1
|
Baranova AA, Alferova VA, Korshun VA, Tyurin AP. Imaging-based profiling for elucidation of antibacterial mechanisms of action. Biotechnol Appl Biochem 2025; 72:542-569. [PMID: 39467068 DOI: 10.1002/bab.2681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
In this review, we aim to summarize experimental data and approaches to identifying cellular targets or mechanisms of action of antibacterials based on imaging techniques. Imaging-based profiling methods, such as bacterial cytological profiling, dynamic bacterial morphology imaging, and others, have become a useful research tool for mechanistic studies of new antibiotics as well as combinations with conventional ones and other therapeutic options. The main methodological and experimental details and obtained results are summarized and discussed. The review covers the literature up to February 2024.
Collapse
Affiliation(s)
- Anna A Baranova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vera A Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir A Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anton P Tyurin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Saini S, Reddy GL, Gangwar A, Kour H, Nadre GG, Pandian R, Pal S, Nandi U, Sharma R, Sawant SD. Discovery and biological evaluation of nitrofuranyl-pyrazolopyrimidine hybrid conjugates as potent antimicrobial agents targeting Staphylococcus aureus and methicillin-resistant S. aureus. RSC Med Chem 2024:d4md00826j. [PMID: 39829972 PMCID: PMC11740095 DOI: 10.1039/d4md00826j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025] Open
Abstract
Nitrofuran and pyrazolopyrimidine-based compounds possess a broad antimicrobial spectrum including Gram-positive and Gram-negative bacteria. In the present work, a series of conjugates of these scaffolds was synthesized and evaluated for antimicrobial activity against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). Many compounds showed MIC values of ≤2 μg ml-1, with compound 35 demonstrating excellent activity (MICs: 0.7 and 0.15 μg ml-1 against S. aureus and MRSA, respectively) and safety up to 50 μg ml-1 in HepG2 cells. Compound 35 also exhibited no hemolytic activity, biofilm eradication, and effectiveness against efflux-pump-overexpressing strains (NorA, TetK, MsrA) without resistance development. It showed synergistic effects with vancomycin (S. aureus) and rifampicin (MRSA). Mechanistic studies revealed that compound 35 exhibits good membrane-targeting abilities, as evidenced by DAPI/PI staining and scanning electron microscopy (SEM). In an intracellular model, it reduced bacterial load efficiently in both S. aureus and MRSA strains. With a strong in vitro profile, compound 35 demonstrated favorable oral pharmacokinetics at 30 mg kg-1 and potent in vivo anti-MRSA activity, highlighting its potential against antibiotic-resistant infections.
Collapse
Affiliation(s)
- Sapna Saini
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine Canal Road Jammu - 180001 India
- Academy of Scientific and Innovative Research Ghaziabad - 201002 India
| | - G Lakshma Reddy
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India
- Academy of Scientific and Innovative Research Ghaziabad - 201002 India
| | - Anjali Gangwar
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine Canal Road Jammu - 180001 India
- Academy of Scientific and Innovative Research Ghaziabad - 201002 India
| | - Harpreet Kour
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India
- Academy of Scientific and Innovative Research Ghaziabad - 201002 India
| | - Gajanan G Nadre
- Organic Chemistry Division, CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune-411008 India
- Academy of Scientific and Innovative Research Ghaziabad - 201002 India
| | - Ramajayan Pandian
- Pharmacology Division, CSIR - Indian Institute of Integrative Medicine Canal Road Jammu - 180001 India
- Academy of Scientific and Innovative Research Ghaziabad - 201002 India
| | - Sunny Pal
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine Canal Road Jammu - 180001 India
| | - Utpal Nandi
- Pharmacology Division, CSIR - Indian Institute of Integrative Medicine Canal Road Jammu - 180001 India
- Academy of Scientific and Innovative Research Ghaziabad - 201002 India
- Department of Chemical Sciences, Bose Institute Unified Academic Campus Kolkata - 700 091 India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine Canal Road Jammu - 180001 India
- Academy of Scientific and Innovative Research Ghaziabad - 201002 India
| | - Sanghapal D Sawant
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India
- Organic Chemistry Division, CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune-411008 India
- Academy of Scientific and Innovative Research Ghaziabad - 201002 India
| |
Collapse
|
3
|
Elsebaei MM, Ezzat HG, Helal AM, El-Shershaby MH, Abdulrahman MS, Alsedawy M, Aljohani AKB, Almaghrabi M, Alsulaimany M, Almohaywi B, Alghamdi R, Miski SF, Musa A, Ahmed HEA. Rational design and synthesis of novel phenyltriazole derivatives targeting MRSA cell wall biosynthesis. RSC Adv 2024; 14:39977-39994. [PMID: 39713184 PMCID: PMC11659749 DOI: 10.1039/d4ra07367c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024] Open
Abstract
Antimicrobial resistance in methicillin-resistant Staphylococcus aureus (MRSA) is a major global health challenge. This study reports the design and synthesis of novel phenyltriazole derivatives as potential anti-MRSA agents. The new scaffold replaces the thiazole core with a 1,2,3-triazole ring, enhancing antimicrobial efficacy and physicochemical properties. A series of derivatives were synthesized and evaluated, with four compounds (20, 23, 29 and 30) showing significant activity against MRSA (MIC ≤ 4 μg mL-1). Compound 29 emerged as the most promising candidate, showing rapid bactericidal activity and superior performance over vancomycin in time-kill assays. It exhibited selective toxicity against bacterial cells, minimal cytotoxicity in human cell lines and low hemolytic activity. Mechanistic studies showed that compound 29 targets the bacterial cell wall by binding to penicillin-binding protein 2a (PBP2a), disrupting cell wall integrity. Additionally, it showed strong anti-biofilm activity and reduced MRSA biofilms by up to 40%. Preliminary pharmacokinetic profiles suggested a favorable profile, including a prolonged plasma half-life and good oral bioavailability. These results suggest that compound 29 is a promising lead for further development in the fight against MRSA.
Collapse
Affiliation(s)
- Mohamed M Elsebaei
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Hany G Ezzat
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Ahmed M Helal
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Mohamed H El-Shershaby
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Mohammed S Abdulrahman
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Moaz Alsedawy
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Ahmed K B Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Marwa Alsulaimany
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Basmah Almohaywi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University Abha 61421 Saudi Arabia
| | - Read Alghamdi
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Samar F Miski
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University Medina 42353 Saudi Arabia
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University Sakaka Aljouf 72341 Saudi Arabia
| | - Hany E A Ahmed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| |
Collapse
|
4
|
Hasanin MS, Hassan YR, Youssef AM. Active packaging films based on the nanoform of chitin, alginate, and layered double hydroxides: characterization, mechanical properties, permeability, and bioactive properties. RSC Adv 2024; 14:37380-37391. [PMID: 39575370 PMCID: PMC11580156 DOI: 10.1039/d4ra06306f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/05/2024] [Indexed: 11/24/2024] Open
Abstract
Their unique characteristics make plastic films frequently utilised for packaging products. However, this petroleum-derived material has a long history of being linked to environmental contamination and hazardous degradation. Petroleum plastic can be substituted with edible packaging. The objective of this study was to combine sodium alginate with chitin, both in their nanosized form to formulate active packaging films containing different ratios of Zn/Al-layered double hydroxides (LDHs). Subsequently, active packaging films were formulated via a green method with different percentages (0%, 1%, 3%, and 5% w/w) of LDHs. The LDH particles were shaped as rectangular rods with a length of about 60 nm and width of around 20 nm. The films were evaluated for their physicochemical, topological, thermal, mechanical, water vapour, oxygen permeability and antimicrobial properties. Results indicated that active packaging with LDHs (3%) enhanced mechanical properties (tensile strength) by two-fold. Moreover, the addition of LDHs led to decreased permeability properties. Additionally, the antimicrobial study showed that the films with LDHs possessed a broad spectrum of antibacterial and antifungal activities, and the time required for bacterial killing was recorded to be less than 16 hours for films containing 5% LDHs. Thus, the formulated films show potential for use as active packaging.
Collapse
Affiliation(s)
- Mohamed S Hasanin
- Cellulose and Paper Department, National Research Centre 12622 Dokki Cairo Egypt
| | - Youssef R Hassan
- Packaging Materials Department, National Research Centre 12622 Dokki Cairo Egypt
| | - Ahmed M Youssef
- Packaging Materials Department, National Research Centre 12622 Dokki Cairo Egypt
- Electronics Research Institute (ERI) Joseph Tito St, Huckstep, El Nozha Cairo Governorate 4473221 Egypt
| |
Collapse
|
5
|
Barbieri F, Carlen V, Martina MG, Sannio F, Cancade S, Perini C, Restori M, Crespan E, Maga G, Docquier JD, Cagno V, Radi M. 4-Trifluoromethyl bithiazoles as broad-spectrum antimicrobial agents for virus-related bacterial infections or co-infections. RSC Med Chem 2024; 15:1589-1600. [PMID: 38784463 PMCID: PMC11110737 DOI: 10.1039/d3md00686g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/07/2024] [Indexed: 05/25/2024] Open
Abstract
Respiratory tract infections involving a variety of microorganisms such as viruses, bacteria, and fungi are a prominent cause of morbidity and mortality globally, exacerbating various pre-existing respiratory and non-respiratory conditions. Moreover, the ability of bacteria and viruses to coexist might impact the development and severity of lung infections, promoting bacterial colonization and subsequent disease exacerbation. Secondary bacterial infections following viral infections represent a complex challenge to be overcome from a therapeutic point of view. We report herein our efforts in the development of new bithiazole derivatives showing broad-spectrum antimicrobial activity against both viruses and bacteria. A series of 4-trifluoromethyl bithiazole analogues was synthesized and screened against selected viruses (hRVA16, EVD68, and ZIKV) and a panel of Gram-positive and Gram-negative bacteria. Among them, two promising broad-spectrum antimicrobial compounds (8a and 8j) have been identified: both compounds showed low micromolar activity against all tested viruses, 8a showed synergistic activity against E. coli and A. baumannii in the presence of a subinhibitory concentration of colistin, while 8j showed a broader spectrum of activity against Gram-positive and Gram-negative bacteria. Activity against antibiotic-resistant clinical isolates is also reported. Given the ever-increasing need to adequately address viral and bacterial infections or co-infections, this study paves the way for the development of new agents with broad antimicrobial properties and synergistic activity with common antivirals and antibacterials.
Collapse
Affiliation(s)
- Francesca Barbieri
- Dipartimento di Scienze degli Alimenti e del Farmaco (DipALIFAR), Università degli Studi di Parma Viale delle Scienze, 27/A 43124 Parma Italy
| | - Vincent Carlen
- Institute of Microbiology, University Hospital of Lausanne, University of Lausanne 1011 Lausanne Switzerland
| | - Maria Grazia Martina
- Dipartimento di Scienze degli Alimenti e del Farmaco (DipALIFAR), Università degli Studi di Parma Viale delle Scienze, 27/A 43124 Parma Italy
| | - Filomena Sannio
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena Viale Bracci 16 53100 Siena Italy
| | - Sacha Cancade
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena Viale Bracci 16 53100 Siena Italy
| | - Cecilia Perini
- Institute of Molecular Genetics IGM-CNR "Luigi Luca Cavalli-Sforza" Via Abbiategrasso 207 I-27100 Pavia Italy
| | - Margherita Restori
- Dipartimento di Scienze degli Alimenti e del Farmaco (DipALIFAR), Università degli Studi di Parma Viale delle Scienze, 27/A 43124 Parma Italy
| | - Emmanuele Crespan
- Institute of Molecular Genetics IGM-CNR "Luigi Luca Cavalli-Sforza" Via Abbiategrasso 207 I-27100 Pavia Italy
| | - Giovanni Maga
- Institute of Molecular Genetics IGM-CNR "Luigi Luca Cavalli-Sforza" Via Abbiategrasso 207 I-27100 Pavia Italy
| | - Jean-Denis Docquier
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena Viale Bracci 16 53100 Siena Italy
| | - Valeria Cagno
- Institute of Microbiology, University Hospital of Lausanne, University of Lausanne 1011 Lausanne Switzerland
| | - Marco Radi
- Dipartimento di Scienze degli Alimenti e del Farmaco (DipALIFAR), Università degli Studi di Parma Viale delle Scienze, 27/A 43124 Parma Italy
| |
Collapse
|
6
|
El-Newehy MH, Thamer BM, Hameed MMA. Green synthesis of broad spectrum microbicidal silver nanoparticles and griseofulvin loaded casein/hydroxypropyl methylcellulose nanocomposite. BIOMASS CONVERSION AND BIOREFINERY 2024; 14:10723-10732. [DOI: 10.1007/s13399-023-04607-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 01/06/2025]
|
7
|
Yang P, Liu HZ, Wang YS, Qi H, Wang LL, Wang BB, Xie XB. Synthesis and structure-activity relationship of novel thiazole aminoguanidines against MRSA and Escherichia coli. RSC Med Chem 2024; 15:1003-1014. [PMID: 38516595 PMCID: PMC10953494 DOI: 10.1039/d4md00017j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Novel lead thiazole aminoguanidines exhibited strong activity against Gram-positive bacteria. The potential targets of these substances are undecaprenyl diphosphate synthase (UPPS) and undecaprenyl diphosphate phosphatase (UPPP). Here, we report the synthesis and antibacterial evaluation of a library of thiazole aminoguanidines analogues, wherein the rotatable bond is inserted between the C2 position of thiazole and hydrophobic group. The molecular flexibility is increased, and new analogues with strong activity against MRSA and E. coli are produced. The best compound 4i showed rapid sterilization and low tendency to induce bacterial resistance. The IC50 of compound 4i to EcUPPS enzyme is 145 μmol L-1 (58 μg mL-1). Compound 4i can also inhibit and destroy bacterial biofilms. These thiazole aminoguanidines can be developed as potential therapeutic candidates in the future.
Collapse
Affiliation(s)
- Ping Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong Detection Centre of Microbiology Guangzhou 510070 China
| | - Hui-Zhong Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong Detection Centre of Microbiology Guangzhou 510070 China
| | - Ying-Si Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong Detection Centre of Microbiology Guangzhou 510070 China
| | - Hong Qi
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong Detection Centre of Microbiology Guangzhou 510070 China
| | - Ling-Ling Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong Detection Centre of Microbiology Guangzhou 510070 China
| | - Bei-Bei Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong Detection Centre of Microbiology Guangzhou 510070 China
| | - Xiao-Bao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong Detection Centre of Microbiology Guangzhou 510070 China
| |
Collapse
|
8
|
Liu H, Xu T, Xue Z, Huang M, Wang T, Zhang M, Yang R, Guo Y. Current Development of Thiazole-Containing Compounds as Potential Antibacterials against Methicillin-Resistant Staphylococcus aureus. ACS Infect Dis 2024; 10:350-370. [PMID: 38232301 DOI: 10.1021/acsinfecdis.3c00647] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The emergence of multi-drug-resistant bacteria is threatening to human health and life around the world. In particular, methicillin-resistant Staphylococcus aureus (MRSA) causes fatal injuries to human beings and serious economic losses to animal husbandry due to its easy transmission and difficult treatment. Currently, the development of novel, highly effective, and low-toxicity antimicrobials is important to combat MRSA infections. Thiazole-containing compounds with good biological activity are widely used in clinical practice, and appropriate structural modifications make it possible to develop new antimicrobials. Here, we review thiazole-containing compounds and their antibacterial effects against MRSA reported in the past two decades and discuss their structure-activity relationships as well as the corresponding antimicrobial mechanisms. Some thiazole-containing compounds exhibit potent antibacterial efficacy in vitro and in vivo after appropriate structural modifications and could be used as antibacterial candidates. This Review provides insights into the development of thiazole-containing compounds as antimicrobials to combat MRSA infections.
Collapse
Affiliation(s)
- Hang Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Ting Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Zihan Xue
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Meijuan Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Tingting Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Miaomiao Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Ruige Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Yong Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
9
|
Yang N, Sun M, Wang H, Hu D, Zhang A, Khan S, Chen Z, Chen D, Xie S. Progress of stimulus responsive nanosystems for targeting treatment of bacterial infectious diseases. Adv Colloid Interface Sci 2024; 324:103078. [PMID: 38215562 DOI: 10.1016/j.cis.2024.103078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
In recent decades, due to insufficient concentration at the lesion site, low bioavailability and increasingly serious resistance, antibiotics have become less and less dominant in the treatment of bacterial infectious diseases. It promotes the development of efficient drug delivery systems, and is expected to achieve high absorption, targeted drug release and satisfactory therapy effects. A variety of endogenous stimulation-responsive nanosystems have been constructed by using special infection microenvironments (pH, enzymes, temperature, etc.). In this review, we firstly provide an extensive review of the current research progress in antibiotic treatment dilemmas and drug delivery systems. Then, the mechanism of microenvironment characteristics of bacterial infected lesions was elucidated to provide a strong theoretical basis for bacteria-targeting nanosystems design. In particular, the discussion focuses on the design principles of single-stimulus and dual-stimulus responsive nanosystems, as well as the use of endogenous stimulus-responsive nanosystems to deliver antimicrobial agents to target locations for combating bacterial infectious diseases. Finally, the challenges and prospects of endogenous stimulus-responsive nanosystems were summarized.
Collapse
Affiliation(s)
- Niuniu Yang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health,Huazhong Agricultural University, Shenzhen, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Mengyuan Sun
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Huixin Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Danlei Hu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Aoxue Zhang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Suliman Khan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Zhen Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei 430070, China; Shenzhen Institute of Nutrition and Health,Huazhong Agricultural University, Shenzhen, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
10
|
Hagras M, Abuelkhir AA, Abutaleb NS, Helal AM, Fawzy IM, Hegazy M, Seleem MN, Mayhoub AS. Novel phenylthiazoles with a tert-butyl moiety: promising antimicrobial activity against multidrug-resistant pathogens with enhanced ADME properties. RSC Adv 2024; 14:1513-1526. [PMID: 38174234 PMCID: PMC10763701 DOI: 10.1039/d3ra07619a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
The structure-activity relationship of a new tert-butylphenylthiazole series, with a pyrimidine linker, was investigated. We wished to expand knowledge of this novel class of antibiotics by generating 21 new derivatives bearing ≥2 heteroatoms in their side chains. Their activity was examined against isolates of methicillin-resistant Staphylococcus aureus (MRSA), Clostridium difficile, Escherichia coli, Neisseria gonorrhoeae, and Candida albicans. Two compounds with 1,2-diaminocyclohexane as a nitrogenous side chain showed promising activity against the highly infectious MRSA USA300 strain, with a minimum inhibitory concentration (MIC) of 4 μg mL-1. One of these two compounds demonstrated potent activity against C. difficile, with a MIC of 4 μg mL-1. Moderate activities against a C. difficile strain with a MIC of 8 μg mL-1 were noted. Some new compounds possessed antifungal activity against a wild fluconazole-resistant C. albicans strain, with MIC values of 4-16 μg mL-1. ADME and metabolism-simulation studies were performed for the most promising compound and compared with lead compounds. Our results revealed that one compound possessed greater penetration of bacterial membranes and metabolic resistance, which aided a longer duration of action against MRSA.
Collapse
Affiliation(s)
- Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Abdelrahman A Abuelkhir
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University Zagazig 44519 Egypt
| | - Ahmed M Helal
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Iten M Fawzy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt 11835 Cairo Egypt
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
- Center for One Health Research, Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
- University of Science and Technology, Nanoscience Program, Zewail City of Science and Technology October Gardens 6th of October Giza 12578 Egypt
| |
Collapse
|
11
|
Shahin IG, Mohamed KO, Taher AT, Elsebaei MM, Mayhoub AS, Kassab AE, Elshewy A. New Phenylthiazoles: Design, Synthesis, and Biological Evaluation as Antibacterial, Antifungal, and Anti-COVID-19 Candidates. Chem Biodivers 2023; 20:e202301143. [PMID: 37857580 DOI: 10.1002/cbdv.202301143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023]
Abstract
The combination of antibacterial and antiviral agents is becoming a very important aspect of dealing with resistant bacterial and viral infections. The N-phenylthiazole scaffold was found to possess significant anti-MRSA, antifungal, and anti-COVID-19 activities as previously published; hence, a slight refinement was proposed to attach various alkyne lipophilic tails to this promising scaffold, to investigate their effects on the antimicrobial activity of the newly synthesized compounds and to provide a valuable structure-activity relationship. Phenylthiazole 4 m exhibited the most potent anti-MRSA activity with 8 μg/mL MIC value. Compounds 4 k and 4 m demonstrated potent activity against Clostridium difficile with MIC values of 2 μg/mL and moderate activity against Candida albicans with MIC value of 4 μg/mL. When analyzed for their anti-COVID-19 inhibitory effect, compound 4 b emerged with IC50 =1269 nM and the highest selectivity of 138.86 and this was supported by its binding score of -5.21 kcal mol-1 when docked against SARS-CoV-2 M pro . Two H-bonds were formed, one with His164 and the other with Met49 stabilizing phenylthiazole derivative 4 b, inside the binding pocket. Additionally, it created two arene-H bonds with Asn142 and Glu166, through the phenylthiazole scaffold and one arene-H bond with Leu141 via the phenyl ring of the lipophilic tail.
Collapse
Affiliation(s)
- Inas G Shahin
- Department of Organic Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, 11787, Egypt
| | - Khaled O Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Azza T Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, October 6 University, 6-October, Giza, Egypt
| | - Mohamed M Elsebaei
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
- University of Science and Technology, Nanoscience Program, Zewail, City of Science and Technology, October Gardens, 6th October, Giza, 12578, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed Elshewy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, Galala Plateau, Attaka, Suez, 43713, Egypt
| |
Collapse
|
12
|
Hagras M, Abutaleb NS, Ezzat HG, Salama EA, Seleem MN, Mayhoub AS. Naphthylthiazoles: a class of broad-spectrum antifungals. RSC Med Chem 2023; 14:2089-2099. [PMID: 37859711 PMCID: PMC10583822 DOI: 10.1039/d3md00323j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/28/2023] [Indexed: 10/21/2023] Open
Abstract
Cryptococcal infections remain a major cause of mortality worldwide due to the ability of Cryptococci to pass through the blood-brain barrier (BBB) causing lethal meningitis. The limited number of available therapeutics, which exhibit limited availability, severe toxicity and low tolerability, necessitates the development of new therapeutics. Investigating the antifungal activity of a novel series of naphthylthiazoles provided trans-diaminocyclohexyl derivative 18 with many advantageous attributes as a potential therapeutic for cryptococcal meningitis. Briefly, the antimycotic activity of 18 against cryptococcal strains was highly comparable to that of amphotericin-B and fluconazole with MIC values as low as 1 μg mL-1. Moreover, compound 18 possessed additional advantages over fluconazole; it significantly reduced the intracellular burden of Cryptococci and markedly inhibited cryptococcal biofilm formation. Initial PK assessment of 18 indicated its ability to reach the CNS after oral administration with high permeability, and it maintained therapeutic plasma concentrations for 18 h. Its antifungal activity extended to other clinically relevant strains, such as fluconazole-resistant C. auris.
Collapse
Affiliation(s)
- Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University Zagazig 44519 Egypt
| | - Hany G Ezzat
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
| | - Ehab A Salama
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
- Center for One Health Research, Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
- Nanoscience Program, University of Science and Technology Zewail City of Science and Technology, October Gardens, 6th of October Giza 12578 Egypt
| |
Collapse
|
13
|
Kulkarni B, Manjunatha K, Joy MN, Sajith AM, Santra S, Zyryanov GV, Prashantha CN, Alshammari MB, Sunil K. Exploration of NMI-MsCl mediated amide bond formation for the synthesis of novel 3,5-substituted-1,2,4-oxadiazole derivatives: synthesis, evaluation of anti-inflammatory activity and molecular docking studies. Mol Divers 2023; 27:1867-1878. [PMID: 36219380 DOI: 10.1007/s11030-022-10536-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/27/2022] [Indexed: 10/17/2022]
Abstract
We herein report the facile synthesis of a series of 3,5-substituted-1,2,4-oxadiazole derivatives 9a-e and 10a-e in good to excellent yields by employing NMI-MsCl mediated amide bond formation reaction. The anti-inflammatory potential of the newly synthesized compounds were evaluated by anti-denaturation assay using diclofenac sodium as the reference drug. The compounds 9a and 9d demonstrated promising activity profile when compared to the reference standard. The SAR and molecular docking studies were also carried out for obtaining more details about the profound activity profile of the synthesized molecules. The synthesized compounds were docked against two target proteins TGF-β and IL-1 by AutoDock vina and Auto Dock 4.2.
Collapse
Affiliation(s)
- B Kulkarni
- Research and Development Centre, Bharathiar University, Coimbatore, Tamilnadu, 641046, India
| | - K Manjunatha
- Research and Development Centre, Bharathiar University, Coimbatore, Tamilnadu, 641046, India.
- Department of Chemistry, Nagarjuna College of Engineering and Technology, Devanahalli, Bengaluru, Karnataka, 562164, India.
| | - Muthipeedika Nibin Joy
- Institute of Chemical Technology, Ural Federal University, 19 Mira Street, Yekaterinburg, Russia, 620002
| | | | - Sougata Santra
- Institute of Chemical Technology, Ural Federal University, 19 Mira Street, Yekaterinburg, Russia, 620002
| | - Grigory V Zyryanov
- Institute of Chemical Technology, Ural Federal University, 19 Mira Street, Yekaterinburg, Russia, 620002
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, Yekaterinburg, Russia, 620219
| | - C N Prashantha
- Department of Biotechnology, School of Applied Sciences, Reva University, Bengaluru, Karnataka, 560064, India
| | - Mohammed B Alshammari
- Chemistry Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharj, 11942, Saudi Arabia
| | - K Sunil
- Department of Chemistry, SSIT, Sri Siddhartha Academy of Higher Education, Tumkur, Karnataka, 572107, India
| |
Collapse
|
14
|
Nour El-Din HT, Elsebaie MM, Abutaleb NS, Kotb AM, Attia AS, Seleem MN, Mayhoub AS. Expanding the structure-activity relationships of alkynyl diphenylurea scaffold as promising antibacterial agents. RSC Med Chem 2023; 14:367-377. [PMID: 36846365 PMCID: PMC9945853 DOI: 10.1039/d2md00351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
With the continuous and alarming threat of exhausting the current antimicrobial arsenals, efforts are urgently needed to develop new effective ones. In this study, the antibacterial efficacy of a set of structurally related acetylenic-diphenylurea derivatives carrying the aminoguanidine moiety was tested against a panel of multidrug-resistant Gram-positive clinical isolates. Compound 18 was identified with a superior bacteriological profile than the lead compound I. Compound 18 demonstrated an excellent antibacterial profile in vitro: low MIC values, extended post-antibiotic effect, refractory ability to resistance development upon extended repeated exposure, and high tolerability towards mammalian cells. Finally, when assessed in a MRSA skin infection animal model, compound 18 showed considerable healing and less inflammation, decrease in the bacterial loads in skin lesions, and it surpassed fusidic acid in controlling the systemic dissemination of S. aureus. Collectively, compound 18 represents a promising lead anti-MRSA agent that merits further investigation for the development of new anti-staphylococcal therapeutics.
Collapse
Affiliation(s)
- Hanzada T Nour El-Din
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Mohamed M Elsebaie
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University Zagazig 44519 Egypt
| | - Ahmed M Kotb
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
- Department of Microbiology and Immunology, School of Pharmacy, Newgiza University Giza Egypt
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
- Center for One Health Research, Virginia Polytechnic Institute and State University Blacksburg Virginia 24061 USA
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
- Nanoscience Program, University of Science and Technology, Zewail City of Science and Technology Giza Egypt
| |
Collapse
|
15
|
Jian Y, Peng Y, Zhou W, Xu Y, Li C, Wang X, Zhou Q. Ru(II) Complexes with Enaminone Structures for Rapid Sterilization of Staphylococcus aureus and MRSA with Little Accumulation of Drug Resistance. ChemMedChem 2023; 18:e202300065. [PMID: 36751034 DOI: 10.1002/cmdc.202300065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/09/2023]
Abstract
Drug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), pose a serious threat to human life. Therefore, there is urgent need to develop antibiotics with new chemical structures and antibacterial mechanisms, especially those that elicit little drug resistance after long-term use. Herein we synthesized three novel ruthenium complexes (Ru1-Ru3) containing the enaminone structures for the first time. At a concentration of 5 μM, Ru1-Ru3 can lead to a CFU reduction of about 5 log units towards S. aureus and MRSA. Interestingly, Ru3 displayed rapid bactericidal effects and could decrease the CFU numbers of both pathogens by 5 log units within 40 min. The control compounds (Ru4 and Ru5) without the enaminone structures displayed very poor antibacterial activity under the same conditions. Moreover, S. aureus did not show apparent drug resistance towards Ru3 after 20 passages incubation with a sublethal concentration. These results highlight the critical role of enaminone structures for antibacterial applications.
Collapse
Affiliation(s)
- Yao Jian
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yatong Peng
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Wanpeng Zhou
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yunli Xu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Chao Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xuesong Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Qianxiong Zhou
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| |
Collapse
|
16
|
Shahin IG, Mohamed KO, Taher AT, Mayhoub AS, Kassab AE. The Anti-MRSA Activity of Phenylthiazoles: A Comprehensive Review. Curr Pharm Des 2022; 28:3469-3477. [PMID: 36424796 DOI: 10.2174/1381612829666221124112006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/06/2022] [Accepted: 10/27/2022] [Indexed: 11/26/2022]
Abstract
Antimicrobial resistance is an aggravating global issue therefore it has been under extensive research in an attempt to reduce the number of antibiotics that are constantly reported as obsolete jeopardizing the lives of millions worldwide. Thiazoles possess a reputation as one of the most diverse biologically active nuclei, and phenylthiazoles are no less exceptional with an assorted array of biological activities such as anthelmintic, insecticidal, antimicrobial, antibacterial, and antifungal activity. Recently phenyl thiazoles came under the spotlight as a scaffold having strong potential as an anti-MRSA lead compound. It is a prominent pharmacophore in designing and synthesizing new compounds with antibacterial activity against multidrug-resistant bacteria such as MRSA, which is categorized as a serious threat pathogen, that exhibited concomitant resistance to most of the first-line antibiotics. MRSA has been associated with soft tissue and skin infections resulting in high death rates, rapid dissemination, and loss of millions of dollars of additional health care costs. In this brief review, we have focused on the advances of phenylthiazole derivatives as potential anti-MRSA from 2014 to 2021. The review encompasses the effect on biological activity due to combining this molecule with various synthetic pharmacophores. The physicochemical aspects were correlated with the pharmacokinetic properties of the reviewed compounds to reach a structure-activity relationship profile. Lead optimization of phenyl thiazole derivatives has additionally been outlined where the lipophilicity of the compounds was balanced with the metabolic stability and oral solubility to aid the researchers in medicinal chemistry, design, and synthesizing effective anti- MRSA phenylthiazoles in the future.
Collapse
Affiliation(s)
- Inas G Shahin
- Department of Organic Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza 11787, Egypt
| | - Khaled O Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Azza T Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.,Department of Pharmaceutical Organic Chemistry, College of Pharmacy, October 6 University, 6-October, Giza, Egypt
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt.,University of Science and Technology, Nanoscience Program, Zewail City of Science and Technology, October Gardens, 6th October, Giza 12578, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
17
|
Sayed AM, Abutaleb NS, Kotb A, Ezzat HG, Seleem MN, Mayhoub AS, Elsebaie MM. Arylpyrazole as selective anti‐enterococci; Synthesis and biological evaluation of novel derivatives for their antimicrobial efficacy. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ahmed M. Sayed
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy Al‐Azhar University Cairo Egypt
| | - Nader S. Abutaleb
- Department of Comparative Pathobiology, College of Veterinary Medicine Purdue University West Lafayette US
- Department of Biomedical Sciences and Pathobiology, Virginia‐Maryland College of Veterinary Medicine Virginia Polytechnic Institute and State University Blacksburg United States
- Department of Microbiology and Immunology, Faculty of Pharmacy Zagazig University Zagazig Egypt
| | - Ahmed Kotb
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy Al‐Azhar University Cairo Egypt
| | - Hany G. Ezzat
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy Al‐Azhar University Cairo Egypt
| | - Mohamed N. Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine Purdue University West Lafayette US
- Department of Biomedical Sciences and Pathobiology, Virginia‐Maryland College of Veterinary Medicine Virginia Polytechnic Institute and State University Blacksburg United States
- Center for Emerging, Zoonotic and Arthropod‐borne Pathogens Virginia Polytechnic Institute and State University Blacksburg US
| | - Abdelrahman S. Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy Al‐Azhar University Cairo Egypt
- University of Science and Technology, Nanoscience Program Zewail City of Science and Technology, Ahmed Zewail Street Giza Egypt
| | - Mohamed M. Elsebaie
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy Al‐Azhar University Cairo Egypt
| |
Collapse
|
18
|
Martina MG, Sannio F, Crespan E, Pavone M, Simoncini A, Barbieri F, Perini C, Pesce E, Maga G, Pedemonte N, Docquier JD, Radi M. Towards Innovative Antibacterial-Correctors for Cystic Fibrosis Targeting the Lung Microbiome with a Multifunctional Effect. ChemMedChem 2022; 17:e202200277. [PMID: 35638249 DOI: 10.1002/cmdc.202200277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 05/30/2022] [Indexed: 11/10/2022]
Abstract
Cystic Fibrosis (CF) is a genetic disease caused by loss-of-function mutations in the CFTR gene, which codes for a defective ion channel. This causes an electrolyte imbalance and results in a spiral of negative effects on multiple organs, most notably the accumulation of thick mucus in the lungs, chronic respiratory tract infections and inflammation leading to pulmonary exacerbation and premature death. Progressive decline of lung function is mainly linked to persistent or recurring infections, mostly caused by bacteria, which require treatments with antibiotics and represent one of the major life-limiting factors in subjects with CF. Treatment of such a complex disease require multiple drugs with a consequent therapeutic burden and complications caused by drug-drug interactions and rapid emergence of bacterial drug resistance. We report herein our recent efforts in developing innovative multifunctional antibiotics specifically tailored to CF by a direct action on bacterial topoisomerases and a potential indirect effect on the pulmonary mucociliary clearance mediated by ΔF508-CFTR correction. The obtained results may pave the way for the development of a simplified therapeutic approach with a single agent acting as multifunctional antibacterial-corrector.
Collapse
Affiliation(s)
- Maria Grazia Martina
- University of Parma: Universita degli Studi di Parma, Department of Food and Drug, ITALY
| | - Filomena Sannio
- University of Siena: Universita degli Studi di Siena, Dipartimento di Biotecnologie Mediche, ITALY
| | - Emmanuele Crespan
- CNR: Consiglio Nazionale delle Ricerche, Istituto di Genetica Molecolare, IGM-CNR "Luigi Luca Cavalli-Sforza", ITALY
| | - Marialaura Pavone
- University of Parma: Universita degli Studi di Parma, Department of Food and Drug, ITALY
| | - Alice Simoncini
- University of Parma: Universita degli Studi di Parma, Department of Food and Drug, ITALY
| | - Francesca Barbieri
- University of Parma: Universita degli Studi di Parma, Department of Food and Drug, ITALY
| | - Cecilia Perini
- CNR: Consiglio Nazionale delle Ricerche, Istituto di Genetica Molecolare, IGM-CNR "Luigi Luca Cavalli-Sforza", ITALY
| | - Emanuela Pesce
- Istituto Giannina Gaslini Istituto Pediatrico di Ricovero e Cura a Carattere Scientifico: Istituto Giannina Gaslini, U.O.C. Genetica Medica, ITALY
| | - Giovanni Maga
- CNR: Consiglio Nazionale delle Ricerche, Istituto di Genetica Molecolare, IGM-CNR "Luigi Luca Cavalli-Sforza", ITALY
| | - Nicoletta Pedemonte
- Istituto Giannina Gaslini Istituto Pediatrico di Ricovero e Cura a Carattere Scientifico: Istituto Giannina Gaslini, U.O.C. Genetica Medica, ITALY
| | - Jean-Denis Docquier
- University of Siena: Universita degli Studi di Siena, Dipartimento di Biotecnologie Mediche, ITALY
| | - Marco Radi
- University of Parma, Department of Food and Drug, Viale delle Scienze, 27/A, 43124, Parma, ITALY
| |
Collapse
|
19
|
Zha L, Xie Y, Wu C, Lei M, Lu X, Tang W, Zhang J. Novel benzothiazole‒urea hybrids: Design, synthesis and biological activity as potent anti-bacterial agents against MRSA. Eur J Med Chem 2022; 236:114333. [PMID: 35397402 DOI: 10.1016/j.ejmech.2022.114333] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/19/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
Novel benzothiazole‒urea hybrids were designed, synthesized and evaluated their anti-bacterial activity. They only exhibited anti-bacterial activity against Gram-positive bacteria, including clinical methicillin-resistant S. aureus (MRSA), compounds 5f, 5i, 8e, 8k and 8l exhibited potent activity (MIC = 0.39 and 0.39/0.78 μM against SA and MRSA, respectively). Crystal violet assay showed that compounds 5f, 8e and 8l not only inhibited the formation of biofilms but also eradicated preformed biofilms. Compound 8l had membrane disruption, little propensity to induce resistance, benign safety and in vivo anti-MRSA efficacy in a mouse model of abdominal infection. Therefore, our data demonstrated the potential to advance benzothiazole‒urea hybrids as a new class of antibiotics.
Collapse
Affiliation(s)
- Liang Zha
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yunfeng Xie
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Chengyao Wu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Ming Lei
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xueer Lu
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| | - Jing Zhang
- Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's Hospital, Hefei, 230022, China.
| |
Collapse
|
20
|
Elsebaie MM, El-Din HT, Abutaleb NS, Abuelkhir AA, Liang HW, Attia AS, Seleem MN, Mayhoub AS. Exploring the structure-activity relationships of diphenylurea as an antibacterial scaffold active against methicillin- and vancomycin-resistant Staphylococcus aureus. Eur J Med Chem 2022; 234:114204. [DOI: 10.1016/j.ejmech.2022.114204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/02/2022] [Accepted: 02/14/2022] [Indexed: 01/12/2023]
|
21
|
Design, synthesis and molecular docking studies of some 1-(5-(2-fluoro-5-(trifluoromethoxy)phenyl)-1,2,4-oxadiazol-3-yl)piperazine derivatives as potential anti-inflammatory agents. Mol Divers 2021; 26:2893-2905. [PMID: 34817768 DOI: 10.1007/s11030-021-10340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/11/2021] [Indexed: 10/19/2022]
Abstract
We herein report the facile synthesis of a series of 3,5-substituted-1,2,4-oxadiazole derivatives in good to excellent yields. The anti-inflammatory potential of the newly synthesized compounds was evaluated by anti-denaturation assay using diclofenac sodium as the reference standard. Some of the compounds exhibited profound activity profile when compared to the standard drug. The molecular docking and SAR studies were carried out at the later stage for gaining more insights about the promising activity profile of the synthesized molecules.
Collapse
|
22
|
Hydroxyethyl cellulose/bacterial cellulose cryogel dopped silver@titanium oxide nanoparticles: Antimicrobial activity and controlled release of Tebuconazole fungicide. Int J Biol Macromol 2020; 165:1010-1021. [DOI: 10.1016/j.ijbiomac.2020.09.226] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022]
|
23
|
Wang B, Yao Y, Wei P, Song C, Wan S, Yang S, Zhu GM, Liu HM. Housefly Phormicin inhibits Staphylococcus aureus and MRSA by disrupting biofilm formation and altering gene expression in vitro and in vivo. Int J Biol Macromol 2020; 167:1424-1434. [PMID: 33202277 DOI: 10.1016/j.ijbiomac.2020.11.096] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 11/24/2022]
Abstract
The increasing drug resistance of pathogenic bacteria is a crisis that threatens public health. Antimicrobial peptides (AMPs) have been suggested to be potentially effective alternatives to solve this problem. Here, we tested housefly Phormicin-derived peptides for effects on Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) infections in vitro and in vivo. A decreased bacterial load of MRSA was observed in the mouse scald model after treatment with Phormicin and in the positive control group (vancomycin). A mouse scrape model indicated that Phormicin helps the host fight drug-resistant MRSA infections. The protective effect of Phormicin on MRSA was confirmed in the Hermetia illucens larvae model. Phormicin also disrupted the formation of S. aureus and MRSA biofilms. Furthermore, this effect coincided with the downregulation of biofilm formation-related gene expression (agrC, sigB, RNAIII, altA, rbf, hla, hld, geh and psmɑ). Notably, virulence genes and several regulatory factors were also altered by Phormicin treatment. Based on these findings, housefly Phormicin helps the host inhibit MRSA infection through effects on biofilm formation and related gene networks. Therefore, housefly Phormicin potential represents a candidate agent for clinical MRSA chemotherapy.
Collapse
Affiliation(s)
- Bing Wang
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, China; Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang 550025, Guizhou, China.
| | - Yang Yao
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - PengWei Wei
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - ChaoRong Song
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Shan Wan
- Department of Microbial Immunology, The first affiliated hospital of Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - SuWen Yang
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Gui Ming Zhu
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, China; Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, China Ministry of Education (Guizhou Medical University), Guiyang 550025, Guizhou, China
| | - Hong Mei Liu
- Engineering Research Center of Medical Biotechnology, Guizhou Medical University, Guiyang 550025, Guizhou, China; Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China; School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
24
|
Hagras M, Abutaleb NS, Elhosseiny NM, Abdelghany TM, Omara M, Elsebaei MM, Alhashimi M, Norvil AB, Gutay MI, Gowher H, Attia AS, Seleem MN, Mayhoub AS. Development of Biphenylthiazoles Exhibiting Improved Pharmacokinetics and Potent Activity Against Intracellular Staphylococcus aureus. ACS Infect Dis 2020; 6:2887-2900. [PMID: 32897045 DOI: 10.1021/acsinfecdis.0c00137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exploring the structure-activity relationship (SAR) at the cationic part of arylthiazole antibiotics revealed hydrazine as an active moiety. The main objective of the study is to overcome the inherited toxicity associated with the free hydrazine. A series of hydrocarbon bridges was inserted in between the groups, to separate the two amino groups. Hence, the aminomethylpiperidine-containing analog 16 was identified as a new promising antibacterial agent with efficient antibacterial and pharmacokinetic profiles. Briefly, compound 16 outperformed vancomycin in terms of the antibacterial spectrum against vancomycin-resistant staphylococcal and enterococcal strains with minimum inhibitory concentrations (MICs) ranging from 2 to 4 μg/mL, which is a faster bactericidal mode of action, completely eradicating the high staphylococcal burden within 6-8 h, and it has a unique ability to completely clear intracellular staphylococci. In addition, the initial pharmacokinetic assessment confirmed the high metabolic stability of compound 16 (biological half-life >4 h); it had a good extravascular distribution and maintained a plasma concentration higher than the average MIC value for over 12 h. Moreover, compound 16 significantly reduced MRSA burden in an in vivo MRSA skin infection mouse experiment. These attributes collectively suggest that compound 16 is a good therapeutic candidate for invasive staphylococcal and enterococcal infections. From a mechanistic point of view, compound 16 inhibited undecaprenyl diphosphate phosphatase (UppP) with an IC50 value of 29 μM.
Collapse
Affiliation(s)
- Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, 1-Elmokhayem Eldaem Street, Cairo 11884, Egypt
| | - Nader S. Abutaleb
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Noha M. Elhosseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Tamer M. Abdelghany
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, 1-Elmokhayem Eldaem Street, Cairo 11884, Egypt
| | - Mariam Omara
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, 1-Elmokhayem Eldaem Street, Cairo 11884, Egypt
| | - Mohamed M. Elsebaei
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, 1-Elmokhayem Eldaem Street, Cairo 11884, Egypt
| | - Marwa Alhashimi
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Allison B Norvil
- Department of Biochemistry, College of Agriculture, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mark I Gutay
- Department of Biochemistry, College of Agriculture, Purdue University, West Lafayette, Indiana 47907, United States
| | - Humaira Gowher
- Department of Biochemistry, College of Agriculture, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ahmed S. Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mohamed N. Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, Indiana 47907, United States
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Abdelrahman S. Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, 1-Elmokhayem Eldaem Street, Cairo 11884, Egypt
- University of Science and Technology, Nanoscience Program, Zewail City of Science and Technology, Ahmed Zewail Street, October Gardens, sixth of October, Giza 12578, Egypt
| |
Collapse
|
25
|
El-Shershaby MH, El-Gamal KM, Bayoumi AH, El-Adl K, Ahmed HEA, Abulkhair HS. Synthesis, antimicrobial evaluation, DNA gyrase inhibition, and in silico pharmacokinetic studies of novel quinoline derivatives. Arch Pharm (Weinheim) 2020; 354:e2000277. [PMID: 33078877 DOI: 10.1002/ardp.202000277] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022]
Abstract
Herein, we report the synthesis and in vitro antimicrobial evaluation of novel quinoline derivatives as DNA gyrase inhibitors. The preliminary antimicrobial activity was assessed against a panel of pathogenic microbes including Gram-positive bacteria (Streptococcus pneumoniae and Bacillus subtilis), Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli), and fungal strains (Aspergillus fumigatus, Syncephalastrum racemosum, Geotrichum candidum, and Candida albicans). Compounds that revealed the best activity were subjected to further biological studies to determine their minimum inhibitory concentrations (MICs) against the selected pathogens as well as their in vitro activity against the E. coli DNA gyrase, to realize whether their antimicrobial action is mediated via inhibition of this enzyme. Four of the new derivatives (14, 17, 20, and 23) demonstrated a relatively potent antimicrobial activity with MIC values in the range of 0.66-5.29 μg/ml. Among them, compound 14 exhibited a particularly potent broad-spectrum antimicrobial activity against most of the tested strains of bacteria and fungi, with MIC values in the range of 0.66-3.98 μg/ml. A subsequent in vitro investigation against the bacterial DNA gyrase target enzyme revealed a significant potent inhibitory activity of quinoline derivative 14, which can be observed from its IC50 value (3.39 μM). Also, a molecular docking study of the most active compounds was carried out to explore the binding affinity of the new ligands toward the active site of DNA gyrase enzyme as a proposed target of their activity. Furthermore, the ADMET profiles of the most highly effective derivatives were analyzed to evaluate their potentials to be developed as good drug candidates.
Collapse
Affiliation(s)
- Mohamed H El-Shershaby
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Kamal M El-Gamal
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ashraf H Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Hany E A Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Pharmacognosy and Pharmaceutical Chemistry Department, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| |
Collapse
|
26
|
Turky A, Bayoumi AH, Sherbiny FF, El-Adl K, Abulkhair HS. Unravelling the anticancer potency of 1,2,4-triazole-N-arylamide hybrids through inhibition of STAT3: synthesis and in silico mechanistic studies. Mol Divers 2020; 25:403-420. [PMID: 32830299 DOI: 10.1007/s11030-020-10131-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/06/2020] [Indexed: 12/26/2022]
Abstract
The discovery of potent STAT3 inhibitors has gained noteworthy impetus in the last decade. In line with this trend, considering the proven biological importance of 1,2,4-triazoles, herein, we are reporting the design, synthesis, pharmacokinetic profiles, and in vitro anticancer activity of novel C3-linked 1,2,4-triazole-N-arylamide hybrids and their in silico proposed mechanism of action via inhibition of STAT3. The 1,2,4-triazole scaffold was selected as a privilege ring system that is embedded in core structures of a variety of anticancer drugs which are either in clinical use or still under clinical trials. The designed 1,2,4-triazole derivatives were synthesized by linking the triazole-thione moiety through amide hydrophilic linkers with diverse lipophilic fragments. In silico study to predict cytotoxicity of the new hybrids against different kinds of human cancer cell lines as well as the non-tumor cells was conducted. The multidrug-resistant human breast adenocarcinoma cells (MDA-MB-231) was found most susceptible to the cytotoxic effect of synthesized compounds and hence were selected to evaluate the in vitro anticancer activity. Four of the designed derivatives showed promising cytotoxicity effects against selected cancer cells, among which compound 12 showed the highest potency (IC50 = 3.61 µM), followed by 21 which displayed IC50 value of 3.93 µM. Also, compounds 14 and 23 revealed equipotent activity with the reference cytotoxic agent doxorubicin. To reinforce these observations, the obtained data of in vitro cytotoxicity have been validated in terms of ligand-protein interaction and new compounds were analyzed for ADMET properties to evaluate their potential to build up as good drug candidates. This study led us to identify two novel C3-linked 1,2,4-triazole-N-arylamide hybrids of interesting antiproliferative potentials as probable lead inhibitors of STAT3 with promising pharmacokinetic profiles.
Collapse
Affiliation(s)
- Abdallah Turky
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ashraf H Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Farag F Sherbiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
- Pharmaceutical Organic Chemistry Department, College of Pharmacy, Misr University for Science and Technology (MUST), 6th October City, Egypt
| | - Khaled El-Adl
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University - Egypt, International Costal Road, New Damietta, Egypt.
| |
Collapse
|
27
|
Abulkhair HS, Turky A, Ghiaty A, Ahmed HE, Bayoumi AH. Novel triazolophthalazine-hydrazone hybrids as potential PCAF inhibitors: Design, synthesis, in vitro anticancer evaluation, apoptosis, and molecular docking studies. Bioorg Chem 2020; 100:103899. [DOI: 10.1016/j.bioorg.2020.103899] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
|
28
|
Liu G, Pang B, Li N, Jin H, Li J, Wu W, Ai C, Jiang C, Shi J. Therapeutic effect of Lactobacillus rhamnosus SHA113 on intestinal infection by multi-drug-resistant Staphylococcus aureus and its underlying mechanisms. Food Funct 2020; 11:6226-6239. [PMID: 32589178 DOI: 10.1039/d0fo00969e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Staphylococcus aureus, especially multi-drug-resistant (MDR) pathogenic S. aureus, poses a severe threat to food safety and human health. Probiotics offer promising potential for the control of MDR pathogens because of their safe and biofunctional properties. This study shows that Lactobacillus rhamnosus SHA113, a strain isolated from the milk of healthy women, could efficiently inhibit MDR S. aureus both in vitro and in vivo. In vitro, L. rhamnosus efficiently inhibited and even killed drug resistant and drug sensitive S. aureus strains. In vivo experiments showed that SHA113 could efficiently decrease the number of S. aureus cells, inhibit the expression of inflammatory factors TNF-α and IL-6, and restore the level of white cells and neutrophils in the blood. SHA113 could also efficiently repair damage of the intestinal barrier and other functions impaired by S. aureus infection. This was indicated by a change of intestinal villi length and structure, and an up-regulated expression of tight junction proteins ZO-1 and occludin. SHA113 also restored the structural damage of immune organs, such as the enlargement of the spleen and the increased level of inflammatory cytokines caused by S. aureus infection. More importantly, L. rhamnosus SHA113 showed more effective inhibitory and therapeutic effects on MDR S. aureus strain ZBQ006 than on drug sensitive S. aureus strain 29213. These results illustrated that L. rhamnosus SHA113 has great potential for the treatment of MDR S. aureus contamination as food control and for therapeutic treatment.
Collapse
Affiliation(s)
- Guanwen Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Shahin IG, Abutaleb NS, Alhashimi M, Kassab AE, Mohamed KO, Taher AT, Seleem MN, Mayhoub AS. Evaluation of N-phenyl-2-aminothiazoles for treatment of multi-drug resistant and intracellular Staphylococcus aureus infections. Eur J Med Chem 2020; 202:112497. [PMID: 32707373 DOI: 10.1016/j.ejmech.2020.112497] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/16/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
The increasing emergence of antibiotic-resistant bacterial pathogens calls for additional urgency in the development of new antibacterial candidates. N-Phenyl-2-aminothiazoles are promising candidates that possess potent anti-MRSA activity and could potentially replenish the MRSA antibiotic pipeline. The initial screen of a series of compounds in this novel class against several bacterial strains revealed that the aminoguanidine analogues possessed promising activities and superior safety profiles. The determined MICs of these compounds were comparable to, if not better than, those of the control drugs (linezolid and vancomycin). Remarkably, compounds 3a, 3b, and 3e possessed potent activities against multidrug resistant staphylococcal isolates and several clinically important pathogens, such as vancomycin-resistant enterococci (VRE) and Streptococcus pneumoniae. In addition, the compounds were superior to vancomycin in the rapid killing of MRSA and the longer post-antibiotic effects. Furthermore, low concentrations of compounds 3a, 3b, and 3e reduced the intracellular burden of MRSA by greater than 90%. Initial in vitro PK/toxicity assessments revealed that compound 3e was highly tolerable and possessed a low metabolic clearance rate and a highly acceptable half-life.
Collapse
Affiliation(s)
- Inas G Shahin
- Organic Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, 11787, Egypt
| | - Nader S Abutaleb
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Marwa Alhashimi
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Asmaa E Kassab
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Khaled O Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Azza T Taher
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Department of Pharmaceutical Organic Chemistry, College of Pharmacy, October 6 University, 6-October, Giza, Egypt
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, 47907, USA.
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al- Azhar University, Cairo, 11884, Egypt; University of Science and Technology, Nanoscience Program, Zewail City of Science and Technology, October Gardens, 6th October, Giza, 12578, Egypt.
| |
Collapse
|
30
|
Salama A, Hasanin M, Hesemann P. Synthesis and antimicrobial properties of new chitosan derivatives containing guanidinium groups. Carbohydr Polym 2020; 241:116363. [PMID: 32507164 DOI: 10.1016/j.carbpol.2020.116363] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
New chitosan derivatives bearing guanidinium functions were synthesized following different synthesis strategies. N-guanidinium chitosan acetate and N-guanidinium chitosan chloride were synthesized by direct reaction between chitosan and cyanamide in the presence of scandium(III) triflate. The synthesis of N-guanidinium chitosan (N,N'-dicyclohexyl) chloride and N-guanidinium chitosan (N-(3-dimethylaminopropyl)-N'-ethyl hydrochloride) chloride involved the reaction of chitosan with carbodiimides in ionic liquid. The chitosan derivatives were characterized by analytical techniques including 13C solid state NMR, FT-IR spectroscopies, thermogravimetry and elemental analysis. The antimicrobial properties of chitosan and the new derivatives were investigated using the minimal inhibitory concentration (MIC) technique. All new guanylated chitosan derivatives displayed high antimicrobial activity in comparison with neat chitosan. The N-guanidinium chitosan acetate reduced the time required for killing to half in comparison with chitosan and recorded MIC values less than 3.125 mg/mL against all assayed microorganisms. This work opens new perspectives for using chitosan derivatives as antimicrobial surfaces.
Collapse
Affiliation(s)
- Ahmed Salama
- Institut Charles Gerhardt de Montpellier, UMR CNRS 5253 Université de Montpellier-CNRS-ENSCM, Place Eugène Bataillon, 34095, Montpellier Cedex 05, France; Cellulose and Paper Department, National Research Center, 33 El-Behouth St., Dokki, P.O. 12622, Giza, Egypt.
| | - Mohamed Hasanin
- Cellulose and Paper Department, National Research Center, 33 El-Behouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Peter Hesemann
- Institut Charles Gerhardt de Montpellier, UMR CNRS 5253 Université de Montpellier-CNRS-ENSCM, Place Eugène Bataillon, 34095, Montpellier Cedex 05, France
| |
Collapse
|
31
|
Hasanin MS, Moustafa GO. New potential green, bioactive and antimicrobial nanocomposites based on cellulose and amino acid. Int J Biol Macromol 2020; 144:441-448. [DOI: 10.1016/j.ijbiomac.2019.12.133] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/15/2019] [Accepted: 12/15/2019] [Indexed: 12/16/2022]
|
32
|
Oxadiazolylthiazoles as novel and selective antifungal agents. Eur J Med Chem 2020; 189:112046. [PMID: 31962263 DOI: 10.1016/j.ejmech.2020.112046] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/20/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022]
Abstract
Studying the structure-activity relationships (SAR) of oxadiazolylthiazole antibiotics unexpectedly led us to identify ethylenediamine- and propylenediamine-analogs as potential antimycotic novel lead structures. Replacement of the ethylenediamine moiety for the lead compound 7 with cis-diaminocyclohexyl group (compound 18) significantly enhanced the antifungal activity. In addition to the high safety margin of 18 against mammalian cells, it showed highly selective broad-spectrum activity against fungal cells without inhibiting the human normal microbiota. The antifungal activity of 18 was investigated against 20 drug-resistant clinically important fungi, including Candida species, Cryptococcus, and Aspergillus fumigatus strains. In addition to the low MIC values that mostly ranged between 0.125 and 2.0 μg/mL, compound 18 outperformed fluconazole in disrupting mature Candida biofilm.
Collapse
|
33
|
Mancy A, Abutaleb NS, Elsebaei MM, Saad AY, Kotb A, Ali AO, Abdel-Aleem JA, Mohammad H, Seleem MN, Mayhoub AS. Balancing Physicochemical Properties of Phenylthiazole Compounds with Antibacterial Potency by Modifying the Lipophilic Side Chain. ACS Infect Dis 2020; 6:80-90. [PMID: 31718144 DOI: 10.1021/acsinfecdis.9b00211] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacterial resistance to antibiotics is presently one of the most pressing healthcare challenges and necessitates the discovery of new antibacterials with unique chemical scaffolds. However, the determination of the optimal balance between structural requirements for pharmacological action and pharmacokinetic properties of novel antibacterial compounds is a significant challenge in drug development. The incorporation of lipophilic moieties within a compound's core structure can enhance biological activity but have a deleterious effect on drug-like properties. In this Article, the lipophilicity of alkynylphenylthiazoles, previously identified as novel antibacterial agents, was reduced by introducing cyclic amines to the lipophilic side chain. In this regard, substitution with methylpiperidine (compounds 14-16) and thiomorpholine (compound 19) substituents significantly enhanced the aqueous solubility profile of the new compounds more than 150-fold compared to the first-generation lead compound 1b. Consequently, the pharmacokinetic profile of compound 15 was significantly enhanced with a notable improvement in both half-life and the time the compound's plasma concentration remained above its minimum inhibitory concentration (MIC) against methicillin-resistant Staphylococcus aureus (MRSA). In addition, compounds 14-16 and 19 were found to exert a bactericidal mode of action against MRSA and were not susceptible to resistance formation after 14 serial passages. Moreover, these compounds (at 2× MIC) were superior to the antibiotic vancomycin in the disruption of the mature MRSA biofilm. The modifications to the alkynylphenylthiazoles reported herein successfully improved the pharmacokinetic profile of this new series while maintaining the compounds' biological activity against MRSA.
Collapse
Affiliation(s)
- Ahmed Mancy
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, 1-Elmokhayem Eldaem Street, Cairo 11884, Egypt
| | - Nader S. Abutaleb
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Mohamed M. Elsebaei
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, 1-Elmokhayem Eldaem Street, Cairo 11884, Egypt
| | - Abdullah Y. Saad
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, 1-Elmokhayem Eldaem Street, Cairo 11884, Egypt
| | - Ahmed Kotb
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, 1-Elmokhayem Eldaem Street, Cairo 11884, Egypt
| | - Alsagher O. Ali
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, Indiana 47907, United States
- Division of Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Jelan A. Abdel-Aleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, Indiana 47907, United States
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Haroon Mohammad
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, Indiana 47907, United States
| | - Mohamed N. Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, Indiana 47907, United States
| | - Abdelrahman S. Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, 1-Elmokhayem Eldaem Street, Cairo 11884, Egypt
- University of Science and Technology, Nanoscience Program, Zewail City of Science and Technology, Ahmed Zewail Street, October Gardens, 6th of October, Giza 12578, Egypt
| |
Collapse
|
34
|
Hassan D, Omolo CA, Fasiku VO, Mocktar C, Govender T. Novel chitosan-based pH-responsive lipid-polymer hybrid nanovesicles (OLA-LPHVs) for delivery of vancomycin against methicillin-resistant Staphylococcus aureus infections. Int J Biol Macromol 2020; 147:385-398. [PMID: 31926237 DOI: 10.1016/j.ijbiomac.2020.01.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 10/25/2022]
Abstract
The development of novel materials is necessary for adequate delivery of drugs to combat the Methicillin-resistant Staphylococcus aureus (MRSA) burden due to the limitations of conventional methods and challenges associated with antimicrobial resistance. Hence, this study aimed to synthesise a novel oleylamine based zwitterionic lipid (OLA) and explore its potential to formulate chitosan-based pH-responsive lipid-polymer hybrid nanovesicles (VM-OLA-LPHVs1) to deliver VM against MRSA. The OLA was synthesised, and the structure characterised by 1H NMR, 13C NMR, FT-IR and HR-MS. The preliminary biocompatibility of OLA and VM-OLA-LPHVs1 was evaluated on HEK-293, A-549, MCF-7 and HepG-2 cell lines using in vitro cytotoxicity assay. The VM-OLA-LPHVs1 were formulated by ionic gelation method and characterised in order to determine the hydrodynamic diameter (DH), morphology in vitro and in vivo antibacterial efficacy. The result of the in vitro cytotoxicity study revealed cell viability of above 75% in all cell lines when exposed to OLA and VM-OLA-LPHVs1, thus indicating their biosafety. The VM-OLA-LPHVs1 had a DH, polydispersity index (PDI), and EE% of 198.0 ± 14.04 nm, 0.137 ± 0.02, and 45.61 ± 0.54% respectively at physiological pH, with surface-charge (ζ) switching from negative at pH 7.4 to positive at pH 6.0. The VM release from the VM-OLA-LPHVs1 was faster at pH 6.0 compared to physiological pH, with 97% release after 72-h. The VM-OLA-LPHVs1 had a lower minimum inhibitory concentration (MIC) value of 0.59 μg/mL at pH 6.0 compared to 2.39 μg/mL at pH 7.4, against MRSA with 52.9-fold antibacterial enhancement. The flow cytometry study revealed that VM-OLA-LPHVs1 had similar bactericidal efficacy on MRSA compared to bare VM, despite an 8-fold lower VM concentration in the nanovesicles. Additionally, fluorescence microscopy study showed the ability of the VM-OLA-LPHVs1 to eliminate biofilms. The electrical conductivity, and protein/DNA concentration, increased and decreased respectively, as compared to bare VM which indicated greater MRSA membrane damage. The in vivo studies in a BALB/c mouse-infected skin model treated with VM-OLA-LPHVs1 revealed 95-fold lower MRSA burden compared to the group treated with bare VM. These findings suggest that OLA can be used as an effective novel material for complexation with biodegradable polymer chitosan (CHs) to form pH-responsive VM-OLA-LPHVs1 nanovesicles which show greater potential for enhancement and improvement of treatment of bacterial infections.
Collapse
Affiliation(s)
- Daniel Hassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; United States International University-Africa, School of Pharmacy and Health Sciences, Department of Pharmaceutics, P. O. Box 14634-00800, Nairobi, Kenya.
| | - Victoria Oluwaseun Fasiku
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
35
|
Identification of a Phenylthiazole Small Molecule with Dual Antifungal and Antibiofilm Activity Against Candida albicans and Candida auris. Sci Rep 2019; 9:18941. [PMID: 31831822 PMCID: PMC6908612 DOI: 10.1038/s41598-019-55379-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
Candida species are a leading source of healthcare infections globally. The limited number of antifungal drugs combined with the isolation of Candida species, namely C. albicans and C. auris, exhibiting resistance to current antifungals necessitates the development of new therapeutics. The present study tested 85 synthetic phenylthiazole small molecules for antifungal activity against drug-resistant C. albicans. Compound 1 emerged as the most potent molecule, inhibiting growth of C. albicans and C. auris strains at concentrations ranging from 0.25–2 µg/mL. Additionally, compound 1 inhibited growth of other clinically-relevant yeast (Cryptococcus) and molds (Aspergillus) at a concentration as low as 0.50 µg/mL. Compound 1 exhibited rapid fungicidal activity, reducing the burden of C. albicans and C. auris below the limit of detection within 30 minutes. Compound 1 exhibited potent antibiofilm activity, similar to amphotericin B, reducing the metabolic activity of adherent C. albicans and C. auris biofilms by more than 66% and 50%, respectively. Furthermore, compound 1 prolonged survival of Caenorhabditis elegans infected with strains of C. albicans and C. auris, relative to the untreated control. The present study highlights phenylthiazole small molecules, such as compound 1, warrant further investigation as novel antifungal agents for drug-resistant Candida infections.
Collapse
|
36
|
Modifying the lipophilic part of phenylthiazole antibiotics to control their drug-likeness. Eur J Med Chem 2019; 185:111830. [PMID: 31718945 DOI: 10.1016/j.ejmech.2019.111830] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/13/2019] [Accepted: 10/28/2019] [Indexed: 02/01/2023]
Abstract
Compounds with high lipophilic properties are often associated with bad physicochemical properties, triggering many off-targets, and less likely to pass clinical trials. Two metabolically stable phenylthiazole antibiotic scaffolds having notable high lipophilic characters, one with alkoxy side chain and the other one with alkynyl moiety, were derivatized by inserting a cyclic amine at the lipophilic tail with the objective of improving physicochemical properties and the overall pharmacokinetic behavior. Only alkynyl derivatives with 4- or 5-membered rings showed remarkable antibacterial activity. The azetidine-containing compound 8 was the most effective and it revealed a potent antibacterial effect against 15 multi-drug resistant (MDR)-Gram positive pathogens including Staphylococcus aureus, Streptococcus pneumoniae, Staphylococcus epidermidis and enterococci. Compound 8 was also highly effective in clearing 99.7% of the intracellular methicillin-resistant S. aureus (MRSA) harbored inside macrophages. In addition to the remarkable enhancement in aqueous solubility, the in vivo pharmacokinetic study in rats indicated that compound 8 can penetrate gut cells and reach plasma at a therapeutic concentration within 15 min and maintain effective plasma concentration for around 12 h. Interestingly, the main potential metabolite (compound 9) was also active as an antibacterial agent with potent antibiofilm activity.
Collapse
|
37
|
Hannoun MH, Hagras M, Kotb A, El-Attar AAMM, Abulkhair HS. Synthesis and antibacterial evaluation of a novel library of 2-(thiazol-5-yl)-1,3,4-oxadiazole derivatives against methicillin-resistant Staphylococcus aureus (MRSA). Bioorg Chem 2019; 94:103364. [PMID: 31668461 DOI: 10.1016/j.bioorg.2019.103364] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 09/23/2019] [Accepted: 10/13/2019] [Indexed: 12/17/2022]
Abstract
Replacement of the n-butylphenyl moiety in the lipophilic part of the previously reported arylthiazole antibiotics with naphthyl ring amended its activity against vancomycin resistant strains of Staphylococcus aureus. Incorporation of the CN linker connecting the nitrogenous head with thiazole within an oxadiazole ring provided orally available analogs with relatively long half-life. In this article, a set of new twenty-three derivatives of 2-(thiazol-5-yl)-1,3,4-oxadiazole was synthesized combining both structural modifications in one new scaffold with the objectives of enhancing both the pharmacokinetic profile and antibacterial activities vs. malicious microbes. Among the synthesized new compounds, five derivatives showed promising activity with MIC values ranging from 1.95 to 3.90 μg/mL. The guanidinyl-containing naphthylthiazole and N-methylpiperazinyl derivatives (25 &29) were found equipotent as vancomycin against MRSA (2658 RCMB). The other three derivatives (23, 24 and 26) revealed 50% of vancomycin activity.
Collapse
Affiliation(s)
- Mohamed H Hannoun
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed Kotb
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Abdul-Aziz M M El-Attar
- Department of Pharmaceutical Analytical Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Hamada S Abulkhair
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt; Department of Pharmaceutical Chemistry, College of Pharmacy, Horus University - Egypt, New Damietta, Egypt.
| |
Collapse
|
38
|
Maji R, Omolo CA, Agrawal N, Maduray K, Hassan D, Mokhtar C, Mackhraj I, Govender T. pH-Responsive Lipid–Dendrimer Hybrid Nanoparticles: An Approach To Target and Eliminate Intracellular Pathogens. Mol Pharm 2019; 16:4594-4609. [DOI: 10.1021/acs.molpharmaceut.9b00713] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ruma Maji
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Calvin A. Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- School of Pharmacy and Health Sciences, United States International University of Africa, Nairobi, Kenya
| | - Nikhil Agrawal
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Kaminee Maduray
- Department of Physiology, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Daniel Hassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Chunderika Mokhtar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Irene Mackhraj
- Department of Physiology, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
39
|
Gatadi S, Madhavi YV, Chopra S, Nanduri S. Promising antibacterial agents against multidrug resistant Staphylococcus aureus. Bioorg Chem 2019; 92:103252. [PMID: 31518761 DOI: 10.1016/j.bioorg.2019.103252] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/10/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
Rapid emergence of multidrug resistant Staphylococcus aureus infections has created a critical health menace universally. Resistance to all the available chemotherapeutics has been on rise which led to WHO to stratify Staphylococcus aureus as high tier priorty II pathogen. Hence, discovery and development of new antibacterial agents with new mode of action is crucial to address the multidrug resistant Staphylococcus aureus infections. The egressing understanding of new antibacterials on their biological target provides opportunities for new therapeutic agents. This review underlines on various aspects of drug design, structure activity relationships (SARs) and mechanism of action of various new antibacterial agents and also covers the recent reports on new antibacterial agents with potent activity against multidrug resistant Staphylococcus aureus. This review provides attention on in vitro and in vivo pharmacological activities of new antibacterial agents in the point of view of drug discovery and development.
Collapse
Affiliation(s)
- Srikanth Gatadi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Y V Madhavi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Srinivas Nanduri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
40
|
Helal AM, Sayed AM, Omara M, Elsebaei MM, Mayhoub AS. Peptidoglycan pathways: there are still more! RSC Adv 2019; 9:28171-28185. [PMID: 35530449 PMCID: PMC9071014 DOI: 10.1039/c9ra04518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 08/22/2019] [Indexed: 11/21/2022] Open
Abstract
The discovery of 3rd and 4th generations of currently existing classes of antibiotics has not hindered bacterial resistance, which is escalating at an alarming global level. This review follows WHO recommendations through implementing new criteria for newly discovered antibiotics. These recommendations focus on abandoning old scaffolds and hitting new targets. In light of these recommendations, this review discusses seven bacterial proteins that no commercial antibiotics have targeted yet, alongside their reported chemical scaffolds.
Collapse
Affiliation(s)
- Ahmed M Helal
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
| | - Ahmed M Sayed
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
| | - Mariam Omara
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
| | - Mohamed M Elsebaei
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University Cairo 11884 Egypt
- University of Science and Technology, Zewail City of Science and Technology Giza Egypt
| |
Collapse
|
41
|
Hammad A, Abutaleb NS, Elsebaei MM, Norvil AB, Alswah M, Ali AO, Abdel-Aleem JA, Alattar A, Bayoumi SA, Gowher H, Seleem MN, Mayhoub AS. From Phenylthiazoles to Phenylpyrazoles: Broadening the Antibacterial Spectrum toward Carbapenem-Resistant Bacteria. J Med Chem 2019; 62:7998-8010. [PMID: 31369262 DOI: 10.1021/acs.jmedchem.9b00720] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The narrow antibacterial spectrum of phenylthiazole antibiotics was expanded by replacing central thiazole with a pyrazole ring while maintaining its other pharmacophoric features. The most promising derivative, compound 23, was more potent than vancomycin against multidrug-resistant Gram-positive clinical isolates, including vancomycin- and linezolid-resistant methicillin-resistant Staphylococcus aureus (MRSA), with a minimum inhibitory concentration (MIC) value as low as 0.5 μg/mL. Moreover, compound 23 was superior to imipenem and meropenem against highly pathogenic carbapenem-resistant strains, such as Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli. In addition to the notable biofilm inhibition activity, compound 23 outperformed both vancomycin and kanamycin in reducing the intracellular burden of both Gram-positive and Gram-negative pathogenic bacteria. Compound 23 cleared 90% of intracellular MRSA and 98% of Salmonella enteritidis at 2× the MIC. Moreover, preliminary pharmacokinetic investigations indicated that this class of novel antibacterial compounds is highly metabolically stable with a biological half-life of 10.5 h, suggesting a once-daily dosing regimen.
Collapse
Affiliation(s)
- Ali Hammad
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy , Al-Azhar University , Cairo 11884 , Egypt
| | | | - Mohamed M Elsebaei
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy , Al-Azhar University , Cairo 11884 , Egypt
| | | | - Mohamed Alswah
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy , Al-Azhar University , Cairo 11884 , Egypt
| | - Alsagher O Ali
- Division of Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine , South Valley University , Qena , 83523 , Egypt
| | - Jelan A Abdel-Aleem
- Department of Industrial Pharmacy, Faculty of Pharmacy , Assiut University , Assiut , 71515 , Egypt
| | - Abdelaziz Alattar
- Department of Analytical Chemistry, College of Pharmacy , Al-Azhar University , Cairo 11884 , Egypt
| | - Sammar A Bayoumi
- Department of Pharmaceutics, College of Pharmacy , Heliopolis University , Cairo , 11777 , Egypt
| | | | - Mohamed N Seleem
- Purdue Institute for Inflammation, Immunology, and Infectious Diseases , West Lafayette , Indiana 47907 , United States
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy , Al-Azhar University , Cairo 11884 , Egypt.,University of Science and Technology, Nanoscience Program , Zewail City of Science and Technology , October Gardens, 6th of October , Giza 12578 , Egypt
| |
Collapse
|
42
|
Elsebaei MM, Abutaleb NS, Mahgoub AA, Li D, Hagras M, Mohammad H, Seleem MN, Mayhoub AS. Phenylthiazoles with nitrogenous side chain: An approach to overcome molecular obesity. Eur J Med Chem 2019; 182:111593. [PMID: 31446245 DOI: 10.1016/j.ejmech.2019.111593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/11/2019] [Accepted: 08/05/2019] [Indexed: 02/01/2023]
Abstract
A novel series of phenylthiazoles bearing cyclic amines at the phenyl-4 position was prepared with the objective of decreasing lipophilicity and improving the overall physicochemical properties and pharmacokinetic profile of the compounds. Briefly, the piperidine ring (compounds 10 and 12) provided the best ring size in terms of antibacterial activity when tested against 16 multidrug-resistant clinical isolates. Both compounds were superior to vancomycin in the ability to eliminate methicillin-resistant Staphylococcus aureus (MRSA), residing within infected macrophages and to disrupt mature MRSA biofilm. Additionally, compounds 10 and 12 exhibited a fast-bactericidal mode of action in vitro. Furthermore, the new derivatives were 160-times more soluble in water than the previous lead compound 1b. Consequently, compound 10 was orally bioavailable with a highly-acceptable pharmacokinetic profile in vivo that exhibited a half-life of 4 h and achieved a maximum plasma concentration that exceeded the minimum inhibitory concentration (MIC) values against all tested bacterial isolates.
Collapse
Affiliation(s)
- Mohamed M Elsebaei
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Nader S Abutaleb
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Abdulrahman A Mahgoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Daoyi Li
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Haroon Mohammad
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, 47907, USA.
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt; University of Science and Technology, Nanoscience Program, Zewail City of Science and Technology, October Gardens, 6th of October, Giza, 12578, Egypt.
| |
Collapse
|
43
|
Elsebaei MM, Mohammad H, Samir A, Abutaleb NS, Norvil AB, Michie AR, Moustafa MM, Samy H, Gowher H, Seleem MN, Mayhoub AS. Lipophilic efficient phenylthiazoles with potent undecaprenyl pyrophosphatase inhibitory activity. Eur J Med Chem 2019; 175:49-62. [PMID: 31075608 DOI: 10.1016/j.ejmech.2019.04.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/26/2022]
Abstract
Antibiotic resistance remains a pressing medical challenge for which novel antibacterial agents are urgently needed. The phenylthiazole scaffold represents a promising platform to develop novel antibacterial agents for drug-resistant infections. However, enhancing the physicochemical profile of this class of compounds remains a challenging endeavor to address to successfully translate these molecules into novel antibacterial agents in the clinic. We extended our understanding of the SAR of the phenylthiazoles' lipophilic moiety by exploring its ability to accommodate a hydrophilic group or a smaller sized hetero-ring with the objective of enhancing the physicochemical properties of this class of novel antimicrobials. Overall, the 2-thienyl derivative 20 and the hydroxyl-containing derivative 31 emerged as the most promising antibacterial agents inhibiting growth of drug-resistant Staphylococcus aureus at a concentration as low as 1 μg/mL. Remarkably, compound 20 suppressed bacterial undecaprenyl pyrophosphatase (UppP), the molecular target of the phenylthiazole compounds, in a sub nano-molar concentration range (almost 20,000 times more potent than the lead compounds 1a and 1b). Compound 31 possessed the most balanced antibacterial and physicochemical profile. The compound exhibited rapid bactericidal activity against S. aureus, and successfully cleared intracellular S. aureus within infected macrophages. Furthermore, insertion of the hydroxyl group enhanced the aqueous solubility of 31 by more than 50-fold relative to the first-generation lead 1c.
Collapse
Affiliation(s)
- Mohamed M Elsebaei
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Haroon Mohammad
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Amgad Samir
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Nader S Abutaleb
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Allison B Norvil
- Department of Biochemistry, College of Agriculture, Purdue University, West Lafayette, IN, 47907, USA
| | - Amie R Michie
- Department of Biochemistry, College of Agriculture, Purdue University, West Lafayette, IN, 47907, USA
| | - Mahmoud M Moustafa
- Department of Pharmaceutical Chemistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Hebatallah Samy
- University of Science and Technology, Biomedical Sciences Program, Zewail City of Science and Technology, October Gardens, 6th of October, Giza, 12578, Egypt
| | - Humaira Gowher
- Department of Biochemistry, College of Agriculture, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, 47907, USA.
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt; University of Science and Technology, Nanoscience Program, Zewail City of Science and Technology, October Gardens, 6th of October, Giza, 12578, Egypt.
| |
Collapse
|
44
|
Hasanin M, El-Henawy A, Eisa WH, El-Saied H, Sameeh M. Nano-amino acid cellulose derivatives: Eco-synthesis, characterization, and antimicrobial properties. Int J Biol Macromol 2019; 132:963-969. [PMID: 30959131 DOI: 10.1016/j.ijbiomac.2019.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/31/2019] [Accepted: 04/03/2019] [Indexed: 01/26/2023]
Abstract
Nowadays the using of eco-systems to synthesize new materials is the promising issue. In this work, new eco-synthesis method was developed to prepare antimicrobial cellulosic-amino acid base ligand and complexes with copper. The complex was characterized via different instrumental analysis (Fourier transform infrared spectroscopy (FTIR), UV-vis, differential scanning calorimetry (DSC), dynamic light scattering (DLS), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX)) as well as two antimicrobial screening tools (minimal inhibition concentration (MIC) and time required for killing). The UV-vis spectroscopic data indicates the metal to-ligand charge transfer transitions which is consistent with square planar geometry. DLS and SEM approved that the complex particles are in nano-size. Prepared complex appeared highly antimicrobial activity against all tested microbial organisms which can be described as broad spectrum antimicrobial agent. Rapid killing kinetics was beneficial in helping to resolve an infection more rapidly.
Collapse
Affiliation(s)
- Mohamed Hasanin
- Cellulose & Paper Dept., National Research Centre, El-Buhouth St., Dokki 12622, Egypt.
| | - Ahmed El-Henawy
- Chemistry Dept., Faculty of Science, Al-Azhar University, Cairo, Egypt.
| | - Wael H Eisa
- Spectroscopy Dept., Physics Division, National Research Centre, Cairo, Egypt
| | - Housni El-Saied
- Cellulose & Paper Dept., National Research Centre, El-Buhouth St., Dokki 12622, Egypt
| | - Manal Sameeh
- Chemistry Dept., Faculty of Applied Sciences, Um El Qura University, Makkah, Saudi Arabia
| |
Collapse
|
45
|
Kotb A, Abutaleb NS, Hagras M, Bayoumi A, Moustafa MM, Ghiaty A, Seleem M, Mayhoub AS. tert-Butylphenylthiazoles with an oxadiazole linker: a novel orally bioavailable class of antibiotics exhibiting antibiofilm activity. RSC Adv 2019; 9:6770-6778. [PMID: 35518469 PMCID: PMC9061097 DOI: 10.1039/c8ra10525a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/16/2019] [Indexed: 02/03/2023] Open
Abstract
The structure–activity and structure–kinetic relationships of a new tert-butylphenylthiazole series with oxadiazole linkers were conducted with the objective of obtaining a new orally available antibacterial compounds. Twenty-two new compounds were prepared, purified and identified. Their activity against methicillin-resistant Staphylococcus aureus were examined. Compound 20 with 3-hydroxyazetidine as a nitrogenous side chain showed promising activity against twenty-four clinical isolates, including vancomycin-resistant staphylococcal and enterococcal species with MIC values ranging from 4–8 μg mL−1. Additional advantages of this compound include an ability to eradicate staphylococcal biofilm mass in a dose-dependent manner as well as high metabolic stability after an oral dose of 25 mg kg−1 with a biological half-life that exceeds 5 hours and a plasma concentration (Cmax) that exceeds the MIC values. The structure–activity and structure–kinetic relationships of a new tert-butylphenylthiazole series with oxadiazole linkers were conducted with the objective of obtaining a new orally available antibacterial compounds.![]()
Collapse
Affiliation(s)
- Ahmed Kotb
- Department of Pharmaceutical Organic Chemistry
- College of Pharmacy
- Al-Azhar University
- Cairo 11884
- Egypt
| | - Nader S. Abutaleb
- Department of Comparative Pathobiology
- College of Veterinary Medicine
- Purdue University
- West Lafayette
- USA 47907
| | - Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry
- College of Pharmacy
- Al-Azhar University
- Cairo 11884
- Egypt
| | - Ashraf Bayoumi
- Department of Pharmaceutical Organic Chemistry
- College of Pharmacy
- Al-Azhar University
- Cairo 11884
- Egypt
| | - Mahmoud M. Moustafa
- Department of Pharmaceutical Chemistry
- Imam Abdulrahman Bin Faisal University
- Dammam 31441
- Saudi Arabia
| | - Adel Ghiaty
- Department of Pharmaceutical Organic Chemistry
- College of Pharmacy
- Al-Azhar University
- Cairo 11884
- Egypt
| | - Mohamed N. Seleem
- Department of Comparative Pathobiology
- College of Veterinary Medicine
- Purdue University
- West Lafayette
- USA 47907
| | - Abdelrahman S. Mayhoub
- Department of Pharmaceutical Organic Chemistry
- College of Pharmacy
- Al-Azhar University
- Cairo 11884
- Egypt
| |
Collapse
|
46
|
Hagras M, Abutaleb NS, Ali AO, Abdel-Aleem JA, Elsebaei MM, Seleem MN, Mayhoub AS. Naphthylthiazoles: Targeting Multidrug-Resistant and Intracellular Staphylococcus aureus with Biofilm Disruption Activity. ACS Infect Dis 2018; 4:1679-1691. [PMID: 30247876 DOI: 10.1021/acsinfecdis.8b00172] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Thirty-two new naphthylthiazole derivatives were synthesized with the aim of exploring their antimicrobial effect on multidrug-resistant Gram-positive bacteria. Compounds 25 and 32, with ethylenediamine and methylguanidine side chains, represent the most promising derivatives, as their antibacterial spectrum includes activity against multidrug-resistant staphylococcal and enterococcal strains. Moreover, the new derivatives are highly advantageous over the existing frontline therapeutics for the treatment of multidrug-resistant Gram-positive bacteria. In this vein, compound 25 possesses three attributes: no bacterial resistance was developed against it even after 15 passages, it was very efficient in targeting intracellular pathogens, and it exhibited a concentration-dependent ability to disrupt the preformed bacterial biofilm.
Collapse
Affiliation(s)
- Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, 1-Elmokhaiam Eldaem Street, Cairo 11884, Egypt
| | - Nader S. Abutaleb
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, Indiana 47907, United States
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Alsagher O. Ali
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, Indiana 47907, United States
- Division of Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Jelan A. Abdel-Aleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, Indiana 47907, United States
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71515, Egypt
| | - Mohamed M. Elsebaei
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, 1-Elmokhaiam Eldaem Street, Cairo 11884, Egypt
| | - Mohamed N. Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Abdelrahman S. Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, 1-Elmokhaiam Eldaem Street, Cairo 11884, Egypt
- University of
Science and Technology, Zewail City of Science and Technology, Ahmed Zewail Road, October Gardens, Giza, 12578, Egypt
| |
Collapse
|
47
|
Yi Y, Fu Y, Wang K, Shui Y, Cai J, Jia Z, Niu B, Liang J, Shang R. Synthesis and antibacterial activities of novel pleuromutilin derivatives. Arch Pharm (Weinheim) 2018; 351:e1800155. [PMID: 30058185 DOI: 10.1002/ardp.201800155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 11/05/2022]
Abstract
Pleuromutilin derivatives 4a-h, 5a-g, and 6a-d were synthesized and characterized by IR, 1 H NMR, and 13 C NMR. All synthetic compounds were screened for their in vitro antibacterial activity against Staphylococcus aureus (ATCC 25923), methicillin-resistant S. aureus (MRSA, ATCC 43300), Pasteurella multocida (CVCC 408), Escherichia coli (ATCC 25922), and Salmonella typhimurium (ATCC 14028). Most compounds with quaternary amine showed higher antibacterial activities against both Gram-positive and Gram-negative bacteria strains. Among the screened compounds, compound 5a bearing an N,N,N-trimethyl group at the C-14 side chain of pleuromutilin was found to be the most active agent. Furthermore, preliminary molecular docking was performed to predict the binding interaction of the compounds in the binding pocket.
Collapse
Affiliation(s)
- Yunpeng Yi
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Yunxing Fu
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Keli Wang
- Shangdong Qilu King-Phar Pharmaceutical Co., Ltd., Jinan, China
| | | | - Jing Cai
- Lanzhou Pulmonary Hospital, Lanzhou, China
| | - Zhong Jia
- Lanzhou Pulmonary Hospital, Lanzhou, China
| | - Biao Niu
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Jianping Liang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Ruofeng Shang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| |
Collapse
|
48
|
ElAwamy M, Mohammad H, Hussien A, Abutaleb NS, Hagras M, Serya RA, Taher AT, Abouzid KAM, Seleem MN, Mayhoub AS. Alkoxyphenylthiazoles with broad-spectrum activity against multidrug-resistant gram-positive bacterial pathogens. Eur J Med Chem 2018; 152:318-328. [DOI: 10.1016/j.ejmech.2018.04.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/11/2018] [Accepted: 04/23/2018] [Indexed: 11/30/2022]
|
49
|
Elsebaei MM, Mohammad H, Abouf M, Abutaleb NS, Hegazy YA, Ghiaty A, Chen L, Zhang J, Malwal SR, Oldfield E, Seleem MN, Mayhoub AS. Alkynyl-containing phenylthiazoles: Systemically active antibacterial agents effective against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Med Chem 2018; 148:195-209. [PMID: 29459278 DOI: 10.1016/j.ejmech.2018.02.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 11/29/2022]
Abstract
The promising activity of phenylthiazoles against multidrug-resistant bacterial pathogens, in particular MRSA, has been hampered by their limited systemic applicability, due to their rapid metabolism by hepatic microsomal enzymes, resulting in short half-lives. Here, we investigated a series of phenylthiazoles with alkynyl side-chains that were synthesized with the objective of improving stability to hepatic metabolism, extending the utility of phenylthiazoles from topical applications to treatment of a more invasive, systemic MRSA infections. The most promising compounds inhibited the growth of clinically-relevant isolates of MRSA in vitro at concentrations as low as 0.5 μg/mL, and exerted their antibacterial effect by interfering with bacterial cell wall synthesis via inhibition of undecaprenyl diphosphate synthase and undecaprenyl diphosphate phosphatase. We also identified two phenylthiazoles that successfully eradicated MRSA inside infected macrophages. In vivo PK analysis of compound 9 revealed promising stability to hepatic metabolism with a biological half-life of ∼4.5 h. In mice, compound 9 demonstrated comparable potency to vancomycin, and at a lower dose (20 mg/kg versus 50 mg/kg), in reducing the burden of MRSA in a systemic, deep-tissue infection, using the neutropenic mouse thigh-infection model. Compound 9 thus represents a new phenylthiazole lead for the treatment of MRSA infections that warrants further development.
Collapse
Affiliation(s)
- Mohamed M Elsebaei
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Haroon Mohammad
- Department of Comparative Pathobiology, Purdue University, College of Veterinary Medicine, West Lafayette, IN 47907, United States
| | - Mohamed Abouf
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Nader S Abutaleb
- Department of Comparative Pathobiology, Purdue University, College of Veterinary Medicine, West Lafayette, IN 47907, United States
| | - Youssef A Hegazy
- Department of Comparative Pathobiology, Purdue University, College of Veterinary Medicine, West Lafayette, IN 47907, United States
| | - Adel Ghiaty
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Lu Chen
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Jianan Zhang
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Satish R Malwal
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Eric Oldfield
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University, College of Veterinary Medicine, West Lafayette, IN 47907, United States; Purdue Institute for Inflammation, Immunology, and Infectious Diseases, West Lafayette, IN 479067, United States.
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.
| |
Collapse
|