genetic variants in diabetes has led to more consistent findings, with biases being steadily eliminated. This has improved the interpretation of variants across diverse ethnicities. Clinical studies suggest that genetic risk information may motivate patients to adopt behaviors that promote the prevention or management of T2DM. Given that the clinical features of certain monogenic diabetes types overlap with T2DM, and considering the significant role of genetic variants in diabetes, healthcare providers caring for prediabetic patients should consider genetic testing as part of the diagnostic process. This review summarizes current knowledge of the most common genetic variants associated with T2DM, explores novel therapeutic targets, and discusses recent advancements in the pharmaceutical management of uncontrolled T2DM.
Collapse
Affiliation(s)
- Shadi Bazzazzadehgan
- Department of Pharmacy Administration, School of Pharmacy, University of Mississippi, University, MS 38677, USA;
| | - Zia Shariat-Madar
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
| | - Fakhri Mahdi
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
| |
Collapse
|
3
|
Aryan, Babu B, Divakar S, Gowramma B, Jupudi S, Chand J, Malakar Kumar V. Rational design of thiazolidine-4-one-gallic acid hybrid derivatives as selective partial PPARγ modulators: an in-silico approach for type 2 diabetes treatment. J Biomol Struct Dyn 2025; 43:694-708. [PMID: 37997952 DOI: 10.1080/07391102.2023.2283161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Type 2 diabetes mellitus is a bipolar metabolic disorder characterized by abnormalities in insulin production from β-cells and insulin resistance. Thiazolidinediones are potent anti-diabetic agents that act through the modulation of the peroxisome proliferator-activated receptor γ (PPARγ), a nuclear receptor. However, their full agonistic activity leads to severe side effects by stabilizing Helix12 through strong hydrogen bonding with the TYR473 residue. Partial and selective PPARγ modulators (GW0072, GQ16, VSP-51, MRL-20, MBX-213, INT131) have demonstrated superior results compared to full agonists without causing adverse effects, as reported in existing data. To address this uncertainty and advance therapeutic options, we identified and designed a novel class of compounds (A1-A23) based on a hybrid structure combining phenolic and Thiazolidine-4-one's moieties. Our rational drug design strategy incorporated structural-activity relationship principle, and validated the docking studies through calculated the root mean square deviation. Additionally, we conducted molecular docking, binding energy, molecular dynamics simulations, and post-molecular dynamics calculations to evaluate the dynamics behavior between the ligands and protein. The selected ligands demonstrated highly favorable docking scores and binding energies, comparable to the co-crystal (rosiglitazone) such as A12 (-13.9 kcal/mol and -86.2 kcal/mol), A1 (-11.1 kcal/mol and -79.5 kcal/mol), A13 (-11.3 kcal/mol and -91.4 kcal/mol), and the co-crystal itself (-9.8 kcal/mol and -76 kcal/mol), respectively. Finally, the MD revealed that, the selected ligands were equally contributed for stabilization of Helix12 and β-sheets. It was concluded, the designed ligands (A12, A1, and A13) exhibited weaker hydrogen-bond interactions with specific residue TYR473 which partially modulated the PPARγ protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aryan
- Department of Pharmaceutical Analysis, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - B Babu
- Department of Pharmaceutical Analysis, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - S Divakar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - B Gowramma
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Srikanth Jupudi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Jagdish Chand
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Vishnu Malakar Kumar
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| |
Collapse
|
4
|
Ching KWC, Mokhtar NF, Tye GJ. Identification of significant hub genes and pathways associated with metastatic breast cancer and tolerogenic dendritic cell via bioinformatics analysis. Comput Biol Med 2025; 184:109396. [PMID: 39549529 DOI: 10.1016/j.compbiomed.2024.109396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/08/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Metastatic breast cancer (MBC) is an advanced-stage breast cancer associated with more than 90 % of cancer-related deaths. Immunosuppressive properties of tolerogenic dendritic cells (tolDCs) in tumour immune microenvironment (TIME) may be a risk factor for the rapid progression to MBC. However, the exact connections between the two are unknown. The aim of the current study is to uncover gene signatures and key pathways associated with MBC and tolDCs via an integrated bioinformatics approach. Gene expression profiles of MBC and tolDCs were retrieved from Gene Expression Omnibus (GEO) to identify common differentially expressed genes (DEGs). From DGE analysis, 529 upregulated common DEGs and 367 downregulated common DEGs had been identified. In enrichment analysis, common DEGs enriched in GO terms of defense response to virus and KEGG pathway of transcriptional misregulation in cancer were reported to be significantly associated with MBC and tolDCs. From the constructed PPI networks, 23 hub genes were identified, although only 5 genes were significant; 3 upregulated (ISG15, OAS2 and RSAD2) and 2 downregulated (eEF2 and PPARG) as they were found to be significantly correlated and had the same expression trend as predicted in validation analysis of overall survival (OS) analysis, expression levels, immune infiltration analysis and immunohistochemistry (IHC) analysis. These 5 hub genes can now be exploited in developing novel therapeutic interventions and as diagnostic biomarkers for enhancing the clinical outcomes of MBC patients.
Collapse
Affiliation(s)
- Kirstie Wong Chee Ching
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Main Campus, 11800, Pulau Pinang, Malaysia.
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
5
|
Ranade SD, Alegaon SG, Khatib NA, Gharge S, Kavalapure RS, Kumar BRP. Reversal of insulin resistance to combat type 2 diabetes mellitus by newer thiazolidinedione's in fructose induced insulin resistant rats. Eur J Med Chem 2024; 280:116939. [PMID: 39396421 DOI: 10.1016/j.ejmech.2024.116939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
In our pursuit of discovering new antidiabetic agents to manage type 2 diabetes mellitus (T2DM), our approach aimed to identify the bioactive feature/pharmacophore responsible for PPAR-γ expression, as it is accountable for the glucose homeostasis and lipid metabolism. This was achieved by pharmacophore model generation, screening of rationally designed newer thiazolidinedione's library, identifying synthesizing and characterizing the top ten molecules (5a-5j) for their (Invitro & invivo) antidiabetic activity. Preliminary screening of all the ligands by Invitro glucose uptake assay in L6 myotubes (skeletal muscle cell line of rats) revealed compound 5b and 5f stimulated the glucose uptake with 79.29 ± 1.02 % and 74.58 ± 1.02 % respectively compared to pioglitazone with 82.36 ± 0.98 %. This was validated by PPAR-γ TF expression assay, which highlighted a dose dependent increase in transactivation of PPAR-γ. These compounds 5b and 5f were evaluated in fructose induced insulin resistance rat model. Where the treatment with 5b and 5f markedly increased the exogenous clearance of glucose and exogenous insulin via OGTT and ITT respectively, also improved the glucose utilization by significantly increasing content of glycogen and uptake of glucose in rat hemidiaphragm and reversed insulin resistance. Likewise a significant decreased in the VLDL and triglyceride levels was seen in 5b and 5f treated groups compared to insulin resistant (IR) group. It improved glycogenesis by catabolism of glucose and maintained glycaemic control. Similarly it had marked action on enzymatic oxidative biomarkers. Compound 5b displayed better, improved T1/2 (half-life) of 4.21 h and Kel (elimination constant) of 0.381 was noticed in comparison to compound 5f indicating the pharmacokinetic profile. Insilico studies like DFT calculations refined the geometry of 5b and 5f ligands, docking and molecular simulation provided the insights in binding affinity, dynamic behaviour and stability of ligands in PPAR-γ ligand binding domain. MM/GBSA provided the energetics of 5b and 5f in binding pocket. Finally network pharmacology identified ADIPOQ (adiponectin), NR1C3 (PPAR-γ), SLC2A4 (GLUT4), and LEP (leptin) proteins associate with compound 5b and 5f and enriched in Adipocytokine pathway, and PPAR-γ signaling pathway.
Collapse
Affiliation(s)
- Shriram D Ranade
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, 590 010, Karnataka, India
| | - Shankar G Alegaon
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, 590 010, Karnataka, India.
| | - Nayeem A Khatib
- Department of Pharmacology, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, 590 010, Karnataka, India
| | - Shankar Gharge
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, 590 010, Karnataka, India
| | - Rohini S Kavalapure
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, 590 010, Karnataka, India
| | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru, JSS Academy of Higher Education and Research, Mysuru, 570015, Karnataka, India
| |
Collapse
|
6
|
Satheesan A, Kumar J, Leela KV, Murugesan R, Chaithanya V, Angelin M. Review on the role of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome pathway in diabetes: mechanistic insights and therapeutic implications. Inflammopharmacology 2024; 32:2753-2779. [PMID: 39160391 DOI: 10.1007/s10787-024-01556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
This review explores the pivotal role of the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome in the pathogenesis of diabetes and its complications, highlighting the therapeutic potential of various oral hypoglycemic drugs targeting this pathway. NLRP3 inflammasome activation, triggered by metabolic stressors like hyperglycemia, hyperlipidemia, and free fatty acids (FFAs), leads to the release of pro-inflammatory cytokines interleukin-1β and interleukin-18, driving insulin resistance, pancreatic β-cell dysfunction, and systemic inflammation. These processes contribute to diabetic complications such as nephropathy, neuropathy, retinopathy, and cardiovascular diseases (CVD). Here we discuss the various transcriptional, epigenetic, and gut microbiome mediated regulation of NLRP3 activation in diabetes. Different classes of oral hypoglycemic drugs modulate NLRP3 inflammasome activity through various mechanisms: sulfonylureas inhibit NLRP3 activation and reduce inflammatory cytokine levels; sodium-glucose co-transporter 2 inhibitors (SGLT2i) suppress inflammasome activity by reducing oxidative stress and modulating intracellular signaling pathways; dipeptidyl peptidase-4 inhibitors mitigate inflammasome activation, protecting against renal and vascular complications; glucagon-like peptide-1 receptor agonists attenuate NLRP3 activity, reducing inflammation and improving metabolic outcomes; alpha-glucosidase inhibitors and thiazolidinediones exhibit anti-inflammatory properties by directly inhibiting NLRP3 activation. Agents that specifically target NLRP3 and inhibit their activation have been identified recently such as MCC950, Anakinra, CY-09, and many more. Targeting the NLRP3 inflammasome, thus, presents a promising strategy for managing diabetes and its complications, with oral hypoglycemic drugs offering dual benefits of glycemic control and inflammation reduction. Further research into the specific mechanisms and long-term effects of these drugs on NLRP3 inflammasome activity is warranted.
Collapse
Affiliation(s)
- Abhishek Satheesan
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Janardanan Kumar
- Department of General Medicine, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India.
| | - Kakithakara Vajravelu Leela
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Ria Murugesan
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Venkata Chaithanya
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Matcha Angelin
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| |
Collapse
|
7
|
Ali IH, Hassan RM, El Kerdawy AM, Abo-Elfadl MT, Abdallah HMI, Sciandra F, Ghannam IAY. Novel thiazolidin-4-one benzenesulfonamide hybrids as PPARγ agonists: Design, synthesis and in vivo anti-diabetic evaluation. Eur J Med Chem 2024; 269:116279. [PMID: 38460271 DOI: 10.1016/j.ejmech.2024.116279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/11/2024]
Abstract
In the current study, two series of novel thiazolidin-4-one benzenesulfonamide arylidene hybrids 9a-l and 10a-f were designed, synthesized and tested in vitro for their PPARɣ agonistic activity. The phenethyl thiazolidin-4-one sulphonamide 9l showed the highest PPARɣ activation % by 41.7%. Whereas, the 3-methoxy- and 4-methyl-4-benzyloxy thiazolidin-4-one sulphonamides 9i, and 9k revealed moderate PPARɣ activation % of 31.7, and 32.8%, respectively, in addition, the 3-methoxy-3-benzyloxy thiazolidin-4-one sulphonamide 10d showed PPARɣ activation % of 33.7% compared to pioglitazone. Compounds 9b, 9i, 9k, 9l, and 10d revealed higher selectivity to PPARɣ over the PPARδ, and PPARα isoforms. An immunohistochemical study was performed in HepG-2 cells to confirm the PPARɣ protein expression for the most active compounds. Compounds 9i, 9k, and 10d showed higher PPARɣ expression than that of pioglitazone. Pharmacological studies were also performed to determine the anti-diabetic activity in rats at a dose of 36 mg/kg, and it was revealed that compounds 9i and 10d improved insulin secretion as well as anti-diabetic effects. The 3-methoxy-4-benzyloxy thiazolidin-4-one sulphonamide 9i showed a better anti-diabetic activity than pioglitazone. Moreover, it showed a rise in blood insulin by 4-folds and C-peptide levels by 48.8%, as well as improved insulin sensitivity. Moreover, compound 9i improved diabetic complications as evidenced by decreasing liver serum enzymes, restoration of total protein and kidney functions. Besides, it combated oxidative stress status and exerted anti-hyperlipidemic effect. Compound 9i showed a superior activity by normalizing some parameters and amelioration of pancreatic, hepatic, and renal histopathological alterations caused by STZ-induction of diabetes. Molecular docking studies, molecular dynamic simulations, and protein ligand interaction analysis were also performed for the newly synthesized compounds to investigate their predicted binding pattern and energies in PPARɣ binding site.
Collapse
Affiliation(s)
- Islam H Ali
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Rasha M Hassan
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Ahmed M El Kerdawy
- School of Pharmacy, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mahmoud T Abo-Elfadl
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo 12622, Egypt; Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Heba M I Abdallah
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Francesca Sciandra
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta"- SCITEC (CNR) Sede di Roma, Largo F. Vito 1, 00168 Roma, Italy
| | - Iman A Y Ghannam
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt.
| |
Collapse
|
8
|
Wang Y, Lei F, Lin Y, Han Y, Yang L, Tan H. Peroxisome proliferator-activated receptors as therapeutic target for cancer. J Cell Mol Med 2024; 28:e17931. [PMID: 37700501 PMCID: PMC10902584 DOI: 10.1111/jcmm.17931] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/05/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to the nuclear receptor family. There are three subtypes of PPARs, including PPAR-α, PPAR-β/δ and PPAR-γ. They are expressed in different tissues and act by regulating the expression of target genes in the form of binding to ligands. Various subtypes of PPAR have been shown to have significant roles in a wide range of biological processes including lipid metabolism, body energy homeostasis, cell proliferation and differentiation, bone formation, tissue repair and remodelling. Recent studies have found that PPARs are closely related to tumours. They are involved in cancer cell growth, angiogenesis and tumour immune response, and are essential components in tumour progression and metastasis. As such, they have become a target for cancer therapy research. In this review, we discussed the current state of knowledge on the involvement of PPARs in cancer, including their role in tumourigenesis, the impact of PPARs in tumour microenvironment and the potential of using PPARs combinational therapy to treat cancer by targeting essential signal pathways, or as adjuvants to boost the effects of current chemo and immunotherapies. Our review highlights the complexity of PPARs in cancer and the need for a better understanding of the mechanism in order to design effective cancer therapies.
Collapse
Affiliation(s)
- Yuqing Wang
- Department of Internal MedicineMontefiore Medical Center, Wakefield CampusBronxNew YorkUSA
| | - Feifei Lei
- Department of Infectious Disease, Lab of Liver Disease, Renmin HospitalHubei University of MedicineShiyanChina
| | - Yiyun Lin
- Department of Biomedical SciencesUniversity of Texas, MD Anderson Cancer CenterHoustonTexasUSA
| | - Yuru Han
- Qinghai Provincial People's HospitalXiningChina
| | - Lei Yang
- Department of Biomedical SciencesUniversity of Texas, MD Anderson Cancer CenterHoustonTexasUSA
| | - Huabing Tan
- Department of Infectious Disease, Lab of Liver Disease, Renmin HospitalHubei University of MedicineShiyanChina
| |
Collapse
|
9
|
Fettach S, Thari FZ, Karrouchi K, Benbacer L, Lee LH, Bouyahya A, Cherrah Y, Sefrioui H, Bougrin K, Faouzy MEA. Assessment of anti-hyperglycemic and anti-hyperlipidemic effects of thiazolidine-2,4-dione derivatives in HFD-STZ diabetic animal model. Chem Biol Interact 2024; 391:110902. [PMID: 38367680 DOI: 10.1016/j.cbi.2024.110902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic endocrine/metabolic disorder characterized by elevated postprandial and fasting glycemic levels that result in disturbances in primary metabolism. In this study, we evaluated the metabolic effects of thiazolidine-2,4-dione derivatives in Wistar rats and Swiss mice that were fed a high-fat diet (HFD) for 4 weeks and received 90 mg/kg of streptozotocin (STZ) intraperitoneally as a T2DM model. The HFD consisted of 17% carbohydrate, 58% fat, and 25% protein, as a percentage of total kcal. The thiazolidine-2,4-dione derivatives treatments reduced fasting blood glucose (FBG) levels by an average of 23.98%-50.84%, which were also improved during the oral starch tolerance test (OSTT). Treatment with thiazolidine-2,4-dione derivatives also improved triglyceride (TG), low-density lipoprotein cholesterol (LDL-c), and total cholesterol levels (P < 0.05). The treatment intake has also shown a significant effect to modulate the altered hepatic and renal biomarkers. Further treatment with thiazolidine-2,4-dione derivatives for 28 days significantly ameliorated changes in appearance and metabolic risk factors, including favorable changes in histopathology of the liver, kidney, and pancreas compared with the HFD/STZ-treated group, suggesting its potential role in the management of diabetes. Thiazolidine-2,4-dione derivatives are a class of drugs that act as insulin sensitizers by activating peroxisome proliferator-activated receptor-gamma (PPAR-γ), a nuclear receptor that regulates glucose and lipid metabolism. The results of this study suggest that thiazolidine-2,4-dione derivatives may be a promising treatment option for T2DM by improving glycemic control, lipid metabolism, and renal and hepatic function.
Collapse
Affiliation(s)
- Saad Fettach
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Fatima Zahra Thari
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University in Rabat, Morocco
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Laila Benbacer
- Biology and Molecular Research Unit, Department of Life Sciences, National Center for Energy, Nuclear Science and Technology (CNESTEN), B.P. 1382 R.P, 10001, Rabat, Morocco
| | - Learn-Han Lee
- Research Center for Life Science and Healthcare, China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Zhejiang, China; Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, 47500, Malaysia.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco.
| | - Yahia Cherrah
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Hassan Sefrioui
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation & Research (MAScIR), Rabat, Morocco
| | - Khalid Bougrin
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University in Rabat, Morocco; Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - My El Abbes Faouzy
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| |
Collapse
|
10
|
Shahcheraghi SH, Asl ER, Lotfi M, Ayatollahi J, Khaleghinejad SH, Aljabali AAA, Bakshi HA, El-Tanani M, Charbe NB, Serrano-Aroca Á, Mishra V, Mishra Y, Goyal R, Hromić-Jahjefendić A, Uversky VN, Lotfi M, Tambuwala MM. Non-coding RNAs as Key Regulators of the Notch Signaling Pathway in Glioblastoma: Diagnostic, Prognostic, and Therapeutic Targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1203-1216. [PMID: 38279763 DOI: 10.2174/0118715273277458231213063147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 01/28/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly invasive brain malignancy originating from astrocytes, accounting for approximately 30% of central nervous system malignancies. Despite advancements in therapeutic strategies including surgery, chemotherapy, and radiopharmaceutical drugs, the prognosis for GBM patients remains dismal. The aggressive nature of GBM necessitates the identification of molecular targets and the exploration of effective treatments to inhibit its proliferation. The Notch signaling pathway, which plays a critical role in cellular homeostasis, becomes deregulated in GBM, leading to increased expression of pathway target genes such as MYC, Hes1, and Hey1, thereby promoting cellular proliferation and differentiation. Recent research has highlighted the regulatory role of non-coding RNAs (ncRNAs) in modulating Notch signaling by targeting critical mRNA expression at the post-transcriptional or transcriptional levels. Specifically, various types of ncRNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been shown to control multiple target genes and significantly contribute to the carcinogenesis of GBM. Furthermore, these ncRNAs hold promise as prognostic and predictive markers for GBM. This review aims to summarize the latest studies investigating the regulatory effects of ncRNAs on the Notch signaling pathway in GBM.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elmira Roshani Asl
- Social Determinants of Health Research Center, Saveh University of Medical Sciences, Saveh, Iran
| | - Malihe Lotfi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshid Ayatollahi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Hamid A Bakshi
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Mohamed El-Tanani
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Nitin B Charbe
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics (Lake Nona), University of Florida, Orlando, FL, USA
| | - Ángel Serrano-Aroca
- Biomaterials & Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, San Vicente Mártir, Valencia, 46001, Spain
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology & Management Sciences, Solan, India
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, 71000 Sarajevo, Bosnia and Herzegovina
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| |
Collapse
|
11
|
Zhang J, Song J, Liu S, Zhang Y, Qiu T, Jiang L, Bai J, Yao X, Wang N, Yang G, Sun X. m 6A methylation-mediated PGC-1α contributes to ferroptosis via regulating GSTK1 in arsenic-induced hepatic insulin resistance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167202. [PMID: 37730054 DOI: 10.1016/j.scitotenv.2023.167202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Arsenic exposure has been closely linked to hepatic insulin resistance (IR) and ferroptosis with the mechanism elusive. Peroxisome proliferator γ-activated receptor coactivator 1-α (PGC-1α) is essential for glucose metabolism as well as for the production of reactive oxygen species (ROS). However, it was unclear whether there is a regulatory connection between PGC-1α and ferroptosis. Besides, the definitive mechanism of arsenic-induced hepatic IR progression remains to be determined. Here, we found that hepatic insulin sensitivity impaired by sodium arsenite (NaAsO2) could be reversed by inhibiting ferroptosis. Mechanistically, we found that PGC-1α suppression inhibited the protein expression of glutathione s-transferase kappa 1 (GSTK1) via nuclear respiratory factor 1 (NRF1), thereby increasing ROS accumulation and promoting ferroptosis. Furthermore, we showed that NaAsO2 induced hepatic IR and ferroptosis via methyltransferase-like 14 (METTL14) and YTH domain-containing family protein 2 (YTHDF2)-mediated N6-methyladenosine (m6A) of PGC-1α mRNA. In conclusion, NaAsO2-mediated PGC-1α suppression was m6A methylation-dependent and induced ferroptosis via the PGC-1α/NRF1/GSTK1 pathway in hepatic IR. The data might provide insight into potential targets for diabetes prevention and treatment.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Jinwei Song
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Shuang Liu
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Yuhan Zhang
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Tianming Qiu
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Liping Jiang
- Experimental Teaching Center of Public Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Jie Bai
- Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Xiaofeng Yao
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Ningning Wang
- Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| | - Guang Yang
- Nutrition and Food Hygiene, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China
| | - Xiance Sun
- Occupational and Environmental Health Department, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China; Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, PR China.
| |
Collapse
|
12
|
Wang Z, Li Y, Wu L, Guo Y, Yang G, Li X, Shi X. Rosiglitazone-induced PPARγ activation promotes intramuscular adipocyte adipogenesis of pig. Anim Biotechnol 2023; 34:3708-3717. [PMID: 37149785 DOI: 10.1080/10495398.2023.2206872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Intramuscular fat (IMF) positively influences various aspects of meat quality, while the subcutaneous fat (SF) has negative effect on carcass characteristics and fattening efficiency. Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of adipocyte differentiation, herein, through bioinformatic screen for the potential regulators of adipogenesis from two independent microarray datasets, we identified that PPARγ is a potentially regulator between porcine IMF and SF adipogenesis. Then we treated subcutaneous preadipocytes (SA) and intramuscular preadipocytes (IMA) of pig with RSG (1 µmol/L), and we found that RSG treatment promoted the differentiation of IMA via differentially activating PPARγ transcriptional activity. Besides, RSG treatment promoted apoptosis and lipolysis of SA. Meanwhile, by the treatment of conditioned medium, we excluded the possibility of indirect regulation of RSG from myocyte to adipocyte and proposed that AMPK may mediate the RSG-induced differential activation of PPARγ. Collectively, the RSG treatment promotes IMA adipogenesis, and advances SA lipolysis, this effect may be associated with AMPK-mediated PPARγ differential activation. Our data indicates that targeting PPARγ might be an effective strategy to promote intramuscular fat deposition while reduce subcutaneous fat mass of pig.
Collapse
Affiliation(s)
- Zhaolu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Youlei Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Lingling Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Yuan Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Xiao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| | - Xin'e Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A & F University, Shaanxi, P. R. China
| |
Collapse
|
13
|
Mandal S, Faizan S, Raghavendra NM, Kumar BRP. Molecular dynamics articulated multilevel virtual screening protocol to discover novel dual PPAR α/γ agonists for anti-diabetic and metabolic applications. Mol Divers 2023; 27:2605-2631. [PMID: 36437421 DOI: 10.1007/s11030-022-10571-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022]
Abstract
PPARα and PPARγ are isoforms of the nuclear receptor superfamily which regulate glucose and lipid metabolism. Activation of PPARα and PPARγ receptors by exogenous ligands could transactivate the expression of PPARα and PPARγ-dependent genes, and thereby, metabolic pathways get triggered, which are helpful to ameliorate treatment for the type 2 diabetes mellitus, and related metabolic complications. Herein, by understanding the structural requirements for ligands to activate PPARα and PPARγ proteins, we developed a multilevel in silico-based virtual screening protocol to identify novel chemical scaffolds and further design and synthesize two distinct series of glitazone derivatives with advantages over the classical PPARα and PPARγ agonists. Moreover, the synthesized compounds were biologically evaluated for PPARα and PPARγ transactivation potency from nuclear extracts of 3T3-L1 cell. Furthermore, glucose uptake assay on L6 cells confirmed the potency of the synthesized compounds toward glucose regulation. Percentage lipid-lowering potency was also assessed through triglyceride estimate from 3T3-L1 cell extracts. Results suggested the ligand binding mode was in orthosteric fashion as similar to classical agonists. Thus molecular docking and molecular dynamics (MD) simulation experiments were executed to validate our hypothesis on mode of ligands binding and protein complex stability. Altogether, the present study developed a newer protocol for virtual screening and enables to design of novel glitazones for activation of PPARα and PPARγ-mediated pathways. Accordingly, present approach will offer benefit as a therapeutic strategy against type 2 diabetes mellitus and associated metabolic complications.
Collapse
Affiliation(s)
- Subhankar Mandal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, S. S. Nagar, Mysuru, Karnataka, 570015, India
- JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India
| | - Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, S. S. Nagar, Mysuru, Karnataka, 570015, India
- JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India
| | | | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, S. S. Nagar, Mysuru, Karnataka, 570015, India.
- JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India.
| |
Collapse
|
14
|
Gowdru Srinivasa M, B C R, Prabhu A, Rani V, Ghate SD, Kumar B R P. Development of novel thiazolidine-2,4-dione derivatives as PPAR-γ agonists through design, synthesis, computational docking, MD simulation, and comprehensive in vitro and in vivo evaluation. RSC Med Chem 2023; 14:2401-2416. [PMID: 37974963 PMCID: PMC10650958 DOI: 10.1039/d3md00273j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/06/2023] [Indexed: 11/19/2023] Open
Abstract
The present study was conducted to develop new novel 2,4-thiazolidinedione derivatives (3h-3j) as peroxisome proliferator-activated receptor-γ (PPAR-γ) modulators for antidiabetic activity. The objective was to overcome the adverse effects of existing thiazolidinediones while maintaining their pharmacological benefits. The synthesized compounds were elucidated based on FT-IR, 1H-NMR, 13C-NMR, and MS techniques. Molecular docking was utilized to investigate the interaction binding modes, binding free energy, and amino acids engaged in the compounds' interactions with the target protein. Subsequently, molecular dynamics modelling was used to assess the stability of the top-docked complexes and an assay was utilized to assess the cytotoxicity of the compounds to C2C12 myoblasts. Compounds 3h-3j exhibited PPAR-γ modulatory activity and demonstrated significant hypoglycaemic effects when compared to the reference drug pioglitazone. The new compounds were evaluated for their in vivo blood glucose-lowering potential by using a dexamethasone-induced diabetic rat model. All the compounds showed a hypoglycaemic effect of 108.04 ± 4.39, 112.55 ± 6.10, and 117.48 ± 43.93, respectively, along with pioglitazone (153.93 ± 4.61) compared to the diabetic control. Additionally, all the compounds significantly reduced AST and ALT levels and did not cause liver damage.
Collapse
Affiliation(s)
- Mahendra Gowdru Srinivasa
- Department of Pharmaceutical Chemistry, Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS) Mangalore India
| | - Revanasiddappa B C
- Department of Pharmaceutical Chemistry, Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS) Mangalore India
| | - Ashwini Prabhu
- Yenepoya Research Centre, Yenepoya (Deemed to be University) Deralakatte Mangalore 575 018 Karnataka India
| | - Vinitha Rani
- Yenepoya Research Centre, Yenepoya (Deemed to be University) Deralakatte Mangalore 575 018 Karnataka India
| | - Sudeep D Ghate
- Center for Bioinformatics, Nitte (Deemed to be University) Deralakatte Mangalore Karnataka - 575 018 India
| | - Prashantha Kumar B R
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research Mysuru-570015 Karnataka India
| |
Collapse
|
15
|
Zhang D, Wang W, Zhao H, Wang S, Yu M, Zhang D, Liu W, Xie Q, Chen D. Structural Identification of Impurities in Pioglitazone Hydrochloride Preparations by 2D-UHPLC-Q-Exactive Orbitrap HRMS and Their Toxicity Prediction. Int J Anal Chem 2023; 2023:2096521. [PMID: 37881366 PMCID: PMC10597724 DOI: 10.1155/2023/2096521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023] Open
Abstract
Pharmaceutical companies and regulatory agencies have more and more concerns for impurities in pharmaceuticals and their toxicity. In this work, heart-cutting two-dimensional ultrahigh-performance liquid chromatography (2D-UHPLC) in combination with high-resolution mass spectrometry (HRMS) was used, setting HRMS as positive mode of electrospray ionization to identify five impurities in pioglitazone hydrochloride preparations. With the heart-cutting 2D-UHPLC and online desalting technique, the structures of five impurities were deduced in an analysis of MSn data. And three of them, Impurity-2, Impurity-3, and Impurity-5, have never been reported before. The fragmentation patterns of five impurities were proposed on a basis of accurate mass and fragment ions in this study. Since the toxicity of impurities is relevant to their structures, toxicology of all five impurities was predicted by three software tools, and the result showed that these compounds have good safety profile.
Collapse
Affiliation(s)
- Dandan Zhang
- Shandong Institute for Food and Drug Control, Shandong Research Center of Engineering and Technology for Consistency Evaluation of Generic Drugs, NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Public Service Platforms for Industrial Technology, Jinan, China
| | - Weijian Wang
- Shandong Institute for Food and Drug Control, Shandong Research Center of Engineering and Technology for Consistency Evaluation of Generic Drugs, NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Public Service Platforms for Industrial Technology, Jinan, China
| | - Haiyun Zhao
- Shandong Institute for Food and Drug Control, Shandong Research Center of Engineering and Technology for Consistency Evaluation of Generic Drugs, NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Public Service Platforms for Industrial Technology, Jinan, China
| | - Song Wang
- Shandong Institute for Food and Drug Control, Shandong Research Center of Engineering and Technology for Consistency Evaluation of Generic Drugs, NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Public Service Platforms for Industrial Technology, Jinan, China
| | - Mingyan Yu
- Shandong Institute for Food and Drug Control, Shandong Research Center of Engineering and Technology for Consistency Evaluation of Generic Drugs, NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Public Service Platforms for Industrial Technology, Jinan, China
| | - Dongmei Zhang
- Shandong Institute for Food and Drug Control, Shandong Research Center of Engineering and Technology for Consistency Evaluation of Generic Drugs, NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Public Service Platforms for Industrial Technology, Jinan, China
| | - Wenkun Liu
- Shandong Institute for Food and Drug Control, Shandong Research Center of Engineering and Technology for Consistency Evaluation of Generic Drugs, NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Public Service Platforms for Industrial Technology, Jinan, China
| | - Qiangsheng Xie
- Shandong Institute for Food and Drug Control, Shandong Research Center of Engineering and Technology for Consistency Evaluation of Generic Drugs, NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Public Service Platforms for Industrial Technology, Jinan, China
| | - Dejun Chen
- Shandong Institute for Food and Drug Control, Shandong Research Center of Engineering and Technology for Consistency Evaluation of Generic Drugs, NMPA Key Laboratory for Research and Evaluation of Generic Drugs, Public Service Platforms for Industrial Technology, Jinan, China
| |
Collapse
|
16
|
Susilawati E, Levita J, Susilawati Y, Sumiwi SA. Review of the Case Reports on Metformin, Sulfonylurea, and Thiazolidinedione Therapies in Type 2 Diabetes Mellitus Patients. Med Sci (Basel) 2023; 11:50. [PMID: 37606429 PMCID: PMC10443323 DOI: 10.3390/medsci11030050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is the world's most common metabolic disease. The development of T2DM is mainly caused by a combination of two factors: the failure of insulin secretion by the pancreatic β-cells and the inability of insulin-sensitive tissues to respond to insulin (insulin resistance); therefore, the disease is indicated by a chronic increase in blood glucose. T2DM patients can be treated with mono- or combined therapy using oral antidiabetic drugs and insulin-replaced agents; however, the medication often leads to various discomforts, such as abdominal pain, diarrhea or constipation, nausea and vomiting, and hypersensitivity reactions. A biguanide drug, metformin, has been used as a first-line drug to reduce blood sugar levels. Sulfonylureas work by blocking the ATP-sensitive potassium channel, directly inducing the release of insulin from pancreatic β-cells and thus decreasing blood glucose concentrations. However, the risk of the failure of sulfonylurea as a monotherapy agent is greater than that of metformin or rosiglitazone (a thiazolidinedione drug). Sulfonylureas are used as the first-line drug of choice for DM patients who cannot tolerate metformin therapy. Other antidiabetic drugs, thiazolidinediones, work by activating the peroxisome proliferator-activated receptor gamma (PPARγ), decreasing the IR level, and increasing the response of β-cells towards the glucose level. However, thiazolidines may increase the risk of cardiovascular disease, weight gain, water retention, and edema. This review article aims to discuss case reports on the use of metformin, sulfonylureas, and thiazolidinediones in DM patients. The literature search was conducted on the PubMed database using the keywords 'metformin OR sulfonylureas OR thiazolidinediones AND case reports', filtered to 'free full text', 'case reports', and '10 years publication date'. In some patients, metformin may affect sleep quality and, in rare cases, leads to the occurrence of lactate acidosis; thus, patients taking this drug should be monitored for their kidney status, plasma pH, and plasma metformin level. Sulfonylureas and TZDs may cause a higher risk of hypoglycemia and weight gain or edema due to fluid retention. TZDs may be associated with risks of cardiovascular events in patients with concomitant T2DM and chronic obstructive pulmonary disease. Therefore, patients taking these drugs should be closely monitored for adverse effects.
Collapse
Affiliation(s)
- Elis Susilawati
- Doctoral Program in Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, West Java, Indonesia;
- Faculty of Pharmacy, Bhakti Kencana University, Bandung 40614, West Java, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, West Java, Indonesia;
| | - Yasmiwar Susilawati
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, West Java, Indonesia;
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, West Java, Indonesia;
| |
Collapse
|
17
|
Singh R, Kumar P, Sindhu J, Devi M, Kumar A, Lal S, Singh D, Kumar H. Thiazolidinedione-triazole conjugates: design, synthesis and probing of the α-amylase inhibitory potential. Future Med Chem 2023; 15:1273-1294. [PMID: 37551699 DOI: 10.4155/fmc-2023-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Abstract
Aim: The primary objective of this investigation was the synthesis, spectral interpretation and evaluation of the α-amylase inhibition of rationally designed thiazolidinedione-triazole conjugates (7a-7aa). Materials & methods: The designed compounds were synthesized by stirring a mixture of thiazolidine-2,4-dione, propargyl bromide, cinnamaldehyde and azide derivatives in polyethylene glycol-400. The α-amylase inhibitory activity of the synthesized conjugates was examined by integrating in vitro and in silico studies. Results: The investigated derivatives exhibited promising α-amylase inhibitory activity, with IC50 values ranging between 0.028 and 0.088 μmol ml-1. Various computational approaches were employed to get detailed information about the inhibition mechanism. Conclusion: The thiazolidinedione-triazole conjugate 7p, with IC50 = 0.028 μmol ml-1, was identified as the best hit for inhibiting α-amylase.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Meena Devi
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences, GJUS&T, Hisar, 125001, India
| | - Sohan Lal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, 124001, India
| | - Harish Kumar
- Department of Chemistry, School of Basic Sciences, Central University Haryana, Mahendergarh, 123029, India
| |
Collapse
|
18
|
Qi Y, Hu M, Qiu Y, Zhang L, Yan Y, Feng Y, Feng C, Hou X, Wang Z, Zhang D, Zhao J. Mitoglitazone ameliorates renal ischemia/reperfusion injury by inhibiting ferroptosis via targeting mitoNEET. Toxicol Appl Pharmacol 2023; 465:116440. [PMID: 36870574 DOI: 10.1016/j.taap.2023.116440] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Ischemia/reperfusion- (I/R-) induced injury is unavoidable and a major risk factor for graft failure and acute rejection following kidney transplantation. However, few effective interventions are available to improve the outcome due to the complicated mechanisms and lack of appropriate therapeutic targets. Hence, this research aimed to explore the effect of the thiazolidinedione (TZD) compounds on I/R-induced kidney damage. One of the main causes of renal I/R injury is the ferroptosis of renal tubular cells. In this study, compared with the antidiabetic TZD pioglitazone (PGZ), we found its derivative mitoglitazone (MGZ) exerted significantly inhibitory effects on erastin-induced ferroptosis by suppressing mitochondrial membrane potential hyperpolarization and lipid ROS production in HEK293 cells. Moreover, MGZ pretreatment remarkably alleviated I/R-induced renal damages by inhibiting cell death and inflammation, upregulating the expression of glutathione peroxidase 4 (GPX4), and reducing iron-related lipid peroxidation in C57BL/6 N mice. Additionally, MGZ exhibited excellent protection against I/R-induced mitochondrial dysfunction by restoring ATP production, mitochondrial DNA copy numbers, and mitochondrial morphology in kidney tissues. Mechanistically, molecular docking and surface plasmon resonance experiments demonstrated that MGZ exhibited a high binding affinity with the mitochondrial outer membrane protein mitoNEET. Collectively, our findings indicated the renal protective effect of MGZ was closely linked to regulating the mitoNEET-mediated ferroptosis pathway, thus offering potential therapeutic strategies for ameliorating I/R injuries.
Collapse
Affiliation(s)
- Yuanbo Qi
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| | - Mingyao Hu
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Yang Qiu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Luyu Zhang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Yongchuang Yan
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Yi Feng
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Chenghao Feng
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Xinyue Hou
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Zhigang Wang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Di Zhang
- Department of Physiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.
| | - Jie Zhao
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
19
|
Yu J, Hu Y, Sheng M, Gao M, Guo W, Zhang Z, Wang D, Wu X, Li J, Chen Y, Zhao W, Liu C, Cui X, Chen X, Zhao C, Chen H, Xiao J, Chen S, Luo C, Xu L, Gu X, Ma X. Selective PPARγ modulator diosmin improves insulin sensitivity and promotes browning of white fat. J Biol Chem 2023; 299:103059. [PMID: 36841479 PMCID: PMC10033317 DOI: 10.1016/j.jbc.2023.103059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/27/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a master regulator of adipocyte differentiation, glucolipid metabolism, and inflammation. Thiazolidinediones are PPARγ full agonists with potent insulin-sensitizing effects, whereas their oral usage is restricted because of unwanted side effects, including obesity and cardiovascular risks. Here, via virtual screening, microscale thermophoresis analysis, and molecular confirmation, we demonstrate that diosmin, a natural compound of wide and long-term clinical use, is a selective PPARγ modulator that binds to PPARγ and blocks PPARγ phosphorylation with weak transcriptional activity. Local diosmin administration in subcutaneous fat (inguinal white adipose tissue [iWAT]) improved insulin sensitivity and attenuated obesity via enhancing browning of white fat and energy expenditure. Besides, diosmin ameliorated inflammation in WAT and liver and reduced hepatic steatosis. Of note, we determined that iWAT local administration of diosmin did not exhibit obvious side effects. Taken together, the present study demonstrated that iWAT local delivery of diosmin protected mice from diet-induced insulin resistance, obesity, and fatty liver by blocking PPARγ phosphorylation, without apparent side effects, making it a potential therapeutic agent for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Jian Yu
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; Joint Center for Translational Medicine, Fengxian District Central Hospital, Shanghai, China
| | - Yepeng Hu
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Maozheng Sheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyuan Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenxiu Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhe Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xia Wu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yantao Chen
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, The Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wenjun Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Caizhi Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiangdi Cui
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xin Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Cheng Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Huang Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai, China
| | - Shijie Chen
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, The Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, The Center for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Xuejiang Gu
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xinran Ma
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; Joint Center for Translational Medicine, Fengxian District Central Hospital, Shanghai, China; Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, China.
| |
Collapse
|
20
|
Toba-Oluboka T, Vochosková K, Hajek T. Are the antidepressant effects of insulin-sensitizing medications related to improvements in metabolic markers? Transl Psychiatry 2022; 12:469. [PMID: 36347837 PMCID: PMC9643486 DOI: 10.1038/s41398-022-02234-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Insulin-sensitizing medications were originally used in psychiatric practice to treat weight gain and other metabolic side effects that accompany the use of mood stabilizers, antipsychotics, and some antidepressants. However, in recent studies these medications have been shown to cause improvement in depressive symptoms, creating a potential new indication outside of metabolic regulation. However, it is still unclear whether the antidepressant properties of these medications are associated with improvements in metabolic markers. We performed a systematic search of the literature following PRISMA guidelines of studies investigating antidepressant effects of insulin-sensitizing medications. We specifically focused on whether any improvements in depressive symptoms were connected to the improvement of metabolic dysfunction. Majority of the studies included in this review reported significant improvement in depressive symptoms following treatment with insulin-sensitizing medications. Nine out of the fifteen included studies assessed for a correlation between improvement in symptoms and changes in metabolic markers and only two of the nine studies found such association, with effect sizes ranging from R2 = 0.26-0.38. The metabolic variables, which correlated with improvements in depressive symptoms included oral glucose tolerance test, fasting plasma glucose and glycosylated hemoglobin following treatment with pioglitazone or metformin. The use of insulin-sensitizing medications has a clear positive impact on depressive symptoms. However, it seems that the symptom improvement may be unrelated to improvement in metabolic markers or weight. It is unclear which additional mechanisms play a role in the observed clinical improvement. Some alternative options include inflammatory, neuroinflammatory changes, improvements in cognitive functioning or brain structure. Future studies of insulin-sensitizing medications should measure metabolic markers and study the links between changes in metabolic markers and changes in depression. Additionally, it is important to use novel outcomes in these studies, such as changes in cognitive functioning and to investigate not only acute, but also prophylactic treatment effects.
Collapse
Affiliation(s)
- Temi Toba-Oluboka
- grid.55602.340000 0004 1936 8200Department of Psychiatry, Dalhousie University, Halifax, NS Canada
| | - Kristýna Vochosková
- grid.447902.cNational Institute of Mental Health, Klecany, Czech Republic ,grid.4491.80000 0004 1937 116XCharles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada. .,National Institute of Mental Health, Klecany, Czech Republic.
| |
Collapse
|
21
|
A review on mechanisms of action of bioactive peptides against glucose intolerance and insulin resistance. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Ponticelli C, Citterio F. Non-Immunologic Causes of Late Death-Censored Kidney Graft Failure: A Personalized Approach. J Pers Med 2022; 12:1271. [PMID: 36013220 PMCID: PMC9410103 DOI: 10.3390/jpm12081271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Despite continuous advances in surgical and immunosuppressive protocols, the long-term survival of transplanted kidneys is still far from being satisfactory. Antibody-mediated rejection, recurrent autoimmune diseases, and death with functioning graft are the most frequent causes of late-kidney allograft failure. However, in addition to these complications, a number of other non-immunologic events may impair the function of transplanted kidneys and directly or indirectly lead to their failure. In this narrative review, we will list and discuss the most important nonimmune causes of late death-censored kidney graft failure, including quality of the donated kidney, adherence to prescriptions, drug toxicities, arterial hypertension, dyslipidemia, new onset diabetes mellitus, hyperuricemia, and lifestyle of the renal transplant recipient. For each of these risk factors, we will report the etiopathogenesis and the potential consequences on graft function, keeping in mind that in many cases, two or more risk factors may negatively interact together.
Collapse
Affiliation(s)
| | - Franco Citterio
- Renal Transplant Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|
23
|
Shankaraiah N, Tokala R, Bora D. Contribution of Knoevenagel Condensation Products towards Development of Anticancer Agents: An Updated Review. ChemMedChem 2022; 17:e202100736. [PMID: 35226798 DOI: 10.1002/cmdc.202100736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/23/2022] [Indexed: 11/10/2022]
Abstract
Knoevenagel condensation is an entrenched, prevailing, prominent arsenal following greener principles in the generation of α, β-unsaturated ketones/carboxylic acids by involving carbonyl functionalities and active methylenes. This reaction has proved to be a major driving force in many multicomponent reactions indicating the prolific utility towards the development of biologically fascinating molecules. This eminent reaction was acclimatised on different pharmacophoric aldehydes (benzimidazole, β-carboline, phenanthrene, indole, imidazothiadiazole, pyrazole etc.) and active methylenes (oxindole, barbituric acid, Meldrum's acid, thiazolidinedione etc.) to generate the library of chemical compounds. Their potential was also explicit to understand the significance of functionalities involved, which thereby evoke further developments in drug discovery. Furthermore, most of these reaction products exhibited remarkable anticancer activity in nanomolar to micromolar ranges by targeting different cancer targets like DNA, microtubules, Topo-I/II, and kinases (PIM, PARP, NMP, p300/CBP) etc. This review underscores the efficiency of the Knoevenagel condensation explored in the past six-year to generate molecules of pharmacological interest, predominantly towards cancer. The present review also provides the aspects of structure-activity relationships, mode of action and docking study with possible interaction with the target protein.
Collapse
Affiliation(s)
- Nagula Shankaraiah
- National Institute of Pharmaceutical Education and Research NIPER, Department of Medicinal Chemistry, Balanagar, 500037, Hyderabad, INDIA
| | - Ramya Tokala
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Medicinal Chemistry, INDIA
| | - Darshana Bora
- NIPER Hyderabad: National Institute of Pharmaceutical Education and Research Hyderabad, Medicinal Chemistry, INDIA
| |
Collapse
|
24
|
Fernandes I, Oliveira J, Pinho A, Carvalho E. The Role of Nutraceutical Containing Polyphenols in Diabetes Prevention. Metabolites 2022; 12:metabo12020184. [PMID: 35208257 PMCID: PMC8878446 DOI: 10.3390/metabo12020184] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Research in pharmacological therapy has led to the availability of many antidiabetic agents. New recommendations for precision medicine and particularly precision nutrition may greatly contribute to the control and especially to the prevention of diabetes. This scenario greatly encourages the search for novel non-pharmaceutical molecules. In line with this, the daily and long-term consumption of diets rich in phenolic compounds, together with a healthy lifestyle, may have a protective role against the development of type 2 diabetes. In the framework of the described studies, there is clear evidence that the bio accessibility, bioavailability, and the gut microbiota are indeed affected by: the way phenolic compounds are consumed (acutely or chronically; as pure compounds, extracts, or in-side a whole meal) and the amount and the type of phenolic compounds (ex-tractable or non-extractable/macromolecular antioxidants, including non-bioavailable polyphenols and plant matrix complexed structures). In this review, we report possible effects of important, commonly consumed, phenolic-based nutraceuticals in pre-clinical and clinical diabetes studies. We highlight their mechanisms of action and their potential effects in health promotion. Translation of this nutraceutical-based approach still requires more and larger clinical trials for better elucidation of the mechanism of action toward clinical applications.
Collapse
Affiliation(s)
- Iva Fernandes
- Laboratório Associado para a Química Verde—REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal;
| | - Joana Oliveira
- Laboratório Associado para a Química Verde—REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal;
- Correspondence: (J.O.); (E.C.)
| | - Aryane Pinho
- Center for Neuroscience and Cell Biology, Faculdade de Medicina, University of Coimbra, Rua Larga, Polo I, 1º Andar, 3004-504 Coimbra, Portugal; or
- Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, Faculdade de Medicina, University of Coimbra, Rua Larga, Polo I, 1º Andar, 3004-504 Coimbra, Portugal; or
- Instituto de Investigação Interdisciplinar, University of Coimbra, Casa Costa Alemão, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
- APDP—Portuguese Diabetes Association, 1250-189 Lisbon, Portugal
- Correspondence: (J.O.); (E.C.)
| |
Collapse
|
25
|
Synthesis and biological studies of "Polycerasoidol" and "trans-δ-Tocotrienolic acid" derivatives as PPARα and/or PPARγ agonists. Bioorg Med Chem 2022; 53:116532. [PMID: 34863066 DOI: 10.1016/j.bmc.2021.116532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 11/20/2022]
Abstract
2-Prenylated benzopyrans represent a class of natural and synthetic compounds showing a wide range of significant activities. Polycerasoidol is a natural prenylated benzopyran isolated from the stem bark of Polyalthia cerasoides (Annonaceae) that exhibits dual PPARα/γ agonism and an anti-inflammatory effect by inhibiting mononuclear leukocyte adhesion to the dysfunctional endothelium. Herein, we report the synthesis of three new series of prenylated benzopyrans containing one (series 1), two (series 2, "polycerasoidol" analogs) and three (series 3, "trans-δ-tocotrienolic acid" analogs) isoprenoid units in the hydrocarbon side chain at the 2-position of the chroman-6-ol (6-hydroxy-dihydrobenzopyran) scaffold. Isoprenoid moieties were introduced through a Grignard reaction sequence, followed by Johnson-Claisen rearrangement and subsequent Wittig olefination. hPPAR transactivation activity and the structure activity relationships (SAR) of eleven novel synthesized 2-prenylated benzopyrans were explored. PPAR transactivation activity demonstrated that the seven-carbon side chain analogs (series 1) displayed selectivity for hPPARα, while the nine-carbon side chain analogs (polycerasoidol analogs, series 2) did so for hPPARγ. The side chain elongation to 11 or 13 carbons (series 3) resulted in weak dual PPARα/γ activation. Therefore, 2-prenylated benzopyrans of seven- and nine-carbon side chain (polycerasoidol analogs) are good lead compounds for developing useful candidates to prevent cardiovascular diseases associated with metabolic disorders.
Collapse
|
26
|
García A, Vila L, Marín P, Bernabeu Á, Villarroel-Vicente C, Hennuyer N, Staels B, Franck X, Figadère B, Cabedo N, Cortes D. Synthesis of 2-Prenylated Alkoxylated Benzopyrans by Horner-Wadsworth-Emmons Olefination with PPARα/γ Agonist Activity. ACS Med Chem Lett 2021; 12:1783-1786. [PMID: 34795868 DOI: 10.1021/acsmedchemlett.1c00400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
We have synthesized series of 2-prenylated benzopyrans as analogues of the natural polycerasoidol, a dual PPARα/γ agonist with anti-inflammatory effects. The prenylated side chain consists of five or nine carbons with an α-alkoxy-α,β-unsaturated ester moiety. Prenylation was introduced via the Grignard reaction, followed by Johnson-Claisen rearrangement, and the α-alkoxy-α,β-unsaturated ester moiety was introduced by the Horner-Wadsworth-Emmons reaction. Synthetic derivatives showed high efficacy to activate both hPPARα and hPPARγ as dual PPARα/γ agonists. These prenylated benzopyrans emerge as lead compounds potentially useful for preventing cardiometabolic diseases.
Collapse
Affiliation(s)
- Ainhoa García
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, 46100 Burjassot, Valencia, Spain
| | - Laura Vila
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, 46100 Burjassot, Valencia, Spain
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010 Valencia, Spain
| | - Paloma Marín
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, 46100 Burjassot, Valencia, Spain
| | - Álvaro Bernabeu
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, 46100 Burjassot, Valencia, Spain
| | - Carlos Villarroel-Vicente
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, 46100 Burjassot, Valencia, Spain
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010 Valencia, Spain
| | - Nathalie Hennuyer
- Université Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1011-EGID, 59000 Lille, France
| | - Bart Staels
- Université Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1011-EGID, 59000 Lille, France
| | - Xavier Franck
- Normandie Univ, CNRS, INSA Rouen, UNIROUEN, COBRA (UMR6014 & FR 3038), 76000 Rouen, France
| | - Bruno Figadère
- BioCIS, CNRS, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Nuria Cabedo
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, 46100 Burjassot, Valencia, Spain
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010 Valencia, Spain
| | - Diego Cortes
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
27
|
Marc G, Stana A, Pîrnău A, Vlase L, Oniga S, Oniga O. Regioselectivity evaluation of the (Z)-5-(4-hydroxybenzylidene)-thiazolidine-2,4‑dione alkylation in alkaline environment. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Sun J, Liu HY, Zhang YH, Fang ZY, Lv PC. Design, synthesis and bioactivity evaluation of thiazolidinedione derivatives as partial agonists targeting PPARγ. Bioorg Chem 2021; 116:105342. [PMID: 34536928 DOI: 10.1016/j.bioorg.2021.105342] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022]
Abstract
Thiazolidinedione (TZD) is a novel peroxides proliferator activated receptor γ (PPARγ) agonist with many side effects. Herein, we developed a series of novel TZD analogues as partial agonists targeting PPARγ. The study of anti-hyperglycemic activity and anti-inflammatory activity enabled us to identify a novel compound, 4 g, which quickly recover the blood glucose of mice at the concentration of 100 mg/kg, and show similar anti-inflammatory activity to ibuprofen at the concentration of 20 mg/kg. The competitive binding assay confirmed direct binding of 4 g to the LBD of PPARγ with IC50 being 1790 nM, and dose-dependently increased the transcriptional activity of PPARγ. Besides, through computer-aided drug design software simulation docking, it was found that compound 4 g showed the best binding ability to target protein PPARγ. Furthermore, because of the introduction of benzene containing group at N3 position, the stability of H12 in the active pocket is reduced and the stability of H3 and β-fold is increased, showing the characteristics of some PPARγ agonists, based on the docking model analysis. Together, these results suggest that 4 g is a promising PPARγ agonist that deserves further investigation.
Collapse
Affiliation(s)
- Juan Sun
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, People's Republic of China
| | - Han-Yu Liu
- The Joint Research Center of Guangzhou University and Keele Univeristy for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, People's Republic of China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yi-Heng Zhang
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, People's Republic of China
| | - Ze-Yu Fang
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, People's Republic of China
| | - Peng-Cheng Lv
- The Joint Research Center of Guangzhou University and Keele Univeristy for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
29
|
1,3,4-Oxadiazole-containing hybrids as potential anticancer agents: Recent developments, mechanism of action and structure-activity relationships. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101284] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Abstract
PURPOSE OF REVIEW This review summarizes recent cardiovascular outcome trials (CVOTs) with glucose-lowering drugs. RECENT FINDINGS The majority of recent CVOTs with glucose-lowering drugs have tested dipeptidyl peptidase-4 inhibitors (DPP4-i), glucagon-like peptide-1 receptors agonists (GLP1-RA), and sodium-glucose cotransporter 2 inhibitors (SGLT2i), but studies have also been performed with other agents including thiazolidinediones and insulin. All CVOTs with DPP4-I, GLP1-RA, and SGLT2-i have demonstrated the cardiovascular (CV) safety of these agents compared to usual care. However, certain GLP1-RAs (liraglutide, subcutaneous semaglutide, albiglutide, dulaglutide) and SGLT2-i (empagliflozin, canagliflozin) have demonstrated a CV benefit, showing significant reductions in composite cardiovascular outcomes. Furthermore, all SGLT2-i also significantly decreased the risk for hospitalization for heart failure. Results from these studies have altered clinical guidelines worldwide and have resulted in new indications for some glucose-lowering drugs. In patients with T2D and high risk for CVD, GLP-1RA or SGLT2-i with proven cardiovascular benefit are recommended, irrespective of glycemic control.
Collapse
Affiliation(s)
- Tina K Thethi
- AdventHealth Translational Research Institute, 301 E. Princeton Street, Orlando, FL, 32804, USA.
- AdventHealth Diabetes Institute, Orlando, FL, USA.
| | - Anika Bilal
- AdventHealth Translational Research Institute, 301 E. Princeton Street, Orlando, FL, 32804, USA
| | - Richard E Pratley
- AdventHealth Translational Research Institute, 301 E. Princeton Street, Orlando, FL, 32804, USA
- AdventHealth Diabetes Institute, Orlando, FL, USA
| |
Collapse
|
31
|
Angajala G, Aruna V, Subashini R. Visible light induced nano copper catalyzed one pot synthesis of novel quinoline bejeweled thiobarbiturates as potential hypoglycemic agents. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Gangadhara Angajala
- Department of Chemistry Kalasalingam Academy of Research and Education Krishnankoil Tamilnadu India
| | - Valmiki Aruna
- Department of Chemistry Kalasalingam Academy of Research and Education Krishnankoil Tamilnadu India
| | - Radhakrishnan Subashini
- Department of Chemistry Arignar Anna Government Arts College for women Walajapet, Vellore Tamilnadu India
| |
Collapse
|
32
|
Ponticelli C, Favi E, Ferraresso M. New-Onset Diabetes after Kidney Transplantation. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:250. [PMID: 33800138 PMCID: PMC7998982 DOI: 10.3390/medicina57030250] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/25/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
New-onset diabetes mellitus after transplantation (NODAT) is a frequent complication in kidney allograft recipients. It may be caused by modifiable and non-modifiable factors. The non-modifiable factors are the same that may lead to the development of type 2 diabetes in the general population, whilst the modifiable factors include peri-operative stress, hepatitis C or cytomegalovirus infection, vitamin D deficiency, hypomagnesemia, and immunosuppressive medications such as glucocorticoids, calcineurin inhibitors (tacrolimus more than cyclosporine), and mTOR inhibitors. The most worrying complication of NODAT are major adverse cardiovascular events which represent a leading cause of morbidity and mortality in transplanted patients. However, NODAT may also result in progressive diabetic kidney disease and is frequently associated with microvascular complications, eventually determining blindness or amputation. Preventive measures for NODAT include a careful assessment of glucose tolerance before transplantation, loss of over-weight, lifestyle modification, reduced caloric intake, and physical exercise. Concomitant measures include aggressive control of systemic blood pressure and lipids levels to reduce the risk of cardiovascular events. Hypomagnesemia and low levels of vitamin D should be corrected. Immunosuppressive strategies limiting the use of diabetogenic drugs are encouraged. Many hypoglycemic drugs are available and may be used in combination with metformin in difficult cases. In patients requiring insulin treatment, the dose and type of insulin should be decided on an individual basis as insulin requirements depend on the patient's diet, amount of exercise, and renal function.
Collapse
Affiliation(s)
- Claudio Ponticelli
- Nephrology, Dialysis and Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Evaldo Favi
- Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milan, Italy
| | - Mariano Ferraresso
- Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
33
|
Patle D, Vyas M, Khatik GL. A Review on Natural Products and Herbs Used in the Management of Diabetes. Curr Diabetes Rev 2021; 17:186-197. [PMID: 32268866 DOI: 10.2174/1573399816666200408090058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/03/2020] [Accepted: 03/24/2020] [Indexed: 11/22/2022]
Abstract
AIM We aimed to review the importance of the natural products and herbs used in the management of diabetes mellitus (DM) as medicinal agents. BACKGROUND Naturally occuring phytoactive compounds and herbs are very important because they are found to be effective against several diseases. DM is a commonly occurring endocrinological disorder, with the incidences increased four times in the last 34 years. There are several oral hypoglycemic agents available in the market, which in the long term, may lead to a high risk of secondary failure rate. OBJECTIVES This review focuses on natural products and herbs application for effective management of diabetic conditions, and natural products that can be utilized as alternative therapy. METHODS We searched the various online databases (PubMed, Bentham, ScienceDirect) and scientific publications from the library using a qualitative systematic review. The criteria of the review were based on natural products and herbs application for possessing medicinal value against diabetes and the literature of previous thirty years has been searched. The inclusion criteria of materials were based on the quality and relevancy with our aim. RESULTS We observed that owing to the potential of natural products and herbs, different research groups are searching for the potent natural antidiabetic agents with minimal side effects. Recent research showed that there is a decline in a number of new molecules that fail in clinical trials because of toxicity thus, natural products and herbs are considered as the alternative. Currently, some of the natural products and herbs like coixol, andrographolide, Tinospora cordifolia, polypeptide p, charantin, Annona squamosa, and Nigella are being explored for their potential to be used successfully for the management of type 2 diabetes. CONCLUSION The significance of natural products and herbs in the anticipation of diabetes and allied complications are being described herein. We observed that a huge amount of work is being done to explore the natural products and herbs to manage the diabetes and this review gives the highlights of them.
Collapse
Affiliation(s)
- Deepshikha Patle
- Faculty of Pharmaceutical Sciences - PCTE Group of Institutes, Jhande, VPO Baddowal, Ludhiana, Punjab, 142021, India
| | - Manish Vyas
- Department of Ayurveda, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Gopal L Khatik
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar- Delhi G.T. Road, Phagwara, Punjab, 144411, India
| |
Collapse
|
34
|
Liu F, He J, Wang H, Zhu D, Bi Y. Adipose Morphology: a Critical Factor in Regulation of Human Metabolic Diseases and Adipose Tissue Dysfunction. Obes Surg 2020; 30:5086-5100. [PMID: 33021706 PMCID: PMC7719100 DOI: 10.1007/s11695-020-04983-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022]
Abstract
Emerging evidence highlights that dysfunction of adipose tissue contributes to impaired insulin sensitivity and systemic metabolic deterioration in obese state. Of note, adipocyte hypertrophy serves as a critical event which associates closely with adipose dysfunction. An increase in cell size exacerbates hypoxia and inflammation as well as excessive collagen deposition, finally leading to metabolic dysregulation. Specific mechanisms of adipocyte hypertrophy include dysregulated differentiation and maturation of preadipocytes, enlargement of lipid droplets, and abnormal adipocyte osmolarity sensors. Also, weight loss therapies exert profound influence on adipocyte size. Here, we summarize the critical role of adipocyte hypertrophy in the development of metabolic disturbances. Future studies are required to establish a standard criterion of size measurement to better clarify the impact of adipocyte hypertrophy on changes in metabolic homeostasis.
Collapse
Affiliation(s)
- Fangcen Liu
- Department of Endocrinology, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
| | - Jielei He
- Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hongdong Wang
- Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Dalong Zhu
- Department of Endocrinology, Nanjing Drum Tower Hospital Clinical College, Nanjing Medical University, Nanjing, China
- Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yan Bi
- Department of Endocrinology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
35
|
Ramírez-Camacho I, García-Niño W, Flores-García M, Pedraza-Chaverri J, Zazueta C. Alteration of mitochondrial supercomplexes assembly in metabolic diseases. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165935. [DOI: 10.1016/j.bbadis.2020.165935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 01/05/2023]
|
36
|
Roosta A, Alizadeh A, Rezaiyehraad R, Khanpour M. Efficient and Chemoselective Procedure for Conversion of Rhodanine Derivatives into 1,3‐Thiazolidine‐2,4‐diones via 1,3‐Dipolar Cycloaddition Reaction and Rearrangement Sequences. ChemistrySelect 2020. [DOI: 10.1002/slct.202003484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Atefeh Roosta
- Department of Chemistry Tarbiat Modares University P.O. Box 14115-175 Tehran Iran
| | - Abdolali Alizadeh
- Department of Chemistry Tarbiat Modares University P.O. Box 14115-175 Tehran Iran
| | - Reze Rezaiyehraad
- Department of Chemistry Tarbiat Modares University P.O. Box 14115-175 Tehran Iran
| | - Mojtaba Khanpour
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| |
Collapse
|
37
|
Luo Y, Tanigawa K, Kawashima A, Ishido Y, Ishii N, Suzuki K. The function of peroxisome proliferator-activated receptors PPAR-γ and PPAR-δ in Mycobacterium leprae-induced foam cell formation in host macrophages. PLoS Negl Trop Dis 2020; 14:e0008850. [PMID: 33075048 PMCID: PMC7595635 DOI: 10.1371/journal.pntd.0008850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/29/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
Leprosy is a chronic infectious disease caused by Mycobacterium leprae (M. leprae). In lepromatous leprosy (LL), skin macrophages, harboring extensive bacterial multiplication, gain a distinctive foamy appearance due to increased intracellular lipid load. To determine the mechanism by which M. leprae modifies the lipid homeostasis in host cells, an in vitro M. leprae infection system, using human macrophage precursor THP-1 cells and M. leprae prepared from the footpads of nude mice, was employed. RNA extracted from skin smear samples of patients was used to investigate host gene expressions before and after multidrug therapy (MDT). We found that a cluster of peroxisome proliferator-activated receptor (PPAR) target genes associated with adipocyte differentiation were strongly induced in M. leprae-infected THP-1 cells, with increased intracellular lipid accumulation. PPAR-δ and PPAR-γ expressions were induced by M. leprae infection in a bacterial load-dependent manner, and their proteins underwent nuclear translocalization after infection, indicating activation of PPAR signaling in host cells. Either PPAR-δ or PPAR-γ antagonist abolished the effect of M. leprae to modify host gene expressions and inhibited intracellular lipid accumulation in host cells. M. leprae-specific gene expressions were detected in the skin smear samples both before and after MDT, whereas PPAR target gene expressions were dramatically diminished after MDT. These results suggest that M. leprae infection activates host PPAR signaling to induce an array of adipocyte differentiation-associated genes, leading to accumulation of intracellular lipids to accommodate M. leprae parasitization. Certain PPAR target genes in skin lesions may serve as biomarkers for monitoring treatment efficacy. Leprosy is a chronic infectious disease caused by Mycobacterium leprae (M. leprae). Lipid-enriched intracellular environment is important for the parasitization of M. leprae. During anti-leprosy treatment, chemotherapy-killed bacilli can remain in host tissues for a long time, making it difficult to determine the treatment efficacy by Zeihl-Nelson’s staining-based bacterial index (BI) test. In this study, we found that host peroxisome proliferator-activated receptor (PPAR) signaling is responsible for modification of intracellular lipid homeostasis to accommodate M. leprae parasitization in host macrophages. In skin smear samples of patients, M. leprae-derived gene expressions were detected both before and after anti-leprosy treatment, whereas human PPAR target gene expressions were dramatically diminished after the treatment. These results further our understanding of M. leprae intracellular parasitization, and suggest that PPAR signaling may be a novel therapeutic target for treating M. leprae infection and monitoring the expressions of certain PPAR target genes in skin lesions may be helpful to evaluate the treatment efficacy and recurrent infection.
Collapse
Affiliation(s)
- Yuqian Luo
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Kazunari Tanigawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Yuko Ishido
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Norihisa Ishii
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail:
| |
Collapse
|
38
|
Chen P, Chen X, Lei L, Zhang Y, Xiang J, Zhou J, Lv J. The efficacy and safety of pioglitazone in psoriasis vulgaris: A meta-analysis of randomized controlled trials. Medicine (Baltimore) 2020; 99:e21549. [PMID: 32769894 PMCID: PMC7593001 DOI: 10.1097/md.0000000000021549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pioglitazone may have potential benefits in the treatment of cutaneous and metabolic derangements of psoriasis, but its role in the treatment of psoriasis remains in debate. We therefore conducted a meta-analysis to evaluate the clinical efficacy and safety of pioglitazone in psoriasis vulgaris (PsV).We performed a comprehensive search in database of PubMed, Web of Science, Cochrane library, Embase and China National Knowledge Infrastructure (CNKI), and Wan fang database through March 2019 to identify eligible studies. Randomized controlled trials that have evaluated the effect and safety of pioglitazone in PsV were included. Treatment success was defined as ≥75% reduction in psoriasis area and severity index (PASI) score after treatment. Weighted mean differences (WMD), relative risks (RRs) and the corresponding 95% confidence intervals (CIs) were pooled to compare the clinical efficacy and safety between different groups.Six randomized controlled trials (n = 270) were included. Meta-analysis showed that pioglitazone was associated with a remarkable reduction in PASI score in patients with PsV (weight mean difference: 2.68, 95% CI 1.41-3.94, P < .001). The treatment success rate in the pioglitazone group was higher than in the control group (RR 3.60, 95 CI 1.61-8.01, P < .001). Compared with control group, pioglitazone was not related to a pronounced increase in total adverse events (RR 1.180, 95 CI 0.85-1.63, P = .33). Moreover, the risk of common adverse events in the 2 groups were similar, such as elevated liver enzyme, fatigue, nausea, weight gain.This meta-analysis suggested pioglitazone is an effective and safe drug in the treatment of patients with PsV.
Collapse
Affiliation(s)
- Pengfei Chen
- Department of Gastroenterology, The Central Hospital of Enshi Autonomous Prefecture, Enshi
| | - Xiubing Chen
- Department of Gastroenterology, The First People's Hospital of Qinzhou, Qinzhou
| | - Lei Lei
- Department of Gastroenterology, The Central Hospital of Enshi Autonomous Prefecture, Enshi
| | | | - Jianjun Xiang
- Department of Medical Section, The Central Hospital of Enshi Autonomous Prefecture, Enshi
| | - Jinxia Zhou
- Department of Neurology, Puren Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Lv
- Department of Dermatology
| |
Collapse
|
39
|
Synthesis and evaluation of new 1,2,4-oxadiazole based trans- acrylic acid derivatives as potential PPAR-alpha/gamma dual agonist. Bioorg Chem 2020; 100:103867. [PMID: 32353564 DOI: 10.1016/j.bioorg.2020.103867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Diabetes is a ubiquitously a metabolic disorder and life-threatening disease. Peroxisome proliferator-activated receptors (PPARs) belong to the class of nuclear receptors which acts as transcription factors to regulate lipid and glucose metabolism. PPAR alpha/gamma dual agonists tend to corroborate the functions of both thiazolidinediones and fibrates and they hold substantial promise for ameliorating the type 2 diabetic treatments and providing potential therapeutic diabetic interventions. New 1,2,4-oxadiazole based trans- acrylic acid derivatives compounds possessing aryl/methylene linker in between pharmacophore head and lipophilic tail for dual PPAR-alpha/gamma agonists are studied. AutoDock Vina used for potential PPAR alpha/gamma dual agonists and 6 compounds 9a, 9g, 9 m, 9n, 9o, and 9r were identified comparable to PPAR gamma agonist Pioglitazone on the basis of their affinity scores and further their in-silico toxicity and in-silico ADME properties. The selected compounds showed better-calculated lipophilicity (iLogP) was found to be 0.92 to 3.19. Compound 9n and 9a were found to be most potent on both PPAR alpha and gamma receptors with EC50 of 0.07 ± 0.0006 µM, 0.06 ± 0.0005 µM and 0.781 ± 0.008 µM, 3.29 µM ± 0.03 respectively as better to pioglitazone having EC50 of 32.38 ± 0.2 and 38.03 ± 0.13 for both receptors. The in-vivo evaluation found to reduce the plasma glucose level and total cholesterol level significantly in diabetic rats compared to pioglitazone at 5 mg/kg/day dose for 7 days of treatment. Thus, trans- acrylic acid derivatives can be further developed as oral therapeutic agents for diabetic interventions as PPAR alpha/gamma dual agonists.
Collapse
|
40
|
Xue J, Liu W, Shi F, Zheng J, Ma J. Pleural Effusion Due to Use of Pioglitazone: A Case Report. Metab Syndr Relat Disord 2020; 18:168-171. [PMID: 32250209 DOI: 10.1089/met.2019.0109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Jinhui Xue
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Wei Liu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Fanghong Shi
- Department of Pharmacy, Shanghai Jiao Tong University School of Medicine, Affiliated Renji Hospital, Shanghai, China
| | - Jun Zheng
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Jing Ma
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| |
Collapse
|
41
|
Khatami F, Mohajeri-Tehrani MR, Tavangar SM. The Importance of Precision Medicine in Type 2 Diabetes Mellitus (T2DM): From Pharmacogenetic and Pharmacoepigenetic Aspects. Endocr Metab Immune Disord Drug Targets 2020; 19:719-731. [PMID: 31122183 DOI: 10.2174/1871530319666190228102212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/18/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Type 2 Diabetes Mellitus (T2DM) is a worldwide disorder as the most important challenges of health-care systems. Controlling the normal glycaemia greatly profit long-term prognosis and gives explanation for early, effective, constant, and safe intervention. MATERIAL AND METHODS Finding the main genetic and epigenetic profile of T2DM and the exact molecular targets of T2DM medications can shed light on its personalized management. The comprehensive information of T2DM was earned through the genome-wide association study (GWAS) studies. In the current review, we represent the most important candidate genes of T2DM like CAPN10, TCF7L2, PPAR-γ, IRSs, KCNJ11, WFS1, and HNF homeoboxes. Different genetic variations of a candidate gene can predict the efficacy of T2DM personalized strategy medication. RESULTS SLCs and AMPK variations are considered for metformin, CYP2C9, KATP channel, CDKAL1, CDKN2A/2B and KCNQ1 for sulphonylureas, OATP1B, and KCNQ1 for repaglinide and the last but not the least ADIPOQ, PPAR-γ, SLC, CYP2C8, and SLCO1B1 for thiazolidinediones response prediction. CONCLUSION Taken everything into consideration, there is an extreme need to determine the genetic status of T2DM patients in some known genetic region before planning the medication strategies.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad R Mohajeri-Tehrani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed M Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Bahrambeigi S, Molaparast M, Sohrabi F, Seifi L, Faraji A, Fani S, Shafiei-Irannejad V. Targeting PPAR ligands as possible approaches for metabolic reprogramming of T cells in cancer immunotherapy. Immunol Lett 2020; 220:32-37. [PMID: 31982460 DOI: 10.1016/j.imlet.2020.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/02/2020] [Accepted: 01/23/2020] [Indexed: 12/18/2022]
Abstract
Despite the prominent progress in understanding cancer immunosurveillance mechanisms, there are some types of problems which have been identified to hinder effective and successful immunotherapy of cancers. Such problems have been ascribed to the tumor abilities in the creation of a tolerant milieu that can impair immune responses against cancer cells. In the present study, we represent possible approaches for metabolic reprogramming of T cells in cancer immunotherapy to overcome tumor metabolic impositions on immune responses against cancer cells. Metabolic suppression of effector immune cells in tumor milieu is one of the important strategies recruited by tumor cells to escape from immunogenic cell death. We have investigated the metabolic reprogramming of T cells as a method and a possible new target for cancer immunotherapy. Synergic effects of PPAR ligands in immunotherapy of cancers on the metabolic reprogramming of T cells have been noticed by several studies as a new target of cancer immunotherapy. The current wealth of data like this promises a future scenario which the consideration of metabolic restriction in the tumor microenvironment and administration of therapeutic agents such as PPAR ligands to overcome metabolic restrictions on T cells (refreshing their functionality) may be effective and enhance the accountability and efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Saman Bahrambeigi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Molaparast
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Farahnaz Sohrabi
- Department of Clinical Biochemistry, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Lachin Seifi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Faraji
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Saba Fani
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
43
|
Takada I, Makishima M. Peroxisome proliferator-activated receptor agonists and antagonists: a patent review (2014-present). Expert Opin Ther Pat 2019; 30:1-13. [PMID: 31825687 DOI: 10.1080/13543776.2020.1703952] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Peroxisome proliferator-activated receptors (PPARs), PPARα, PPARδ, and PPARγ, play an important role in the regulation of various physiological processes, specifically lipid and energy metabolism and immunity. PPARα agonists (fibrates) and PPARγ agonists (thiazolidinediones) are used for the treatment of hypertriglyceridemia and type 2 diabetes, respectively. PPARδ activation enhances mitochondrial and energy metabolism but PPARδ-acting drugs are not yet available. Many synthetic ligands for PPARs have been developed to expand their therapeutic applications.Areas covered: The authors searched recent patent activity regarding PPAR ligands. Novel PPARα agonists, PPARδ agonists, PPARγ agonists, PPARα/γ dual agonists, and PPARγ antagonists have been claimed for the treatment of metabolic disease and inflammatory disease. Methods for the combination of PPAR ligands with other drugs and expanded application of PPAR agonists for bone and neurological disease have been also claimed.Expert opinion: Novel PPAR ligands and the combination of PPAR ligands with other drugs have been claimed for the treatment of mitochondrial disease, inflammatory/autoimmune disease, neurological disease, and cancer in addition to metabolic diseases including dyslipidemia and type 2 diabetes. Selective therapeutic actions of PPAR ligands should be exploited to avoid adverse effects. More basic studies are needed to elucidate the molecular mechanisms of selective actions.
Collapse
Affiliation(s)
- Ichiro Takada
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
44
|
Li Z, Zhou Z, Zhang L. Current status of GPR40/FFAR1 modulators in medicinal chemistry (2016–2019): a patent review. Expert Opin Ther Pat 2019; 30:27-38. [DOI: 10.1080/13543776.2020.1698546] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
- Key Laboratory of New Drug Discovery and Evaluation of ordinary universities of Guangdong province, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Zongtao Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
- Key Laboratory of New Drug Discovery and Evaluation of ordinary universities of Guangdong province, Guangdong Pharmaceutical University, Guangzhou, PR China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, PR China
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
45
|
Reddy MR, Hemaiswarya S, Kommidi H, Aidhen IS, Doble M. Acyl and Benzyl-C-
β-D-
Glucosides: Synthesis and Biostudies for Glucose-Uptake-Promoting Activity in C2C12 Mytotubes. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Shanmugam Hemaiswarya
- Department of Biotechnology; Indian Institute of Technology Madras; 600036 Chennai India
| | - Harikrishna Kommidi
- Department of Chemistry; Indian Institute of Technology Madras; 600036 Chennai India
| | - Indrapal Singh Aidhen
- Department of Chemistry; Indian Institute of Technology Madras; 600036 Chennai India
| | - Mukesh Doble
- Department of Biotechnology; Indian Institute of Technology Madras; 600036 Chennai India
| |
Collapse
|
46
|
New Phenolic Derivatives of Thiazolidine-2,4-dione with Antioxidant and Antiradical Properties: Synthesis, Characterization, In Vitro Evaluation, and Quantum Studies. Molecules 2019; 24:molecules24112060. [PMID: 31151176 PMCID: PMC6600258 DOI: 10.3390/molecules24112060] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 11/27/2022] Open
Abstract
Oxidative stress has been incriminated in the physiopathology of many diseases, such as diabetes, cancer, atherosclerosis, and cardiovascular and neurodegenerative diseases. There is a great interest in developing new antioxidants that could be useful for preventing and treating conditions for which oxidative stress is suggested as the root cause. The thiazolidine-2,4-dione derivatives have been reported to possess various pharmacological activities and the phenol moiety is known as a pharmacophore in many naturally occurring and synthetic antioxidants. Twelve new phenolic derivatives of thiazolidine-2,4-dione were synthesized and physicochemically characterized. The antioxidant capacity of the synthesized compounds was assessed through several in vitro antiradical, electron transfer, and Fe2+ chelation assays. The top polyphenolic compounds 5f and 5l acted as potent antiradical and electron donors, with activity comparable to the reference antioxidants used. The ferrous ion chelation capacity of the newly synthesized compounds was modest. Several quantum descriptors were calculated in order to evaluate their influence on the antioxidant and antiradical properties of the compounds and the chemoselectivity of the radical generation reactions has been evaluated. The correlation with the energetic level of the frontier orbitals partially explained the antioxidant activity, whereas a better correlation was found while evaluating the O–H bond dissociation energy of the phenolic groups.
Collapse
|
47
|
Li Y, Zhang T, Liu Q, Zhang J, Li R, Pu S, Wu T, Ma L, He J. Mixed micelles loaded with the 5-benzylidenethiazolidine-2,4-dione derivative SKLB023 for efficient treatment of non-alcoholic steatohepatitis. Int J Nanomedicine 2019; 14:3943-3953. [PMID: 31239664 PMCID: PMC6551597 DOI: 10.2147/ijn.s202821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/03/2019] [Indexed: 02/05/2023] Open
Abstract
Background: SKLB023, a novel 5-benzylidenethiazolidine-2,4-dione based-derivative, specifically inhibits inducible nitric oxide synthase and shows promise for treating non-alcoholic steatohepatitis (NASH). However, its poor water solubility and low bioavailability limits its clinical use. Here the drug was loaded into phosphatidylcholine-bile salt-mixed micelles (PBMM/SKLB023) to overcome these limitations. Methods: PBMM/SKLB023 was developed using a simple co-precipitation method, and formulation parameters were optimized. The pharmacokinetics of PBMM/SKLB023 were investigated in Wistar rats, and therapeutic efficacy was assessed in a mouse model of NASH induced by a diet deficient in methionine- and choline. Results: PBMM/SKLB023 particles were 11.36±2.08 nm based on dynamic light scattering, and loading the drug into micelles improved its water solubility 300-fold. PBMM/SKLB023 inhibited proliferation and activation of HSC-T6 cells more strongly than free SKLB023. PBMM/SKLB023 showed longer mean retention time and higher bioavailability than the free drug after intravenous injection in Wistar rats. In the mouse model of NASH, PBMM/SKLB023 alleviated hepatic lipid accumulation, inflammation, and fibrosis to a significantly greater extent than free SKLB023. Conclusion: PBMM/SKLB023 shows therapeutic potential for treating NASH and liver fibrosis.
Collapse
Affiliation(s)
- Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction
| | | | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction
| | - Jinhang Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction
| | - Rui Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction
| | - Shiyun Pu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction
| | - Tong Wu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction
| | - Liang Ma
- Division of Nephrology, Kidney Research Institute, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu610041, People’s Republic of China
| | - Jinhan He
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction
| |
Collapse
|
48
|
Elzahhar PA, Alaaeddine R, Ibrahim TM, Nassra R, Ismail A, Chua BS, Frkic RL, Bruning JB, Wallner N, Knape T, von Knethen A, Labib H, El-Yazbi AF, Belal AS. Shooting three inflammatory targets with a single bullet: Novel multi-targeting anti-inflammatory glitazones. Eur J Med Chem 2019; 167:562-582. [PMID: 30818268 DOI: 10.1016/j.ejmech.2019.02.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/04/2019] [Accepted: 02/10/2019] [Indexed: 12/29/2022]
|
49
|
de Anda-Jáuregui G, Guo K, McGregor BA, Feldman EL, Hur J. Pathway crosstalk perturbation network modeling for identification of connectivity changes induced by diabetic neuropathy and pioglitazone. BMC SYSTEMS BIOLOGY 2019; 13:1. [PMID: 30616626 PMCID: PMC6322225 DOI: 10.1186/s12918-018-0674-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Aggregation of high-throughput biological data using pathway-based approaches is useful to associate molecular results to functional features related to the studied phenomenon. Biological pathways communicate with one another through the crosstalk phenomenon, forming large networks of interacting processes. RESULTS In this work, we present the pathway crosstalk perturbation network (PXPN) model, a novel model used to analyze and integrate pathway perturbation data based on graph theory. With this model, the changes in activity and communication between pathways observed in transitions between physiological states are represented as networks. The model presented here is agnostic to the type of biological data and pathway definition used and can be implemented to analyze any type of high-throughput perturbation experiments. We present a case study in which we use our proposed model to analyze a gene expression dataset derived from experiments in a BKS-db/db mouse model of type 2 diabetes mellitus-associated neuropathy (DN) and the effects of the drug pioglitazone in this condition. The networks generated describe the profile of pathway perturbation involved in the transitions between the healthy and the pathological state and the pharmacologically treated pathology. We identify changes in the connectivity of perturbed pathways associated to each biological transition, such as rewiring between extracellular matrix, neuronal system, and G-protein coupled receptor signaling pathways. CONCLUSION The PXPN model is a novel, flexible method used to integrate high-throughput data derived from perturbation experiments; it is agnostic to the type of data and enrichment function used, and it is applicable to a wide range of biological phenomena of interest.
Collapse
Affiliation(s)
- Guillermo de Anda-Jáuregui
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202 USA
- Present address: Computational Genomics Division, Instituto Nacional de Medicina Genómica, 14610 Ciudad de México, Ciudad de México Mexico
| | - Kai Guo
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202 USA
| | - Brett A. McGregor
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202 USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109 USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202 USA
| |
Collapse
|
50
|
Belen’kii LI, Evdokimenkova YB. The literature of heterocyclic chemistry, part XVII, 2017. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019:337-418. [DOI: 10.1016/bs.aihch.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|