1
|
Agarwal DS, Beteck RM, Mabille D, Caljon G, Legoabe LJ. Pyrazolyl amide-chalcones conjugates: Synthesis and antikinetoplastid activity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4199-4210. [PMID: 39432069 PMCID: PMC11978679 DOI: 10.1007/s00210-024-03524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
A series of novel pyrazolyl amide-chalcones conjugates was synthesized in five steps and evaluated against a range of medically important kinetoplastid parasites including Trypanosoma cruzi, Trypanosoma brucei brucei, Trypanosoma brucei rhodesiense and Leishmania infantum. In addition, the series was also tested for in vitro cytotoxicity activity against human lung fibroblasts and primary mouse macrophages. Among all synthetised compounds, 9b was found to be the most active against T. b. brucei with an IC50 value of 0.51 ± 0.06 μM. Against T. b. rhodesiense, 9n was found to be the most potent with an IC50 value of 0.46 ± 0.07 μM. While against L. infantum, 9a was found to be most active with an IC50 value of 7.16 ± 1.88 μM. Based on the results and SAR, further modifications will be carried out to increase potency.
Collapse
Affiliation(s)
- Devesh S Agarwal
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, 2520, South Africa.
| |
Collapse
|
2
|
Giraudo A, Bolchi C, Pallavicini M, Di Santo R, Costi R, Saccoliti F. Uncovering the Mechanism of Action of Antiprotozoal Agents: A Survey on Photoaffinity Labeling Strategy. Pharmaceuticals (Basel) 2024; 18:28. [PMID: 39861091 PMCID: PMC11768348 DOI: 10.3390/ph18010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Plasmodium, Leishmania, and Trypanosoma parasites are responsible for infectious diseases threatening millions of people worldwide. Despite more recent efforts devoted to the search for new antiprotozoal agents, efficacy, safety, and resistance issues still hinder the development of suited therapeutic options. The lack of robustly validated targets and the complexity of parasite's diseases have made phenotypic screening a preferential drug discovery strategy for the identification of new chemical entities. However, via this approach, no information on biological target(s) and mechanisms of action of compounds are provided. Among the target deconvolution strategies useful to fill this gap, photoaffinity labeling (PAL) has emerged as one of most suited to enable investigation in a complex cellular environment. More recently, PAL has been exploited to unravel the molecular basis of bioactive compounds' function in live parasites, allowing elucidation of the mechanism of action of both approved drugs and new chemical entities. Besides highlighting new potential drug targets, PAL can provide valuable information on efficacy and liabilities of small molecules at the molecular level, which could be exploited to greatly facilitate the rational optimization of compounds in terms of potency and safety. In this review, we will report the most recent studies that have leveraged PAL to disclose the biological targets and mechanism of action of phenotypically active compounds targeting kinetoplastid diseases (i.e., human African trypanosomiasis, leishmaniasis, and Chagas disease) and malaria. Moreover, we will comment on potential perspectives that this innovative approach can provide in aiding the discovery and development of new antiprotozoal drugs.
Collapse
Affiliation(s)
- Alessandro Giraudo
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, I-20133 Milano, Italy
| | - Cristiano Bolchi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, I-20133 Milano, Italy
| | - Marco Pallavicini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, I-20133 Milano, Italy
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, “Sapienza” Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, “Sapienza” Università di Roma, p.le Aldo Moro 5, I-00185 Rome, Italy
| | - Francesco Saccoliti
- Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Università degli Studi “Link Campus University”, Via del Casale di S. Pio V 44, I-00165 Rome, Italy
| |
Collapse
|
3
|
Aziafor K, Ruparelia K, Moulds B, Zloh M, Parish T, Brucoli F. Design and Synthesis of Pyridyl and 2-Hydroxyphenyl Chalcones with Antitubercular Activity. Molecules 2024; 29:4539. [PMID: 39407469 PMCID: PMC11478287 DOI: 10.3390/molecules29194539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 10/20/2024] Open
Abstract
A focussed library of pyridyl and 2-hydroxyphenyl chalcones were synthesized and tested for growth inhibitory activity against Mycobacterium tuberculosis H37Rv, and normal and cancer breast cell lines. Pyridyl chalcones bearing lipophilic A-ring, e.g., dichloro-phenyl-(14), pyrene-1-yl (20)- and biphenyl-4-yl (21) moieties were found to be the most potent of the series inhibiting the growth of M. tuberculosis H37Rv with IC90 values ranging from 8.9-28 µM. Aryl chalcones containing a 3-methoxyphenyl A-ring and either p-Br-phenyl (25) or p-Cl-phenyl (26) B-rings showed an IC90 value of 28 µM. Aryl-chalcones were generally less toxic to HepG2 cells compared to pyridyl-chalcones. Dose-dependent antiproliferative activity against MDA468 cells was observed for trimethoxy-phenyl (16) and anthracene-9-yl (19) pyridyl-chalcones with IC50 values of 0.7 and 0.3 µM, respectively. Docking studies revealed that chalone 20 was predicted to bind to the M. tuberculosis protein tyrosine phosphatases B (PtpB) with higher affinity compared to a previously reported PtpB inhibitor.
Collapse
Affiliation(s)
- Kelphina Aziafor
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (K.A.); (K.R.); (B.M.)
| | - Ketan Ruparelia
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (K.A.); (K.R.); (B.M.)
| | - Brandon Moulds
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (K.A.); (K.R.); (B.M.)
| | - Mire Zloh
- Faculty of Pharmacy, University Business Academy, 21000 Novi Sad, Serbia;
- UCL School of Pharmacy, University College London, 29/39 Brunswick Square, London WC1N 1AX, UK
| | - Tanya Parish
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98102, USA;
| | - Federico Brucoli
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (K.A.); (K.R.); (B.M.)
| |
Collapse
|
4
|
Taylor AE, Hering M, Elsegood MRJ, Teat SJ, Weaver GW, Arroo RRJ, Kaiser M, Maeser P, Bhambra AS. Novel 4-[4-(4-methylpiperazin-1-yl)phenyl]-6-arylpyrimidine derivatives and their antitrypanosomal activities against T.brucei. Bioorg Med Chem Lett 2024; 109:129825. [PMID: 38823730 DOI: 10.1016/j.bmcl.2024.129825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Human African trypanosomiasis, or sleeping sickness, is a neglected tropical disease caused by Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense and is invariably fatal unless treated. Current therapies present limitations in their application, parasite resistance, or require further clinical investigation for wider use. Our work, informed by previous findings, presents novel 4-[4-(4-methylpiperazin-1-yl)phenyl]-6-arylpyrimidine derivatives with promising antitrypanosomal activity. In particular, 32 exhibits an in vitro EC50 value of 0.5 µM against Trypanosoma brucei rhodesiense, and analogues 29, 30 and 33 show antitrypanosomal activities in the <1 µM range. We have demonstrated that substituted 4-[4-(4-methylpiperazin-1-yl)phenyl]-6-arylpyrimidines present promising antitrypanosomal hit molecules with potential for further preclinical development.
Collapse
Affiliation(s)
- Annie E Taylor
- Leicester School of Allied Health Sciences, De Montfort University, Leicester LE1 9BH, UK
| | - Moritz Hering
- Leicester School of Allied Health Sciences, De Montfort University, Leicester LE1 9BH, UK
| | - Mark R J Elsegood
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, UK
| | - Simon J Teat
- Advanced Light Source, 1 Cyclotron Road, Lawrence Berkeley National Laboratory Berkeley, CA 94720-8229, United States
| | - George W Weaver
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, UK
| | - Randolph R J Arroo
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland; University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Pascal Maeser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland; University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Avninder S Bhambra
- Leicester School of Allied Health Sciences, De Montfort University, Leicester LE1 9BH, UK.
| |
Collapse
|
5
|
Agarwal DS, Beteck RM, Ilbeigi K, Caljon G, Legoabe LJ. Design and synthesis of imidazo[1,2-a]pyridine-chalcone conjugates as antikinetoplastid agents. Chem Biol Drug Des 2024; 103:e14400. [PMID: 37994272 DOI: 10.1111/cbdd.14400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
A library of imidazo[1,2-a]pyridine-appended chalcones were synthesized and characterized using 1 H NMR, 13 C NMR and HRMS. The synthesized analogues were screened for their antikinetoplastid activity against Trypanosoma cruzi, Trypanosoma brucei brucei, Trypanosoma brucei rhodesiense and Leishmania infantum. The analogues were also tested for their cytotoxicity activity against human lung fibroblasts and primary mouse macrophages. Among all screened derivatives, 7f was found to be the most active against T. cruzi and T. b. brucei exhibiting IC50 values of 8.5 and 1.35 μM, respectively. Against T. b. rhodesiense, 7e was found to be the most active with an IC50 value of 1.13 μM. All synthesized active analogues were found to be non-cytotoxic against MRC-5 and PMM with selectivity indices of up to more than 50.
Collapse
Affiliation(s)
- Devesh S Agarwal
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Kayhan Ilbeigi
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
6
|
Gabaldón-Figueira JC, Martinez-Peinado N, Escabia E, Ros-Lucas A, Chatelain E, Scandale I, Gascon J, Pinazo MJ, Alonso-Padilla J. State-of-the-Art in the Drug Discovery Pathway for Chagas Disease: A Framework for Drug Development and Target Validation. Res Rep Trop Med 2023; 14:1-19. [PMID: 37337597 PMCID: PMC10277022 DOI: 10.2147/rrtm.s415273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
Chagas disease is the most important protozoan infection in the Americas, and constitutes a significant public health concern throughout the world. Development of new medications against its etiologic agent, Trypanosoma cruzi, has been traditionally slow and difficult, lagging in comparison with diseases caused by other kinetoplastid parasites. Among the factors that explain this are the incompletely understood mechanisms of pathogenesis of T. cruzi infection and its complex set of interactions with the host in the chronic stage of the disease. These demand the performance of a variety of in vitro and in vivo assays as part of any drug development effort. In this review, we discuss recent breakthroughs in the understanding of the parasite's life cycle and their implications in the search for new chemotherapeutics. For this, we present a framework to guide drug discovery efforts against Chagas disease, considering state-of-the-art preclinical models and recently developed tools for the identification and validation of molecular targets.
Collapse
Affiliation(s)
| | - Nieves Martinez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
| | - Elisa Escabia
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
| | - Albert Ros-Lucas
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - María-Jesús Pinazo
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| |
Collapse
|
7
|
Kourbeli V, Chontzopoulou E, Moschovou K, Pavlos D, Mavromoustakos T, Papanastasiou IP. An Overview on Target-Based Drug Design against Kinetoplastid Protozoan Infections: Human African Trypanosomiasis, Chagas Disease and Leishmaniases. Molecules 2021; 26:molecules26154629. [PMID: 34361781 PMCID: PMC8348971 DOI: 10.3390/molecules26154629] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
The protozoan diseases Human African Trypanosomiasis (HAT), Chagas disease (CD), and leishmaniases span worldwide and therefore their impact is a universal concern. The present regimen against kinetoplastid protozoan infections is poor and insufficient. Target-based design expands the horizon of drug design and development and offers novel chemical entities and potential drug candidates to the therapeutic arsenal against the aforementioned neglected diseases. In this review, we report the most promising targets of the main kinetoplastid parasites, as well as their corresponding inhibitors. This overview is part of the Special Issue, entitled "Advances of Medicinal Chemistry against Kinetoplastid Protozoa (Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp.) Infections: Drug Design, Synthesis and Pharmacology".
Collapse
Affiliation(s)
- Violeta Kourbeli
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 84 Athens, Greece;
| | - Eleni Chontzopoulou
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Kalliopi Moschovou
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Dimitrios Pavlos
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Thomas Mavromoustakos
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Ioannis P. Papanastasiou
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 84 Athens, Greece;
- Correspondence:
| |
Collapse
|
8
|
Stalinskaya AL, Weber DF, Seilkhanov TM, Kulakov IV. Synthesis of 4,5-dihydro-1H-pyrazole derivatives based on 3-acetyl-5-nitropyridines. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02751-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
González LA, Upegui YA, Rivas L, Echeverri F, Escobar G, Robledo SM, Quiñones W. Effect of substituents in the A and B rings of chalcones on antiparasite activity. Arch Pharm (Weinheim) 2020; 353:e2000157. [PMID: 33252148 DOI: 10.1002/ardp.202000157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022]
Abstract
Chalcones are a group of natural products with many recognized biological activities, including antiparasitic activity. Although a lot of chalcones have been synthetized and assayed against parasites, the number of structural features known to be involved in this biological property is small. Thus, in the present study, 21 chalcones were synthesized to determine the effect of substituents in the A and B rings on the activity against Leishmania braziliensis, Trypanosoma cruzi, and Plasmodium falciparum. The compounds were active against L. braziliensis in a structure-dependent manner. Only one compound was very active against T. cruzi, but none of them had a significant antiplasmodial activity. The electron-donating substituents in ring B and the hydrogen bonds at C-2' with carbonyl affect the antiparasitic activity.
Collapse
Affiliation(s)
- Luis A González
- Grupo de Química Orgánica de Productos Naturales (QOPN), Facultad de Ciencias Exactas y Naturales, Instituto de Química, Universidad de Antioquia, Medellín, Colombia
| | - Yulieth A Upegui
- Grupo de Química Orgánica de Productos Naturales (QOPN), Facultad de Ciencias Exactas y Naturales, Instituto de Química, Universidad de Antioquia, Medellín, Colombia.,PECET-Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Luis Rivas
- Grupo de Investigación en Péptidos Antibióticos Eucarióticos, Centro de Investigaciones Biológicas, Madrid, España
| | - Fernando Echeverri
- Grupo de Química Orgánica de Productos Naturales (QOPN), Facultad de Ciencias Exactas y Naturales, Instituto de Química, Universidad de Antioquia, Medellín, Colombia
| | - Gustavo Escobar
- Grupo de Química Orgánica de Productos Naturales (QOPN), Facultad de Ciencias Exactas y Naturales, Instituto de Química, Universidad de Antioquia, Medellín, Colombia
| | - Sara M Robledo
- PECET-Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Wiston Quiñones
- Grupo de Química Orgánica de Productos Naturales (QOPN), Facultad de Ciencias Exactas y Naturales, Instituto de Química, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
10
|
Robinson WJ, Taylor AE, Lauga-Cami S, Weaver GW, Arroo RRJ, Kaiser M, Gul S, Kuzikov M, Ellinger B, Singh K, Schirmeister T, Botana A, Eurtivong C, Bhambra AS. The discovery of novel antitrypanosomal 4-phenyl-6-(pyridin-3-yl)pyrimidines. Eur J Med Chem 2020; 209:112871. [PMID: 33070078 PMCID: PMC7762786 DOI: 10.1016/j.ejmech.2020.112871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Accepted: 09/19/2020] [Indexed: 01/10/2023]
Abstract
Human African trypanosomiasis, or sleeping sickness, is a neglected tropical disease caused by Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense which seriously affects human health in Africa. Current therapies present limitations in their application, parasite resistance, or require further clinical investigation for wider use. Our work herein describes the design and syntheses of novel antitrypanosomal 4-phenyl-6-(pyridin-3-yl)pyrimidines, with compound 13, the 4-(2-methoxyphenyl)-6-(pyridine-3-yl)pyrimidin-2-amine demonstrating an IC50 value of 0.38 μM and a promising off-target ADME-Tox profile in vitro. In silico molecular target investigations showed rhodesain to be a putative candidate, supported by STD and WaterLOGSY NMR experiments, however, in vitro evaluation of compound 13 against rhodesain exhibited low experimental inhibition. Therefore, our reported library of drug-like pyrimidines present promising scaffolds for further antikinetoplastid drug development for both phenotypic and target-based drug discovery.
Collapse
Affiliation(s)
- William J Robinson
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Annie E Taylor
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Solange Lauga-Cami
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - George W Weaver
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| | - Randolph R J Arroo
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, UK
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051, Basel, Switzerland; University of Basel, Petersplatz 1, 4003, Basel, Switzerland
| | - Sheraz Gul
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening Port, Hamburg, Germany; Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hamburg Site, Hamburg, Germany
| | - Maria Kuzikov
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening Port, Hamburg, Germany; Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hamburg Site, Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Molecular Biology and Applied Ecology Screening Port, Hamburg, Germany; Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hamburg Site, Hamburg, Germany
| | - Kuldip Singh
- Department of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University of Mainz, Staudingerweg 5, D-55128, Mainz, Germany
| | - Adolfo Botana
- JEOL UK, JEOL House, Silvert Court, Watchmead, Welwyn Garden City, Herts, AL7 1LT, UK
| | - Chatchakorn Eurtivong
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Avninder S Bhambra
- Leicester School of Allied Health Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, UK.
| |
Collapse
|
11
|
Roh K, Lee JH, Kang H, Park KW, Song Y, Lee S, Ku JM. Synthesis and evaluation of butein derivatives for in vitro and in vivo inflammatory response suppression in lymphedema. Eur J Med Chem 2020; 197:112280. [PMID: 32361286 DOI: 10.1016/j.ejmech.2020.112280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 01/13/2023]
Abstract
Herein, we demonstrate that butein (1) can prevent swelling in a murine lymphedema model by suppressing tumor necrosis factor α (TNF-α) production. Butein derivatives were synthesized and evaluated to identify compounds with in vitro anti-inflammatory activity. Among them, 20 μM of compounds 7j, 7m, and 14a showed 50% suppression of TNF-α production in mouse peritoneal macrophages after lipopolysaccharide stimulation. Compound 14a, exhibited the strongest potency with an in vitro IC50 of 14.6 μM and suppressed limb volume by 70% in a murine lymphedema model. The prodrug strategy enabled a six-fold increase in kinetic solubility of compound 1 and five-fold higher levels of active metabolite in the blood for compound 14a via oral administration in the pharmacokinetics study. We suggest that the compound 14a could be developed as a potential therapeutic agent targeting anti-inflammatory activity to alleviate lymphedema progression.
Collapse
Affiliation(s)
- Kangsan Roh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jung-Hun Lee
- Bio-Center, Gyeonggido Business & Science Accelerator, 147 Gwanggyo-ro, Suwon, 16229, Republic of Korea
| | - Hee Kang
- Humanitas College, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Kye Won Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Youngju Song
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jin-Mo Ku
- Bio-Center, Gyeonggido Business & Science Accelerator, 147 Gwanggyo-ro, Suwon, 16229, Republic of Korea.
| |
Collapse
|
12
|
Yepes AF, Quintero‐Saumeth J, Cardona‐G W. Chalcone‐Quinoline Conjugates as Potential
T. cruzi
Cruzipain Inhibitors: Docking Studies, Molecular Dynamics and Evaluation of Drug‐Likeness. ChemistrySelect 2020. [DOI: 10.1002/slct.202000777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andrés F. Yepes
- Chemistry of Colombian Plants, Institute of ChemistryFaculty of Exact and Natural Sciences University of Antioquia-UdeA Calle 70 No. 52–21, A.A 1226 Medellín Colombia
| | - Jorge Quintero‐Saumeth
- University of PamplonaFaculty of Basic Sciences Km 1 Vía Bucaramanga Ciudad Universitaria Pamplona Colombia
| | - Wilson Cardona‐G
- Chemistry of Colombian Plants, Institute of ChemistryFaculty of Exact and Natural Sciences University of Antioquia-UdeA Calle 70 No. 52–21, A.A 1226 Medellín Colombia
| |
Collapse
|
13
|
Furanchalcone–biphenyl hybrids: synthesis, in silico studies, antitrypanosomal and cytotoxic activities. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02323-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Mahapatra DK, Ghorai S, Bharti SK, Patil AG, Gayen S. Current Discovery Progress of Some Emerging Anti-infective Chalcones: Highlights from 2016 to 2017. Curr Drug Discov Technol 2018; 17:30-44. [PMID: 30033873 DOI: 10.2174/1570163815666180720170030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 11/22/2022]
Abstract
The anti-infective potentials of the natural products are very well known for centuries and are a part of traditional healing. The foremost therapeutic classes include flavones, isoflavones, flavonols, flavanones, flavanols, proanthocyanidins, anthocyanidins, chalcones, and aurones. The chalcone or 1,3-diphenyl-2E-propene-1-one represents the class of natural products which are comprised of benzylideneacetophenone function; i.e. two aromatic moieties linked together by an α, β-unsaturated carbonyl bridge comprising three-carbons. At present, chalcone is one of the privileged scaffolds that can be synthesized in the laboratory to derive different pharmacologically active compounds. This article is the continued form of the previously published work on anti-infective perspectives of chalcones (highlighted till 2015). The current work emphasizes on the discovery process of the chalcone in the period of 2016 to 2017 on malaria, trypanosomiasis, leishmaniasis, filaria, tuberculosis, netamodes, Human Immunodeficiency Virus (HIV), Tobacco Mosaic Virus (TMV), Severe Acute Respiratory Syndrome (SARS), and miscellaneous conditions. This review comprehensively focuses on the latest progress related with the anti-infective chalcones. The content includes the crucial structural features of chalcone scaffold including structure-activity relationship(s) along with their plausible mechanism of action(s) from the duration Jan 2016 to Dec 2017. This literature will be of prime interest to medicinal chemists in getting ideas and concepts for better rational development of potential anti-infective inhibitors.
Collapse
Affiliation(s)
- Debarshi K Mahapatra
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya (A Central University), Sagar 470003, Madhya Pradesh, India
| | - Soumajit Ghorai
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya (A Central University), Sagar 470003, Madhya Pradesh, India
| | - Sanjay K Bharti
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Asmita G Patil
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya (A Central University), Sagar 470003, Madhya Pradesh, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour Vishwavidyalaya (A Central University), Sagar 470003, Madhya Pradesh, India
| |
Collapse
|