1
|
Gan X, Wu Y, Zhu M, Liu B, Kong M, Xi Z, Li K, Wang H, Su T, Yao J, Khushafah F, Yi B, Wang J, Li W, Wu J. Design, synthesis, and evaluation of cyclic C7-bridged monocarbonyl curcumin analogs containing an o-methoxy phenyl group as potential agents against gastric cancer. J Enzyme Inhib Med Chem 2024; 39:2314233. [PMID: 38385332 PMCID: PMC10885745 DOI: 10.1080/14756366.2024.2314233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/02/2024] [Indexed: 02/23/2024] Open
Abstract
The structure-activity relationship (SAR) between toxicity and the types of linking ketones of C7 bridged monocarbonyl curcumin analogs (MCAs) was not clear yet. In the pursuit of effective and less cytotoxic chemotherapeutics, we conducted a SAR analysis using various diketene skeletons of C7-bridged MCAs, synthesized cyclic C7-bridged MCAs containing the identified low-toxicity cyclopentanone scaffold and an o-methoxy phenyl group, and assessed their anti-gastric cancer activity and safety profile. Most compounds exhibited potent cytotoxic activities against gastric cancer cells. We developed a quantitative structure-activity relationship model (R2 > 0.82) by random Forest method, providing important information for optimizing structure. An optimized compound 2 exhibited in vitro and in vivo anti-gastric cancer activity partly through inhibiting the AKT and STAT3 pathways, and displayed a favorable in vivo safety profile. In summary, this paper provided a promising class of MCAs and a potential compound for the development of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Xin Gan
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuna Wu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| | - Min Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bo Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Miaomiao Kong
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zixuan Xi
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ke Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haibao Wang
- Municipal Hospital Affiliated to Taizhou University, Taizhou, China
| | - Tiande Su
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiali Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fatehi Khushafah
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Baozhu Yi
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, China
| | - Jiabing Wang
- Municipal Hospital Affiliated to Taizhou University, Taizhou, China
| | - Wulan Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianzhang Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
He W, Huang Z, Nian C, Huang L, Kong M, Liao M, Zhang Q, Li W, Hu Y, Wu J. Discovery and evaluation of novel spiroheterocyclic protective agents via a SIRT1 upregulation mechanism in cisplatin-induced premature ovarian failure. Bioorg Med Chem 2024; 110:117834. [PMID: 39029436 DOI: 10.1016/j.bmc.2024.117834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Currently, no effective treatment exists for premature ovarian failure (POF). To obtain compounds with protective effects against POF, we aimed to design and synthesize a series of spiroheterocyclic protective agents with a focus on minimizing toxicity while enhancing their protective effect against cisplatin-induced POF. This was achieved through systematic modifications of Michael receptors and linkers within the molecular structure of 1,5-diphenylpenta-1,4-dien-3-one analogs. To assess the cytotoxicity and activity of these compounds, we constructed quantitative conformational relationship models using an artificial intelligence random forest algorithm, resulting in R2 values exceeding 0.87. Among these compounds, j2 exhibited optimal protective activity. It significantly increased the survival of cisplatin-injured ovarian granulosa KGN cells, improved post-injury cell morphology, reduced apoptosis, and enhanced cellular estradiol (E2) levels. Subsequent investigations revealed that j2 may exert its protective effect via a novel mechanism involving the activation of the SIRT1/AKT signal pathway. Furthermore, in cisplatin-injured POF in rats, j2 was effective in increasing body, ovarian, and uterine weights, elevating the number of follicles at all levels in the ovary, improving ovarian and uterine structures, and increasing serum E2 levels in rats with cisplatin-injured POF. In conclusion, this study introduces a promising compound j2 and a novel target SIRT1 with substantial protective activity against cisplatin-induced POF.
Collapse
Affiliation(s)
- Wenfei He
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China.
| | - Zhicheng Huang
- School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China; Department of Pharmacy, Ezhou Central Hospital, Ezhou, Hubei 436000, China
| | - Chunhui Nian
- School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China
| | - Luoqi Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Miaomiao Kong
- The 1th Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Mengqin Liao
- School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China
| | - Qiong Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wulan Li
- The 1th Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yue Hu
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Jianzhang Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang 325000, China; The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University; Wenzhou 325027, China.
| |
Collapse
|
3
|
Chen X, Zhang P, Zhang H, Ma X, Zhang Y, Wu Y, Jin K, Wang J, Wu J. Discovery of cinnamylaldehyde-derived mono-carbonyl curcumin analogs as anti-gastric cancer agents via suppression of STAT3 and AKT pathway. Bioorg Chem 2024; 146:107306. [PMID: 38531150 DOI: 10.1016/j.bioorg.2024.107306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
The structural modification of curcumin has always been a hotspot in drug development. In this paper, a class of cinnamylaldehyde-derived mono-carbonyl curcumin analogs (MCAs) with 7-carbon-links were designed and synthesized and their anticancer properties were evaluated. Through screening anti-gastric cancer activity of these compounds, H1 exhibited the strongest cytotoxic activity by inhibiting cell viability and colony formation, inducing cell cycle G2/M phase arrest in vitro (SGC-7901 and AGS gastric cancer cells). Moreover, the SGC-7901 subcutaneous tumor-bearing mice studies revealed that H1 significantly inhibited the tumor growth of gastric cancer. We explored the possible potential targets of H1 through network pharmacology. Mechanistically, our results demonstrated that H1 showed potential anti-gastric cancer activity through suppression of the STAT3 and AKT signaling pathway in vitro and in vivo, which was validated by molecular docking. Overall, our results indicate the potential of H1 as a potent chemotherapeutic drug against gastric cancer.
Collapse
Affiliation(s)
- Xi Chen
- School of Medicine, Taizhou University, Taizhou Zhejiang, 318000, China
| | - Peiqin Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou Zhejiang, 325000, China
| | - Huating Zhang
- School of Medicine, Taizhou University, Taizhou Zhejiang, 318000, China
| | - Xueqiang Ma
- Municipal Hospital Affiliated to Taizhou University, Taizhou 318000, Zhejiang, China
| | - Ye Zhang
- School of Medicine, Taizhou University, Taizhou Zhejiang, 318000, China
| | - Yajie Wu
- School of Medicine, Taizhou University, Taizhou Zhejiang, 318000, China
| | - Kaiwen Jin
- School of Medicine, Taizhou University, Taizhou Zhejiang, 318000, China
| | - Jiabing Wang
- Municipal Hospital Affiliated to Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Jianzhang Wu
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325000, Zhejiang, China
| |
Collapse
|
4
|
Jia J, Jiao W, Wang G, Wu J, Huang Z, Zhang Y. Drugs/agents for the treatment of ischemic stroke: Advances and perspectives. Med Res Rev 2024; 44:975-1012. [PMID: 38126568 DOI: 10.1002/med.22009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Ischemic stroke (IS) poses a significant threat to global human health and life. In recent decades, we have witnessed unprecedented progresses against IS, including thrombolysis, thrombectomy, and a few medicines that can assist in reopening the blocked brain vessels or serve as standalone treatments for patients who are not eligible for thrombolysis/thrombectomy therapies. However, the narrow time windows of thrombolysis/thrombectomy, coupled with the risk of hemorrhagic transformation, as well as the lack of highly effective and safe medications, continue to present big challenges in the acute treatment and long-term recovery of IS. In the past 3 years, several excellent articles have reviewed pathophysiology of IS and therapeutic medicines for the treatment of IS based on the pathophysiology. Regretfully, there is no comprehensive overview to summarize all categories of anti-IS drugs/agents designed and synthesized based on molecular mechanisms of IS pathophysiology. From medicinal chemistry view of point, this article reviews a multitude of anti-IS drugs/agents, including small molecule compounds, natural products, peptides, and others, which have been developed based on the molecular mechanism of IS pathophysiology, such as excitotoxicity, oxidative/nitrosative stresses, cell death pathways, and neuroinflammation, and so forth. In addition, several emerging medicines and strategies, including nanomedicines, stem cell therapy and noncoding RNAs, which recently appeared for the treatment of IS, are shortly introduced. Finally, the perspectives on the associated challenges and future directions of anti-IS drugs/agents are briefly provided to move the field forward.
Collapse
Affiliation(s)
- Jian Jia
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Weijie Jiao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Guan Wang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Qi Y, Liu G, Fang C, Jing C, Tang S, Li G, Wang C, Zhu H, Zhao M, Sun Z, Wu J, Yan P. Antioxidant and Neuroprotective Xenicane Diterpenes from the Brown Alga Dictyota coriacea. ACS OMEGA 2023; 8:8034-8044. [PMID: 36872965 PMCID: PMC9979362 DOI: 10.1021/acsomega.2c07891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Five new xenicane diterpenes, including three rare nitrogen-containing derivatives, dictyolactams A (1) and B (2) and 9-demethoxy-9-ethoxyjoalin (3), a rare diterpene with a cyclobutanone moiety, named 4-hydroxyisoacetylcoriacenone (4), and 19-O-acetyldictyodiol (5), were isolated from an East China Sea collection of the brown alga Dictyota coriacea, along with 15 known analogues (6-20). The structures of the new diterpenes were elucidated by spectroscopic analyses and theoretical ECD calculations. All compounds had cytoprotective effects against oxidative stress in neuron-like PC12 cells. The antioxidant mechanism of 18-acetoxy-6,7-epoxy-4-hydroxydictyo-19-al (6) was related to the activation of Nrf2/ARE signaling pathway; it also showed significant neuroprotective effects against cerebral ischemia-reperfusion injury (CIRI) in vivo. This study provided xenicane diterpene as a promising lead scaffold for the development of potent neuroprotective agents against CIRI.
Collapse
Affiliation(s)
- Yu Qi
- School
of Pharmaceutical Sciences, Wenzhou Medical
University, Wenzhou, Zhejiang 325035, People’s Republic of China
| | - Ge Liu
- School
of Pharmaceutical Sciences, Wenzhou Medical
University, Wenzhou, Zhejiang 325035, People’s Republic of China
| | - Chengyan Fang
- Department
of Pharmacy, Shaoxing Hospital of Traditional
Chinese Medicine, Shaoxing, Zhejiang 312000, People’s Republic of China
| | - Chengcheng Jing
- School
of Pharmaceutical Sciences, Wenzhou Medical
University, Wenzhou, Zhejiang 325035, People’s Republic of China
| | - Shuhua Tang
- School
of Pharmaceutical Sciences, Wenzhou Medical
University, Wenzhou, Zhejiang 325035, People’s Republic of China
| | - Ge Li
- School
of Pharmaceutical Sciences, Wenzhou Medical
University, Wenzhou, Zhejiang 325035, People’s Republic of China
| | - Chaojie Wang
- School
of Pharmaceutical Sciences, Wenzhou Medical
University, Wenzhou, Zhejiang 325035, People’s Republic of China
| | - Haoru Zhu
- School
of Pharmaceutical Sciences, Wenzhou Medical
University, Wenzhou, Zhejiang 325035, People’s Republic of China
| | - Min Zhao
- School
of Pharmaceutical Sciences, Wenzhou Medical
University, Wenzhou, Zhejiang 325035, People’s Republic of China
| | - Zhongmin Sun
- Institute
of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People’s Republic of China
| | - Jianzhang Wu
- School
of Pharmaceutical Sciences, Wenzhou Medical
University, Wenzhou, Zhejiang 325035, People’s Republic of China
- The
Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, People’s Republic of China
- Oujiang
Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain
Health), Wenzhou, Zhejiang 325000, People’s Republic of China
| | - Pengcheng Yan
- School
of Pharmaceutical Sciences, Wenzhou Medical
University, Wenzhou, Zhejiang 325035, People’s Republic of China
| |
Collapse
|
6
|
Shen M, Zheng Y, Li G, Chen Y, Huang L, Wu J, Hong C. Dual Antioxidant DH-217 Mitigated Cerebral Ischemia-Reperfusion Injury by Targeting IKKβ/Nrf2/HO-1 Signal Axis. Neurochem Res 2023; 48:579-590. [PMID: 36243818 DOI: 10.1007/s11064-022-03783-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/10/2022] [Accepted: 10/01/2022] [Indexed: 02/04/2023]
Abstract
Antioxidants represent a potential therapy for cerebral ischemia-reperfusion injury (CIRI). Compounds which exhibit both direct and indirect antioxidative activity may potentially exert improved effects. Hence, we aimed to assess whether the dual antioxidant DH-217, a derivative of DHAP clinically used to treat coronary heart disease, can reduce oxidative stress damage and elucidate the underlying mechanism. Hydrogen peroxide (H2O2)-induced and Middle Cerebral Artery Occlusion (MCAO)-induced damages were used to imitate oxidative stress. The antioxidation of DH-217 was determined by MTT, ROS, colony and DPPH assay. Besides, immunofluorescence, Real-Time PCR Analyses, western blotting and si-RNA/Plasmid-induced protein expression were used for mechanism validation. DPPH scavenging assay evidenced DH-217 was a well free radical scavenger. Cell survival assay also showed that DH-217 had a significant cytoprotection through direct and indirect clearance mechanisms. Further, it clearly inhibited oxidative stress-induced IkappaB kinase beta (IKKβ) phosphorylation and increased heme oxygenase-1 (HO-1) expression. Significantly, these antioxidant beneficial effects were reversed by HO-1 inhibitor, si-nuclear erythroid 2-related factor 2 (Nrf2) and IKKβ plasmid. Meanwhile, DH-217 had a good neuroprotective effect on CIRI rats. The dual antioxidant DH-217 has potential reference value for drug development of CIRI. Furthermore, inhibition of IKKβ phosphorylation and activation of Nrf2/HO-1 could be a promising antioxidant pathway. Dual antioxidant DH-217 not only has the ability of directly scavenging ROS, but also can clear it by targeting IKKβ/Nrf2/HO-1 signal axis. Inhibition of IKKβ phosphorylation and activation of Nrf2/HO-1 may be a promising antioxidant pathway for CIRI.
Collapse
Affiliation(s)
- Mengya Shen
- The Eye Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yuantie Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.,The Second Affiliated Hospital, Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Ge Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yinqi Chen
- The Eye Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lili Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China. .,Lihuili Hospital Affiliated to Ningbo University, Ningbo, 315100, Zhejiang, China.
| | - Jianzhang Wu
- The Eye Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China. .,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Chenglv Hong
- Department of Cardiovascular, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
7
|
Role of Nrf2 in aging, Alzheimer's and other neurodegenerative diseases. Ageing Res Rev 2022; 82:101756. [PMID: 36243357 DOI: 10.1016/j.arr.2022.101756] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/14/2022] [Accepted: 10/09/2022] [Indexed: 01/31/2023]
Abstract
Nuclear Factor-Erythroid Factor 2 (Nrf2) is an important transcription factor that regulates the expression of large number of genes in healthy and disease states. Nrf2 is made up of 605 amino acids and contains 7 conserved regions known as Nrf2-ECH homology domains. Nrf2 regulates the expression of several key components of oxidative stress, mitochondrial biogenesis, mitophagy, autophagy and mitochondrial function in all organs of the human body, in the peripheral and central nervous systems. Mounting evidence also suggests that altered expression of Nrf2 is largely involved in aging, neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's diseases, Amyotrophic lateral sclerosis, Stroke, Multiple sclerosis and others. The purpose of this article is to detail the essential role of Nrf2 in oxidative stress, antioxidative defense, detoxification, inflammatory responses, transcription factors, proteasomal and autophagic/mitophagic degradation, and metabolism in aging and neurodegenerative diseases. This article also highlights the Nrf2 structural and functional activities in healthy and disease states, and also discusses the current status of Nrf2 research and therapeutic strategies to treat aging and neurodegenerative diseases.
Collapse
|
8
|
Lao Y, Huang P, Chen J, Wang Y, Su R, Shao W, Hu W, Zhang J. Discovery of 1,2,4-triazole derivatives as novel neuroprotectants against cerebral ischemic injury by activating antioxidant response element. Bioorg Chem 2022; 128:106096. [PMID: 35985158 DOI: 10.1016/j.bioorg.2022.106096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/02/2022]
Abstract
Acute ischemic stroke is an important cause of death and long-term disability worldwide. In this work, we have synthesized a series of derivatives with 3,5‑diaryl substituent triazole scaffolds. The derivatives showed favorable protective effective in SNP-induced oxidative stress model, of which compound 5 was the most active. In vivo experiments showed that compound 5 could ameliorate neurological deficits, attenuate infarction sizes, reduce malonaldehyde (MDA) level and increase superoxide dismutase (SOD) level in middle cerebral artery occlusion (MCAO) rats. Preliminary safety evaluation showed that compound 5 exhibited low acute toxicity in BALB/c mice (LD50 greater than 1000 mg/kg). Further investigation indicated that compound 5 was able to scavenge ROS, restore mitochondrial membrane potential and protect PC12 cells from SNP-induced apoptosis. Moreover, compound 5 could initiate transcription of antioxidant response element (ARE) and induced expressions of antioxidative enzymes. Collectively, compound 5 might have the potency of treating acute ischemic stroke.
Collapse
Affiliation(s)
- Yaoqiang Lao
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Ping Huang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jianwen Chen
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yang Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Ruiqi Su
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Weiyan Shao
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Wenhao Hu
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jingxia Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
9
|
Lao Y, Wang Y, Chen J, Huang P, Su R, Shi J, Jiang C, Zhang J. Synthesis and biological evaluation of 1,2,4-triazole derivatives as potential Nrf2 activators for the treatment of cerebral ischemic injury. Eur J Med Chem 2022; 236:114315. [PMID: 35390713 DOI: 10.1016/j.ejmech.2022.114315] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 12/15/2022]
Abstract
Acute ischemic stroke is a leading cause of disability and death. The development of neuroprotectants is an emerging strategy for the treatment of ischemic stroke. In this work, we designed and synthesized a series of 1,3,5-triaryl substituent triazole derivatives by introducing a phenolic group and phenyl ring to 3,5-diaryl substituents oxadiazole. Structure-activity relationship (SAR) analysis showed that compounds with alkyl groups or with substituents at the 3-position possessed better protective effects. Among the derivatives, 3,5-dimethyl substituted compound 24 exhibited the best neuroprotective effect with weak cytotoxicity. Compound 24 possessed a high plasma protein binding rate, moderate hERG inhibition, low acute toxicity, and suitable pharmacokinetic properties. In vivo experiments demonstrated that compound 24 exerted a protective effect by reducing cerebral infarction size, improving neurological behavior, and restoring redox balance in middle cerebral artery occlusion rats. Further investigation indicated that compound 24 exerted a protective effect against sodium nitroprusside (SNP) induced cell damage by scavenging intracellular reactive oxygen species and restoring mitochondrial membrane potential. Moreover, compound 24 induced the nuclear translocation of Nuclear factor erythroid 2-related factor (Nrf2) and promoted the generation of antioxidative proteins, including Heme oxygenase-1 (HO-1), NAD(P)H quinone dehydrogenase (NQO1), and glutamate-cysteine ligase catalytic (GCLC). Surface plasmon resonance (SPR) experiments indicated that compound 24 might activate the Nrf2 signaling pathway by interacting with the Keap1 Kelch domain. Taken together, these facts indicate that compound 24 might have potential in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yaoqiang Lao
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yang Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jianwen Chen
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Ping Huang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Ruiqi Su
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jinguo Shi
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Caibao Jiang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jingxia Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
10
|
Wang M, Yu J, Yang Q, Guo C, Zhang W, Li W, Weng Y, Ding Y, Wang J. Beta-Boswellic Acid Protects Against Cerebral Ischemia/Reperfusion Injury via the Protein Kinase C Epsilon/Nuclear Factor Erythroid 2-like 2/Heme Oxygenase-1 Pathway. Mol Neurobiol 2022; 59:4242-4256. [PMID: 35505050 DOI: 10.1007/s12035-022-02848-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/23/2022] [Indexed: 12/25/2022]
Abstract
Ischemic strokes are associated with a high rate of disability and death globally. Cerebral ischemia/reperfusion (I/R) injury is a type of brain damage associated with oxidative stress after an ischemic stroke. Beta-boswellic acid (β-BA) reportedly exerts antioxidant and neuroprotective effects, but its role in cerebral I/R injury is unclear. The aim of this research was to investigate the neuroprotective effects, as well as the mechanisms of β-BA in cerebral I/R injury. In vivo experiments were conducted using a rat middle cerebral artery occlusion and reperfusion (MCAO/R) model, and in vitro experiments were performed using a rat neuronal oxygen-glucose deprivation and reoxygenation (OGD/R) model. Triphenyltetrazolium chloride staining, neurological function scores, terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling, hematoxylin and eosin staining, and antioxidant levels in the brain were used to assess the effects of β-BA. Flow cytometry was used to detect reactive oxygen species and apoptotic cells. Western blotting and immunofluorescence staining were used to measure protein levels. The results showed that β-BA markedly improved neurological deficits and decreased infarct volume and necrotic neurons in rats. The in vitro results showed that β-BA protected neurons against OGD/R-induced injury. Additionally, β-BA significantly increased the phosphorylation of protein kinase C epsilon (PRKCE) at S729, the translocation of nuclear factor erythroid 2-like 2 (NFE2L2), and expression of heme oxygenase-1 (HMOX1). This study demonstrates that β-BA exerts neuroprotective effects against cerebral I/R via the activation of the PRKCE/NFE2L2/HMOX1 pathway and is a potential therapeutic candidate for ischemic stroke.
Collapse
Affiliation(s)
- Mingming Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jiaoyan Yu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Qi Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Weiwei Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yan Weng
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
11
|
Du S, Jin F, Li J, Ma X, Wang H, Qian S. Design, synthesis and biological evaluation of indoline derivatives as multifunctional agents for the treatment of ischemic stroke. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02875-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
A novel nordihydroguaiaretic acid analog, compound 3a, alleviates acute lung injury by exerting antiapoptotic and antiinflammatory effects. Eur J Pharmacol 2022; 919:174777. [DOI: 10.1016/j.ejphar.2022.174777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022]
|
13
|
Macena JC, Renzi DF, Grigoletto DF. Chemical and biological properties of nordihydroguaiaretic acid. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Fan S, Liu X, Wang Y, Ren X, Liu Y, Dong Y, Fan Q, Wei J, Ma J, Yu A, Song R, Sui H, Shen M, Fang F, Xia Q, She G. Thymus quinquecostatus Celak. ameliorates cerebral ischemia-reperfusion injury via dual antioxidant actions: Activating Keap1/Nrf2/HO-1 signaling pathway and directly scavenging ROS. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153673. [PMID: 34416627 DOI: 10.1016/j.phymed.2021.153673] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 06/08/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Thymus quinquecostatus Celak. has been widely used as a spice and a folk medicine for relieving exterior syndrome and alleviating pain in China. PURPOSE To explore the protective effects and the underlying mechanism against cerebral ischemia-reperfusion injury (CIRI) of the T. quinquecostatus combining with its chemical composition. STUDY DESIGN AND METHODS High-polar extract (HPE) was extracted from T. quinquecostatus and polyphenols in HPE were enriched to obtain polyphenol-rich fraction (PRF) using Macroporous resin. The free radicals and zebrafish embryos were used to compare the antioxidant activities of HPE and PRF in vitro and in vivo. Then, the transient middle cerebral artery occlusion (tMCAO) model was established in rats. Neurological deficit score, infarction rate, morphology and apoptosis of neurons were examined to investigate the protective effects of PRF on CIRI. The mRNA and protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and hemeoxygenase-1 (HO-1) and the activities of downstream antioxidant enzymes in ischemia tissues were determined to clarify the underlying mechanisms. Also, reactive oxygen species (ROS) level in zebrafish embryos were detected after incubation with PRF for a short time (2 h) to investigate whether PRF could directly eliminate free radicals. Finally, chemical composition of PRF were analyzed to investigate the material basis for antioxidant activity and anti-CIRI effect. RESULTS Compared with HPE, PRF showed stronger antioxidant activities. PRF exhibited obvious protective effects including ameliorating neurological deficit, lowering infarction rate, and improving the cellular morphology in hippocampus CA1 and cortex after tMCAO. TUNEL staining suggested PRF dose-dependently improved the apoptosis of the neurons in ischemic cortex. RT-qPCR and Western Blot results suggested that PRF regulated oxidative stress (OS) via activating the Keap1/Nrf2/HO-1 signaling pathway. Also, PRF could directly scavenge excessive ROS in zebrafish embryos after a short-time PRF incubation. The anti-CIRI effect might be primarily attributed to the abundant polyphenols in PRF, including flavonoids, polymethoxylated flavonoids, flavonoid glycosides, and phenolic acids. CONCLUSION T. quinquecostatus contains abundant polyphenols and exhibited a good protective effect against CIRI via dual antioxidant mechanisms, providing a reference for further research and application for this plant.
Collapse
Affiliation(s)
- Shusheng Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fangshan District, Beijing 102488, China
| | - Xiaoyun Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fangshan District, Beijing 102488, China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fangshan District, Beijing 102488, China
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fangshan District, Beijing 102488, China
| | - Yue Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fangshan District, Beijing 102488, China
| | - Ying Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fangshan District, Beijing 102488, China
| | - Qiqi Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fangshan District, Beijing 102488, China
| | - Jing Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fangshan District, Beijing 102488, China
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fangshan District, Beijing 102488, China
| | - Axiang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fangshan District, Beijing 102488, China
| | - Ruolan Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fangshan District, Beijing 102488, China
| | - Hong Sui
- School of Chinese Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Meng Shen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fangshan District, Beijing 102488, China
| | - Fang Fang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fangshan District, Beijing 102488, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 Jingshi East Road, Licheng District, Jinan, Shandong Province 250103, China.
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fangshan District, Beijing 102488, China.
| |
Collapse
|
15
|
Shi J, Wang Y, Chen J, Lao Y, Huang P, Liao L, Jiang C, Li X, Wen J, Zhou S, Zhang J. Synthesis and biological evaluation of 1,2,4-oxadiazole core derivatives as potential neuroprotectants against acute ischemic stroke. Neurochem Int 2021; 148:105103. [PMID: 34147514 DOI: 10.1016/j.neuint.2021.105103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/30/2022]
Abstract
Here, we report the synthesis and neuroprotective capacity of 27 compounds with a bisphenol hydroxyl-substituted 1,2,4-triazole core or 1,2,4-oxadiazole core for stroke therapy. In vitro studies of the neuroprotective effects of compounds 1-27 on sodium nitroprusside (SNP)-induced apoptosis in PC12 cells indicate that compound 24 is the most effective compound conferring potent protection against oxidative injury. Compound 24 inhibits reactive oxygen species (ROS) accumulation and restores the mitochondrial membrane potential (MMP). Moreover, further analysis of the mechanism showed that compound 24 activates the antioxidant defence system by promoting the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and increasing the expression of haem oxygenase 1 (HO-1). An in vivo study was performed in a rat model of transient focal cerebral ischaemia generated by the intraluminal occlusion of the middle cerebral artery (MCAO). Compound 24 significantly reduced brain infarction and improved neurological function. Overall, compound 24 potentially represents a promising compound for the treatment of stroke.
Collapse
Affiliation(s)
- Jinguo Shi
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yang Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jianwen Chen
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yaoqiang Lao
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Ping Huang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Liping Liao
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Caibao Jiang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Xinhua Li
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jin Wen
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Shujia Zhou
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jingxia Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
16
|
He W, Wang J, Jin Q, Zhang J, Liu Y, Jin Z, Wang H, Hu L, Zhu L, Shen M, Huang L, Huang S, Li W, Zhuge Q, Wu J. Design, green synthesis, antioxidant activity screening, and evaluation of protective effect on cerebral ischemia reperfusion injury of novel monoenone monocarbonyl curcumin analogs. Bioorg Chem 2021; 114:105080. [PMID: 34225164 DOI: 10.1016/j.bioorg.2021.105080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022]
Abstract
Antioxidants with high efficacy and low toxicity have the potential to treat cerebral ischemia reperfusion injury (CIRI). Dienone monocarbonyl curcumin analogs (DMCA) capable of overcoming the instability and pharmacokinetic defects of curcumin possess notable antioxidant activity but are found to be significantly toxic. In this study, a novel skeleton of the monoenone monocarbonyl curcumin analogue sAc possessing reduced toxicity and improved stability was designed on the basis of the DMCA skeleton. Moreover, 32 sAc analogs were obtained by applying a green, simple, and economical synthetic method. Multiple sAc analogs with an antioxidant protective effect in PC12 cells were screened using an H2O2-induced oxidative stress damage model, and quantitative evaluation of structure-activity relationship (QSAR) model with regression coefficient of R2 = 0.918921 was built through random forest algorithm (RF). Among these compounds, the optimally active compound sAc15 elicited a potent protective effect on cell growth of PC12 cells by effectively eliminating ROS generation in response to oxidative stress injury by activating the Nrf2/HO-1 antioxidant signaling pathway. In addition, sAc15 exhibited good protection against CIRI in the mice middle cerebral artery occlusion (MCAO) model. In this paper, we provide a novel class of antioxidants and a potential compound for stroke treatment.
Collapse
Affiliation(s)
- Wenfei He
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jingsong Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qiling Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiafeng Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yugang Liu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zewu Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hua Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Linya Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lu Zhu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengya Shen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lili Huang
- Department of Pharmacy, Ningbo Medical Centre Lihuili Hospital, Ningbo, Zhejiang 315041, China
| | - Shengwei Huang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wulan Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Qichuan Zhuge
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Jianzhang Wu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
17
|
Nakayama A, Nakamura T, Ara T, Fukuta T, Karanjit S, Harada T, Oda A, Sato H, Abe M, Kogure K, Namba K. Development of a novel antioxidant based on a dimeric dihydroisocoumarin derivative. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Zhang Y, Wang Z, Yang J, He Y, Wan H, Li C. Analogs of imine resveratrol alleviate oxidative stress-induced neurotoxicity in PC12 cells via activation of Nrf2. FEBS Open Bio 2021. [PMID: 34056861 PMCID: PMC8329772 DOI: 10.1002/2211-5463.13209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/10/2021] [Accepted: 05/28/2021] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress is closely associated with neurodegenerative, cardiovascular and metabolic diseases. Resveratrol and related compounds have shown great potential as antioxidants via either direct scavenging of abundant reactive oxygen species (ROS) or activation of the Kelch-like ECH-associated protein 1-nuclear factor (erythroid-derived 2)-like 2-antioxidant response elements pathway. In the present study, we evaluated imine resveratrol analogs (IRAs) for their neuroprotective effects against ROS in PC12 cells, which are a commonly employed model system for studies of neuronal development and function. We identified that IRA-3 (4-[[(4-hydroxyphenyl)methylene]amino]-phenol) was more potent than resveratrol at rescuing PC12 cells from H2 O2 -induced oxidative damage, exhibiting a recovery percentage of 60.4% at 50 μm. Our findings suggest that the neuroprotective effect of IRA-3 was achieved via multiple routes, including direct scavenging of ROS, rescue of endogenous antioxidants and activation of the Kelch-like ECH-associated protein 1-nuclear factor (erythroid-derived 2)-like 2-antioxidant response elements pathway. Our results suggest that IRA-3 may have potential for development into a possible treatment for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yin Zhang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhixiong Wang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Chang Li
- Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
19
|
Wu J, Xi Y, Li G, Zheng Y, Wang Z, Wang J, Fang C, Sun Z, Hu L, Jiang W, Dai L, Dong J, Qiu P, Zhao M, Yan P. Hydroazulene Diterpenes from a Dictyota Brown Alga and Their Antioxidant and Neuroprotective Effects Against Cerebral Ischemia-Reperfusion Injury. JOURNAL OF NATURAL PRODUCTS 2021; 84:1306-1315. [PMID: 33724827 DOI: 10.1021/acs.jnatprod.1c00027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Five new diterpenes, including four new hydroazulenes, (8R,11R)-8,11-diacetoxypachydictyol A (1), (8R*,11R*)-6-O-acetyl-8-acetoxy-11-hydroxypachydictyol A (2), (8R*,11S*)-8-acetoxy-11-hydroxypachydictyol A (3), and (8R*,11S*)-6-O-acetyl-8,11-dihydroxypachydictyol A (4), and a secohydroazulene derivative, named 7Z-7,8-seco-7,11-didehydro-8- acetoxypachydictyol A (5), were isolated from a South China Sea collection of a Dictyota sp. nov. brown alga, together with five known analogues (6-10). Structure elucidation was achieved by extensive spectroscopic analysis and comparison with reported data. All compounds showed potent antioxidant effects against H2O2-induced oxidative damage in neuron-like PC12 cells at a low concentration of 2 μM. The antioxidant property of dictyol C (9) was associated with activation of the Nrf2/ARE signaling pathway; it also showed neuroprotective effects against cerebral ischemia-reperfusion injury (CIRI) in a rat model of transient middle cerebral artery occlusion. As such, hydroazulene diterpenes could serve as lead structures for the development of novel neuroprotective agents against CIRI.
Collapse
Affiliation(s)
- Jianzhang Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Yiyuan Xi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Ge Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Yuantie Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Zhongle Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Jingsong Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Chengyan Fang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Zhongmin Sun
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
| | - Linya Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Wei Jiang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Lishang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Jianyong Dong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Peihong Qiu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Min Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Pengcheng Yan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| |
Collapse
|
20
|
Zhao Y, Zheng Z, Zhang M, Wang Y, Hu R, Lin W, Huang C, Xu C, Wu J, Deng H. Design, synthesis, and evaluation of mono-carbonyl analogues of curcumin (MCACs) as potential antioxidants against periodontitis. J Periodontal Res 2021; 56:656-666. [PMID: 33604902 DOI: 10.1111/jre.12862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/23/2020] [Accepted: 01/28/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND OBJECTIVE The application of curcumin is limited by its instability. Mono-carbonyl analogues of curcumin (MCACs) are structurally stable, yet the intermediate bridging ketones in their skeletons account for increased toxicity. This study aimed to synthesize and screen MCACs that exhibit low cytotoxicity and high antioxidant ability, and the effects of MCACs on experimental periodontitis were also investigated. MATERIALS AND METHODS The cytotoxicity of MCACs on MC3 T3-E1 was determined by MTT assay. The antioxidant capacity was investigated by the cell viability against H2 O2 -induced damage and the level of reactive oxygen species (ROS) and malondialdehyde (MDA). The localization and protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) was detected by immunofluorescence and western blot, respectively. In addition, MCAC was intragastrically administrated in rats with ligature-induced experimental periodontitis. The effects were assessed by bone resorption, as well as the immunohistology staining of inflammatory and oxidative stress markers. RESULTS MCACs with cyclopentanone and containing pyrone showed lower toxicity than natural curcumin were synthesized (1A-10A, 1H-10H), among which, 1A exhibited the most potent cytoprotective effect against H2 O2 -induced damage. Such effects could be explained by the reduced MDA and ROS level, possibly through the nucleus translocation of Nrf2 and the induction of HO-1. Micro-CT results further indicated that 1A significantly reduced bone loss, along with an increased level of Nrf2 and HO-1, and decreased TNF-α and IL-1β. CONCLUSION The present study has synthesized a novel antioxidant MCAC 1A with good biosafety and stability. MCAC 1A could serve as a host response modulator with preventive and protective effects on periodontitis.
Collapse
Affiliation(s)
- Ya Zhao
- Department of Periodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zhiwei Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Menghan Zhang
- Department of Orthodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Department of Orthodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Rongdang Hu
- Department of Orthodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Weijia Lin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chenyang Huang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chuchu Xu
- Department of Periodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Jianzhang Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hui Deng
- Department of Periodontics, School of Stomatology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
21
|
Jin Y, Zhuang Y, Liu M, Che J, Dong X. Inhibiting ferroptosis: A novel approach for stroke therapeutics. Drug Discov Today 2021; 26:916-930. [PMID: 33412287 DOI: 10.1016/j.drudis.2020.12.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/19/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022]
Abstract
Stroke ranks as the second leading cause of death across the globe. Despite advances in stroke therapeutics, no US Food and Drug Administration (FDA)-approved drugs that can minimize neuronal injury and restore neurological function are clinically available. Ferroptosis, a regulated iron-dependent form of nonapoptotic cell death, has been shown to contribute to stroke-mediated neuronal damage. Inhibitors of ferroptosis have also been validated in several stroke models of ischemia or intracerebral hemorrhage. Herein, we review the therapeutic activity of inhibitors of ferroptosis in stroke models. We further summarize previously reported neuroprotectants that show protective effects in stroke models that have been recently validated as ferroptosis inhibitors. These findings reveal new mechanisms for neuroprotection and highlight the importance of ferroptosis during stroke processes.
Collapse
Affiliation(s)
- Yizhen Jin
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yuxin Zhuang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Mei Liu
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, PR China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
22
|
Manda G, Rojo AI, Martínez-Klimova E, Pedraza-Chaverri J, Cuadrado A. Nordihydroguaiaretic Acid: From Herbal Medicine to Clinical Development for Cancer and Chronic Diseases. Front Pharmacol 2020; 11:151. [PMID: 32184727 PMCID: PMC7058590 DOI: 10.3389/fphar.2020.00151] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Nordihydroguaiaretic acid (NDGA) is a phenolic lignan obtained from Larrea tridentata, the creosote bush found in Mexico and USA deserts, that has been used in traditional medicine for the treatment of numerous diseases such as cancer, renal, cardiovascular, immunological, and neurological disorders, and even aging. NDGA presents two catechol rings that confer a very potent antioxidant activity by scavenging oxygen free radicals and this may explain part of its therapeutic action. Additional effects include inhibition of lipoxygenases (LOXs) and activation of signaling pathways that impinge on the transcription factor Nuclear Factor Erythroid 2-related Factor (NRF2). On the other hand, the oxidation of the catechols to the corresponding quinones my elicit alterations in proteins and DNA that raise safety concerns. This review describes the current knowledge on NDGA, its targets and side effects, and its synthetic analogs as promising therapeutic agents, highlighting their mechanism of action and clinical projection towards therapy of neurodegenerative, liver, and kidney disease, as well as cancer.
Collapse
Affiliation(s)
- Gina Manda
- Department Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Ana I Rojo
- Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, Spain
| | - Elena Martínez-Klimova
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Antonio Cuadrado
- Department Cellular and Molecular Medicine, Victor Babes National Institute of Pathology, Bucharest, Romania.,Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria la Paz (idiPAZ), Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Madrid, Spain
| |
Collapse
|
23
|
Cytoprotection Activity Evaluation of (E)-3-(3,4-Dichlorophenyl)-1-(3,4-Dihydroxyphenyl)- Prop-2-En-1-One as a New Antioxidant Against H2O2-Induced Oxidative Damage in PC12 Cells. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02102-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Discovery of coumarin-derived imino sulfonates as a novel class of potential cardioprotective agents. Eur J Med Chem 2019; 184:111779. [DOI: 10.1016/j.ejmech.2019.111779] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/24/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022]
|
25
|
Li G, Zheng Y, Yao J, Hu L, Liu Q, Ke F, Feng W, Zhao Y, Yan P, He W, Deng H, Qiu P, Li W, Wu J. Design and Green Synthesis of Piperlongumine Analogs and Their Antioxidant Activity against Cerebral Ischemia-Reperfusion Injury. ACS Chem Neurosci 2019; 10:4545-4557. [PMID: 31491086 DOI: 10.1021/acschemneuro.9b00402] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The supplementation of exogenous antioxidants to scavenge excessive reactive oxygen species (ROS) is an effective treatment for cerebral ischemia-reperfusion injury (CIRI) in stroke. Piperlongumine (PL), a natural alkaloid, has a great potential as a neuroprotective agent, but it also has obvious toxicity. Moreover, its neuroprotective effects remain to be improved. In this study, we designed a series of novel PL analogs by hybridizing the screened low-toxicity diketene skeleton with antioxidant effect and the 3,4,5-trimethoxyphenyl group, which may increase the antioxidant activity of PL. The intermediate was synthesized by a novel green synthesis method, and 34 compounds were obtained. The compounds without obvious cytotoxicity have remarkable antioxidant effects, especially compared with diketene skeletons and PL. The cytoprotection of the active compound decreased significantly by reduction of the carbon-carbon double bonds of the Michael acceptor in the diketene skeleton. More importantly, further study revealed that compound A9, which has the best activity, can confer protection for cells against oxidative stress and attenuate brain injury in vivo. Overall, this study provided a promising drug candidate for the treatment of CIRI and guided the further development of drug research in oxidative stress-mediated diseases.
Collapse
Affiliation(s)
- Ge Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Yuantie Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Jiali Yao
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Linya Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Qunpeng Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
- College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou , Zhejiang 325035 , China
| | - Furong Ke
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Weixiao Feng
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
- The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Ya Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
- Department of Periodontics, Hospital & School of Stomatology , Wenzhou Medical University , No. 373 West Xueyuan Road , Wenzhou , Zhejiang 325035 , China
| | - Pencheng Yan
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Wenfei He
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Hui Deng
- Department of Periodontics, Hospital & School of Stomatology , Wenzhou Medical University , No. 373 West Xueyuan Road , Wenzhou , Zhejiang 325035 , China
| | - Peihong Qiu
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Wulan Li
- The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Jianzhang Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| |
Collapse
|
26
|
Emerging Screening Approaches in the Development of Nrf2-Keap1 Protein-Protein Interaction Inhibitors. Int J Mol Sci 2019; 20:ijms20184445. [PMID: 31509940 PMCID: PMC6770765 DOI: 10.3390/ijms20184445] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/04/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022] Open
Abstract
Due to role of the Keap1–Nrf2 protein–protein interaction (PPI) in protecting cells from oxidative stress, the development of small molecule inhibitors that inhibit this interaction has arisen as a viable approach to combat maladies caused by oxidative stress, such as cancers, neurodegenerative disease and diabetes. To obtain specific and genuine Keap1–Nrf2 inhibitors, many efforts have been made towards developing new screening approaches. However, there is no inhibitor for this target entering the clinic for the treatment of human diseases. New strategies to identify novel bioactive compounds from large molecular databases and accelerate the developmental process of the clinical application of Keap1–Nrf2 protein–protein interaction inhibitors are greatly needed. In this review, we have summarized virtual screening and other methods for discovering new lead compounds against the Keap1–Nrf2 protein–protein interaction. We also discuss the advantages and limitations of different strategies, and the potential of this PPI as a drug target in disease therapy.
Collapse
|
27
|
Structure-activity relationship studies of (E)-3,4-dihydroxystyryl alkyl sulfones as novel neuroprotective agents based on improved antioxidant, anti-inflammatory activities and BBB permeability. Eur J Med Chem 2019; 171:420-433. [DOI: 10.1016/j.ejmech.2019.03.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/25/2019] [Accepted: 03/17/2019] [Indexed: 01/30/2023]
|
28
|
Wang J, Huang L, Cheng C, Li G, Xie J, Shen M, Chen Q, Li W, He W, Qiu P, Wu J. Design, synthesis and biological evaluation of chalcone analogues with novel dual antioxidant mechanisms as potential anti-ischemic stroke agents. Acta Pharm Sin B 2019; 9:335-350. [PMID: 30972281 PMCID: PMC6437665 DOI: 10.1016/j.apsb.2019.01.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/03/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022] Open
Abstract
Scavenging reactive oxygen species (ROS) by antioxidants is the important therapy to cerebral ischemia-reperfusion injury (CIRI) in stroke. The antioxidant with novel dual-antioxidant mechanism of directly scavenging ROS and indirectly through antioxidant pathway activation may be a promising CIRI therapeutic strategy. In our study, a series of chalcone analogues were designed and synthesized, and multiple potential chalcone analogues with dual antioxidant mechanisms were screened. Among these compounds, the most active 33 not only conferred cytoprotection of H2O2-induced oxidative damage in PC12 cells through scavenging free radicals directly and activating NRF2/ARE antioxidant pathway at the same time, but also played an important role against ischemia/reperfusion-related brain injury in animals. More importantly, in comparison with mono-antioxidant mechanism compounds, 33 exhibited higher cytoprotective and neuroprotective potential in vitro and in vivo. Overall, our findings showed compound 33 could emerge as a promising anti-ischemic stroke drug candidate and provided novel dual-antioxidant mechanism strategies and concepts for oxidative stress-related diseases treatment.
Collapse
Affiliation(s)
- Jiabing Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou 318000, China
| | - Lili Huang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Ningbo Medical Centre Li Huili Hospital, Ningbo 315041, China
| | - Chanchan Cheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ge Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jingwen Xie
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Mengya Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qian Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Wulan Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- College of Information Science and Computer Engineering, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenfei He
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Peihong Qiu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jianzhang Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
29
|
Luo Y, Tang H, Li H, Zhao R, Huang Q, Liu J. Recent advances in the development of neuroprotective agents and therapeutic targets in the treatment of cerebral ischemia. Eur J Med Chem 2019; 162:132-146. [DOI: 10.1016/j.ejmech.2018.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 11/25/2022]
|
30
|
Wu J, Xi Y, Huang L, Li G, Mao Q, Fang C, Shan T, Jiang W, Zhao M, He W, Dong J, Li X, Qiu P, Yan P. A Steroid-Type Antioxidant Targeting the Keap1/Nrf2/ARE Signaling Pathway from the Soft Coral Dendronephthya gigantea. JOURNAL OF NATURAL PRODUCTS 2018; 81:2567-2575. [PMID: 30407007 DOI: 10.1021/acs.jnatprod.8b00728] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Four new steroids, named 7-dehydroerectasteroid F (1), 11α-acetoxyarmatinol A (2), 22,23-didehydroarmatinol A (3), and 3-O-acetylhyrtiosterol (4), together with 11 previously described analogues, were isolated from a South China Sea collection of the soft coral Dendronephthya gigantea. The structures of the new steroids were elucidated by comprehensive spectroscopic analysis and by comparison with previously reported data. Compound 1 showed potent protection against H2O2-induced oxidative damage in neuron-like PC12 cells by promoting nuclear translocation of Nrf2 and enhancing the expression of HO-1. 1 represents the first steroid-type antioxidant from marine organisms.
Collapse
Affiliation(s)
- Jianzhang Wu
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , People's Republic of China
| | - Yiyuan Xi
- Department of Pharmacy , The First People's Hospital of Yongkang , Yongkang , Zhejiang 321300 , People's Republic of China
| | - Lili Huang
- Ningbo Medical Center Lihuili Hospital , Ningbo , Zhejiang 315041 , People's Republic of China
| | - Ge Li
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , People's Republic of China
| | - Qiqi Mao
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , People's Republic of China
| | - Chengyan Fang
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , People's Republic of China
| | - Tizhuang Shan
- School of Environmental Science and Engineering , Yangzhou University , Yangzhou , Jiangsu 225127 , People's Republic of China
| | - Wei Jiang
- School of Environmental Science and Engineering , Yangzhou University , Yangzhou , Jiangsu 225127 , People's Republic of China
| | - Min Zhao
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , People's Republic of China
| | - Wenfei He
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , People's Republic of China
| | - Jianyong Dong
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , People's Republic of China
| | - Xiubao Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Ocean College , Hainan University , Haikou , Hainan 570228 , People's Republic of China
| | - Peihong Qiu
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , People's Republic of China
| | - Pengcheng Yan
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , People's Republic of China
| |
Collapse
|
31
|
The Protective Effect of the Total Flavonoids of Abelmoschus esculentus L. Flowers on Transient Cerebral Ischemia-Reperfusion Injury Is due to Activation of the Nrf2-ARE Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8987173. [PMID: 30174782 PMCID: PMC6098902 DOI: 10.1155/2018/8987173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/14/2018] [Accepted: 06/23/2018] [Indexed: 11/18/2022]
Abstract
Abelmoschus esculentus L. has favorable nutritional/medicinal features. We found the content of total flavonoids in flower extract to be the highest (788.56 mg/g) of all the different parts of A. esculentus; according to high-performance liquid chromatography, the quercetin-3-O-[β-D-glu-(1 → 6)]-β-D-glucopyranoside content was 122.13 mg/g. Protective effects of an extract of the total flavonoids of A. esculentus flowers (AFF) on transient cerebral ischemia-reperfusion injury (TCI-RI) were investigated. Compared with the model group, mice treated with AFF (300 mg/kg) for 7 days showed significantly reduced neurologic deficits, infarct area, and histologic changes in brain tissue, accompanied by increased contents of superoxide dismutase, whereas contents of nitric oxide and malondialdehyde decreased. AFF upregulated the expression of Nrf2, HO-1, and NQO1. These data suggest that AFF protects against TCI-RI by scavenging free radicals and activating the Nrf2-ARE pathway.
Collapse
|