1
|
Liu X, Yan W, Yang G, An X, Cheng X, Jin C, Wang S. 1-hydroxy-7-azabenzotriazole-cinnamic esters as anti- Toxoplasma gondii agents. Nat Prod Res 2025:1-7. [PMID: 40338673 DOI: 10.1080/14786419.2025.2500736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/13/2025] [Accepted: 04/28/2025] [Indexed: 05/10/2025]
Abstract
The emergence of pharmacological resistance mechanisms coupled with treatment-related toxicities inherent in conventional chemotherapeutic regimens necessitates the development of next-generation targeted therapeutics with enhanced therapeutic indices. It is anticipated that progress in research will aid in the development of more efficacious management and prevention strategies, thereby potentially reducing the global incidence of Toxoplasmosis. In this study, the viability of a one-step synthesis method for 1-hydroxy-7-azabenzotriazole-cinnamic esters was demonstrated. The conjugation of cinnamic acid with 1-hydroxy-7-azabenzotriazole was investigated with the aim of increasing the utilisation efficiency of cinnamic acid. The structure-activity relationship analysis highlighted that the presence of the 3,4,5-trifluorophenyl group on the aromatic ring of the cinnamic acid component in 3H-[1,2,3]triazolo[4,5-b]pyridin-3-yl (E)-3-(3,4,5-trifluorophenyl)acrylate (12) greatly increased its activity against Toxoplasma gondii. These results imply that 1-hydroxy-7-azabenzotriazole-cinnamic esters hold promise as potent anti-T. gondii agents and merit further exploration.
Collapse
Affiliation(s)
- Xinyue Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, China
| | - Weifeng Yan
- College of Pharmacy, Yanbian University, Yanji, China
| | - Guang Yang
- Analysis and Inspection Center, Yanbian University, Yanji, China
| | - Xin An
- College of Pharmacy, Yanbian University, Yanji, China
| | - Xu Cheng
- College of Pharmacy, Yanbian University, Yanji, China
| | - Chunmei Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, China
- College of Pharmacy, Yanbian University, Yanji, China
| | - Sihong Wang
- Analysis and Inspection Center, Yanbian University, Yanji, China
| |
Collapse
|
2
|
Xu Q, Tu Y, Zhang Y, Xiu Y, Yu Z, Jiang H, Wang C. Discovery and biological evaluation of 6-aryl-4-(3,4,5-trimethoxyphenyl)quinoline derivatives with promising antitumor activities as novel colchicine-binding site inhibitors. Eur J Med Chem 2024; 279:116869. [PMID: 39316845 DOI: 10.1016/j.ejmech.2024.116869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Tubulin, as the fundamental unit of microtubules, is a crucial target in the investigation of anticarcinogens. The synthesis and assessment of small-molecule tubulin polymerization inhibitors remains a promising avenue for the development of novel cancer therapeutics. Through an analysis of reported colchicine-binding site inhibitors (CBSIs) and tubulin binding models, a set of 6-aryl-4-(3,4,5-trimethoxyphenyl)quinoline derivatives were meticulously crafted as potential CBSIs. Notably, compound 14u exhibited potent anti-proliferative efficacy, displaying IC50 values ranging from 0.03 to 0.18 μM against three human cancer cell lines (Huh7, MCF-7, and SGC-7901). Mechanistic investigations revealed that compound 14u could disrupt tubulin polymerization, dismantle the microtubule architecture, arrest the cell cycle at G2/M phase, and induce apoptosis in cancer cells. Furthermore, compound 14u demonstrated significant inhibition of tumor proliferation in vivo with no discernible toxicity in the Huh7 orthotopic tumor model mice. Additionally, physicochemical property predictions indicated that compound 14u adhered well to Lipinski's rule of five. These findings collectively suggest that compound 14u holds promise as an antitumor agent targeting the colchicine-binding site on tubulin and warrants further investigation.
Collapse
Affiliation(s)
- Qianqian Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yuxuan Tu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yutao Xiu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China
| | - Zongjiang Yu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 26610, Shandong, China.
| | - Hongfei Jiang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
3
|
Beč A, Persoons L, Daelemans D, Starčević K, Vianello R, Hranjec M. Biological activity and computational analysis of novel acrylonitrile derived benzazoles as potent antiproliferative agents for pancreatic adenocarcinoma with antioxidative properties. Bioorg Chem 2024; 147:107326. [PMID: 38653153 DOI: 10.1016/j.bioorg.2024.107326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
Continuing our research into the anticancer properties of acrylonitriles, we present a study involving the design, synthesis, computational analysis, and biological assessment of novel acrylonitriles derived from methoxy, hydroxy, and N-substituted benzazole. Our aim was to examine how varying the number of methoxy and hydroxy groups, as well as the N-substituents on the benzimidazole core, influences their biological activity. The newly synthesized acrylonitriles exhibited strong and selective antiproliferative effects against the Capan-1 pancreatic adenocarcinoma cell line, with IC50 values ranging from 1.2 to 5.3 μM. Consequently, these compounds were further evaluated in three other pancreatic adenocarcinoma cell lines, while their impact on normal PBMC cells was also investigated to determine selectivity. Among these compounds, the monohydroxy-substituted benzimidazole derivative 27 emerged with the most profound and broad-spectrum anticancer antiproliferative activity being emerged as a promising lead candidate. Moreover, a majority of the acrylonitriles in this series exhibited significant antioxidative activity, surpassing that of the reference molecule BHT, as demonstrated by the FRAP assay (ranging from 3200 to 5235 mmolFe2+/mmolC). Computational analysis highlighted the prevalence of electron ionization in conferring antioxidant properties, with computed ionization energies correlating well with observed activities.
Collapse
Affiliation(s)
- Anja Beč
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
| | - Leentje Persoons
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - Dirk Daelemans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - Kristina Starčević
- Department of Chemistry and Biochemistry, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, HR-10000 Zagreb, Croatia
| | - Robert Vianello
- Laboratory for the Computational Design and Synthesis of Functional Materials, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | - Marijana Hranjec
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia.
| |
Collapse
|
4
|
Kornicka A, Gzella K, Garbacz K, Jarosiewicz M, Gdaniec M, Fedorowicz J, Balewski Ł, Kokoszka J, Ordyszewska A. Indole-Acrylonitrile Derivatives as Potential Antitumor and Antimicrobial Agents-Synthesis, In Vitro and In Silico Studies. Pharmaceuticals (Basel) 2023; 16:918. [PMID: 37513830 PMCID: PMC10386429 DOI: 10.3390/ph16070918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
A series of 2-(1H-indol-2-yl)-3-acrylonitrile derivatives, 2a-x, 3, 4a-b, 5a-d, 6a-b, and 7, were synthesized as potential antitumor and antimicrobial agents. The structures of the prepared compounds were evaluated based on elemental analysis, IR, 1H- and 13NMR, as well as MS spectra. X-ray crystal analysis of the representative 2-(1H-indol-2-yl)-3-acrylonitrile 2l showed that the acrylonitrile double bond was Z-configured. All compounds were screened at the National Cancer Institute (USA) for their activities against a panel of approximately 60 human tumor cell lines and the relationship between structure and in vitro antitumor activity is discussed. Compounds of interest 2l and 5a-d showed significant growth inhibition potency against various tumor cell lines with the mean midpoint GI50 values of all tests in the range of 0.38-7.91 μM. The prominent compound with remarkable activity (GI50 = 0.0244-5.06 μM) and high potency (TGI = 0.0866-0.938 μM) against some cell lines of leukemia (HL-60(TB)), non-small cell lung cancer (NCI-H522), colon cancer (COLO 205), CNS cancer (SF-539, SNB-75), ovarian cancer ((OVCAR-3), renal cancer (A498, RXF 393), and breast cancer (MDA-MB-468) was 3-[4-(dimethylamino)phenyl]-2-(1-methyl-1H-indol-2-yl)acrylonitrile (5c). Moreover, the selected 2-(1H-indol-2-yl)-3-acrylonitriles 2a-c and 2e-x were evaluated for their antibacterial and antifungal activities against Gram-positive and Gram-negative pathogens as well as Candida albicans. Among them, 2-(1H-indol-2-yl)-3-(1H-pyrrol-2-yl)acrylonitrile (2x) showed the most potent antimicrobial activity and therefore it can be considered as a lead structure for further development of antimicrobial agents. Finally, molecular docking studies as well as drug-likeness and ADME profile prediction were carried out.
Collapse
Affiliation(s)
- Anita Kornicka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Karol Gzella
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Katarzyna Garbacz
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, 80-204 Gdansk, Poland
| | - Małgorzata Jarosiewicz
- Department of Oral Microbiology, Medical Faculty, Medical University of Gdansk, 80-204 Gdansk, Poland
| | - Maria Gdaniec
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Joanna Fedorowicz
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Łukasz Balewski
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Jakub Kokoszka
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Anna Ordyszewska
- Department of Inorganic Chemistry, Faculty of Chemistry and Advanced Materials Centers, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
5
|
Riu F, Ibba R, Zoroddu S, Sestito S, Lai M, Piras S, Sanna L, Bordoni V, Bagella L, Carta A. Design, synthesis, and biological screening of a series of 4'-fluoro-benzotriazole-acrylonitrile derivatives as microtubule-destabilising agents (MDAs). J Enzyme Inhib Med Chem 2022; 37:2223-2240. [PMID: 35979600 PMCID: PMC9397482 DOI: 10.1080/14756366.2022.2111680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Introduction: Colchicine-binding site inhibitors are some of the most interesting ligands belonging to the wider family of microtubule-destabilising agents.Results: A novel series of 4'-fluoro-substituted ligands (5-13) was synthesised. The antiproliferative activity assays resulted in nM values for the new benzotriazole-acrylonitrile derivatives. Compound 5, the hit compound, showed an evident blockade of HeLa cell cycle in the G2-M phase, but also a pro-apoptotic potential, and an increase of early and late apoptotic cells in HeLa and MCF-7 cell cycle analysis. Confocal microscopy analysis showed a segmented shape and a collapse of the cytoskeleton, as well as a consistent cell shrinkage after administration of 5 at 100 nM. Derivative 5 was also proved to compete with colchicine at colchicine-binding site, lowering its activity against tubulin polymerisation. In addition, co-administration of 5 and doxorubicin in drug-resistant A375 melanoma cell line highlighted a synergic potential in terms of inhibition of cell viability.Discussion: The 4'-fluoro substitution of benzotriazole-acrylonitrile scaffold brought us a step forward in the optimisation process to obtain compound 5 as promising MDA antiproliferative agent at nanomolar concentration.
Collapse
Affiliation(s)
- Federico Riu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Roberta Ibba
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Stefano Zoroddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Simona Sestito
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Michele Lai
- Department of Translational Medicine and New Technologies in Medicine and Surgery, Retrovirus Centre, University of Pisa, Pisa, Italy.,CISUP - Centre for Instrumentation Sharing - University of Pisa, Pisa, Italy
| | - Sandra Piras
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Luca Sanna
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Valentina Bordoni
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.,Center for Biotechnology, College of Science and Technology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, USA
| | - Antonio Carta
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| |
Collapse
|
6
|
The Structural and Optical Properties of 1,2,4-Triazolo[4,3- a]pyridine-3-amine. Molecules 2022; 27:molecules27030721. [PMID: 35163987 PMCID: PMC8838196 DOI: 10.3390/molecules27030721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
The structural and spectroscopic properties of a new triazolopyridine derivative (1,2,4-triazolo[4,3-a]pyridin-3-amine) are described in this paper. Its FTIR spectrum was recorded in the 100–4000 cm−1 range and its FT-Raman spectrum in the range 80–4000 cm−1. The molecular structure and vibrational spectra were analyzed using the B3LYP/6-311G(2d,2p) approach and the GAUSSIAN 16W program. The assignment of the observed bands to the respective normal modes was proposed on the basis of PED calculations. XRD studies revealed that the studied compound crystallizes in the centrosymmetric monoclinic space group P21/n with eight molecules per unit cell. However, the asymmetric unit contains two 1,2,4-triazolo[4,3-a]pyridin-3-amine molecules linked via N–H⋯N hydrogen bonds with a R22(8) graph. The stability of the studied molecule was considered using NBO analysis. Electron absorption and the luminescence spectra were measured and discussed in terms of the calculated singlet, triplet, HOMO and LUMO electron energies. The Stokes shifts derived from the optical spectra were equal to 9410 cm−1 for the triazole ring and 7625 cm−1 for the pyridine ring.
Collapse
|
7
|
Unsal Tan O, Zengin M. Insights into the chemistry and therapeutic potential of acrylonitrile derivatives. Arch Pharm (Weinheim) 2021; 355:e2100383. [PMID: 34763365 DOI: 10.1002/ardp.202100383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022]
Abstract
Acrylonitrile is a fascinating scaffold widely found in many natural products, drugs, and drug candidates with various biological activities. Several drug molecules such as entacapone, rilpivirine, teriflunomide, and so forth, bearing an acrylonitrile moiety have been marketed. In this review, diverse synthetic strategies for constructing desired acrylonitriles are discussed, and the different biological activities and medicinal significance of various acrylonitrile derivatives are critically evaluated. The information gathered is expected to provide rational guidance for the development of clinically useful agents from acrylonitriles.
Collapse
Affiliation(s)
- Oya Unsal Tan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Merve Zengin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
8
|
Zribi L, Ismaili L, Vieira‐Ferreira LF, Ferreira‐Machado IL, Marco‐Contelles J, Chabchoub F. Synthesis and Fluorescence of (E)‐3‐Aryl‐2‐(5‐aryl‐4H‐1,2,4‐triazol‐3‐yl) Acrylonitriles. ChemistrySelect 2021. [DOI: 10.1002/slct.202100571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lazhar Zribi
- Laboratoire de Chimie Appliquée: Hétérocycles, Corps Gras et Polymères, Faculté des Sciences de Sfax Université de Sfax. B. P 802. 3000 Sfax Tunisia
| | - Lhassane Ismaili
- Laboratoire de Chimie Organique et Thérapeutique, Neurosciences intégratives et cliniques EA 481 Univ. Bourgogne Franche-Comté, UFR Santé, 19 rue Ambroise Paré F-25000 Besançon France
| | - Luís F. Vieira‐Ferreira
- Instituto de Bioengenharia e Biociências (iBB), Instituto Superior Técnico Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Isabel L. Ferreira‐Machado
- Instituto de Bioengenharia e Biociências (iBB), Instituto Superior Técnico Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
- Polytechnic Institute of Portalegre P7300-110 Portalegre Portugal
| | - José Marco‐Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC) Juan de la Cierva, 3 28006- Madrid Spain
| | - Fakher Chabchoub
- Laboratoire de Chimie Appliquée: Hétérocycles, Corps Gras et Polymères, Faculté des Sciences de Sfax Université de Sfax. B. P 802. 3000 Sfax Tunisia
| |
Collapse
|
9
|
Kharb R. Updates on Receptors Targeted by Heterocyclic Scaffolds: New Horizon in Anticancer Drug Development. Anticancer Agents Med Chem 2021; 21:1338-1349. [PMID: 32560614 DOI: 10.2174/1871520620666200619181102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 11/22/2022]
Abstract
Anticancer is a high priority research area for scientists as cancer is one of the leading causes of death globally. It is pertinent to mention here that conventional anticancer drugs such as methotrexate, vincristine, cyclophosphamide, etoposide, doxorubicin, cisplatin, etc. are not much efficient for the treatment of different types of cancer; also these suffer from serious side effects leading to therapy failure. A large variety of cancerrelated receptors such as carbonic anhydrase, tyrosine kinase, topoisomerase, protein kinase, histone deacetylase, etc. have been identified which can be targeted by anticancer drugs. Heterocycles like oxadiazole, thiazole, thiadiazole, indole, pyridine, pyrimidine, benzimidazole, etc. play a pivotal role in modern medicinal chemistry because they have a broad spectrum of pharmacological activities including prominent anticancer activity. Therefore, it was considered significant to explore heterocyclic compounds reported in recent most literature which can bind effectively with the cancer-related receptors. This will not only provide a targeted approach to deal with cancer but also the safety profile of the drugs can be further improved. The information provided in this manuscript may be found useful for the design and development of anticancer drugs.
Collapse
Affiliation(s)
- Rajeev Kharb
- Centre for Pharmaceutical Chemistry & Pharmaceutical Analysis, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida-201313, Uttar Pradesh, India
| |
Collapse
|
10
|
Riu F, Sanna L, Ibba R, Piras S, Bordoni V, Scorciapino MA, Lai M, Sestito S, Bagella L, Carta A. A comprehensive assessment of a new series of 5',6'-difluorobenzotriazole-acrylonitrile derivatives as microtubule targeting agents (MTAs). Eur J Med Chem 2021; 222:113590. [PMID: 34139625 DOI: 10.1016/j.ejmech.2021.113590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 02/09/2023]
Abstract
Microtubules (MTs) are the principal target for drugs acting against mitosis. These compounds, called microtubule targeting agents (MTAs), cause a mitotic arrest during G2/M phase, subsequently inducing cell apoptosis. MTAs could be classified in two groups: microtubule stabilising agents (MSAs) and microtubule destabilising agents (MDAs). In this paper we present a new series of (E) (Z)-2-(5,6-difluoro-(1H)2H-benzo[d] [1,2,3]triazol-1(2)-yl)-3-(R)acrylonitrile (9a-j, 10e, 11a,b) and (E)-2-(1H-benzo[d] [1,2,3]triazol-1-yl)-3-(R)acrylonitrile derivatives (13d,j), which were recognised to act as MTAs agents. They were rationally designed, synthesised, characterised and subjected to different biological assessments. Computational docking was carried out in order to investigate the potential binding to the colchicine-binding site on tubulin. From this first prediction, the di-fluoro substitution seemed to be beneficial for the binding affinity with tubulin. The new fluorine derivatives, here presented, showed an improved antiproliferative activity when compared to the previously reported compounds. The biological evaluation included a preliminary antiproliferative screening on NCI60 cancer cells panel (1-10 μM). Compound 9a was selected as lead compound of the new series of derivatives. The in vitro XTT assay, flow cytometry analysis and immunostaining performed on HeLa cells treated with 9a showed a considerable antiproliferative effect, (IC50 = 3.2 μM), an increased number of cells in G2/M-phase, followed by an enhancement in cell division defects. Moreover, β-tubulin staining confirmed 9a as a MDA triggering tubulin disassembly, whereas colchicine-9a competition assay suggested that compound 9a compete with colchicine for the binding site on tubulin. Then, the co-administration of compound 9a and an extrusion pump inhibitor (EPI) was investigated: the association resulted beneficial for the antiproliferative activity and compound 9a showed to be client of extrusion pumps. Finally, structural superimposition of different colchicine binding site inhibitors (CBIs) in clinical trial and our MDA, provided an additional confirmation of the targeting to the predicted binding site. Physicochemical, pharmacokinetic and druglikeness predictions were also conducted and all the newly synthesised derivatives showed to be drug-like molecules.
Collapse
Affiliation(s)
- Federico Riu
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Luca Sanna
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
| | - Roberta Ibba
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy.
| | - Sandra Piras
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Valentina Bordoni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
| | - M Andrea Scorciapino
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 Km 0.700, 09042, Monserrato (CA), Italy
| | - Michele Lai
- Retrovirus Centre, Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, Strada Statale Del Brennero, 2, Pisa, Italy; CISUP - Centre for Instrumentation Sharing - University of Pisa, Lungarno Pacinotti 43, Pisa, Italy
| | - Simona Sestito
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA.
| | - Antonio Carta
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| |
Collapse
|
11
|
Development of triazolothiadiazine derivatives as highly potent tubulin polymerization inhibitors: Structure-activity relationship, in vitro and in vivo study. Eur J Med Chem 2020; 208:112847. [DOI: 10.1016/j.ejmech.2020.112847] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
|
12
|
Perin N, Hok L, Beč A, Persoons L, Vanstreels E, Daelemans D, Vianello R, Hranjec M. N-substituted benzimidazole acrylonitriles as in vitro tubulin polymerization inhibitors: Synthesis, biological activity and computational analysis. Eur J Med Chem 2020; 211:113003. [PMID: 33248847 DOI: 10.1016/j.ejmech.2020.113003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022]
Abstract
We present the design, synthesis and biological activity of novel N-substituted benzimidazole based acrylonitriles as potential tubulin polymerization inhibitors. Their synthesis was achieved using classical linear organic and microwave assisted techniques, starting from aromatic aldehydes and N-substituted-2-cyanomethylbenzimidazoles. All newly prepared compounds were tested for their antiproliferative activity in vitro on eight human cancer cell lines and one reference non-cancerous assay. N,N-dimethylamino substituted acrylonitriles 30 and 41, bearing N-isobutyl and cyano substituents placed on the benzimidazole nuclei, showed strong and selective antiproliferative activity in the submicromolar range of inhibitory concentrations (IC50 0.2-0.6 μM), while being significantly less toxic than reference systems docetaxel and staurosporine, thus promoting them as lead compounds. Mechanism of action studies demonstrated that two most active compounds inhibited tubulin polymerization. Computational analysis confirmed the suitability of the employed benzimidazole-acrylonitrile skeleton for the binding within the colchicine binding site in tubulin, thus rationalizing the observed antitumor activities, and demonstrated that E-isomers are active substances. It also provided structural determinants affecting both the binding position and the matching affinities, identifying the attached NMe2 group as the most dominant in promoting the binding, which allows ligands to optimize favourable cation∙∙∙π and hydrogen bonding interactions with Lys352.
Collapse
Affiliation(s)
- N Perin
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, HR-10000, Zagreb, Croatia
| | - L Hok
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - A Beč
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, HR-10000, Zagreb, Croatia
| | - L Persoons
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - E Vanstreels
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - D Daelemans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, Leuven, Belgium
| | - R Vianello
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia.
| | - M Hranjec
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, HR-10000, Zagreb, Croatia.
| |
Collapse
|
13
|
Obydennov KL, Kalinina TA, Vysokova OA, Slepukhin PA, Pozdina VA, Ulitko MV, Glukhareva TV. The different modes of chiral [1,2,3]triazolo[5,1-b][1,3,4]thiadiazines: crystal packing, conformation investigation and cellular activity. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2020; 76:795-809. [PMID: 32756043 DOI: 10.1107/s2053229620009328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 07/08/2020] [Indexed: 11/11/2022]
Abstract
The crystal structures of four new chiral [1,2,3]triazolo[5,1-b][1,3,4]thiadiazines are described, namely, ethyl 5'-benzoyl-5'H,7'H-spiro[cyclohexane-1,6'-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine]-3'-carboxylate, C19H22N4O3S, ethyl 5'-(4-methoxybenzoyl)-5'H,7'H-spiro[cyclohexane-1,6'-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine]-3'-carboxylate, C20H24N4O4S, ethyl 6,6-dimethyl-5-(4-methylbenzoyl)-6,7-dihydro-5H-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine-3-carboxylate, C17H20N4O3S, and ethyl 5-benzoyl-6-(4-methoxyphenyl)-6,7-dihydro-5H-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine-3-carboxylate, C21H20N4O4S. The crystallographic data and cell activities of these four compounds and of the structures of three previously reported similar compounds, namely, ethyl 5'-(4-methylbenzoyl)-5'H,7'H-spiro[cyclopentane-1,6'-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine]-3'-carboxylate, C19H22N4O3S, ethyl 5'-(4-methoxybenzoyl)-5'H,7'H-spiro[cyclopentane-1,6'-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine]-3'-carboxylate, C19H22N4O4S, and ethyl 6-methyl-5-(4-methylbenzoyl)-6-phenyl-6,7-dihydro-5H-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine-3-carboxylate, C22H22N4O3S, are contrasted and compared. For both crystallization and an MTT assay, racemic mixtures of the corresponding [1,2,3]triazolo[5,1-b][1,3,4]thiadiazines were used. The main manner of molecular packing in these compounds is the organization of either enantiomeric pairs or dimers. In both cases, the formation of two three-centre hydrogen bonds can be detected resulting from intramolecular N-H...O and intermolecular N-H...O or N-H...N interactions. Molecules of different enantiomeric forms can also form chains through N-H...O hydrogen bonds or form layers between which only weak hydrophobic contacts exist. Unlike other [1,2,3]triazolo[5,1-b][1,3,4]thiadiazines, ethyl 5'-benzoyl-5'H,7'H-spiro[cyclohexane-1,6'-[1,2,3]triazolo[5,1-b][1,3,4]thiadiazine]-3'-carboxylate contains molecules of only the (R)-enantiomer; moreover, the N-H group does not participate in any significant intermolecular interactions. Molecular mechanics methods (force field OPLS3e) and the DFT B3LYP/6-31G+(d,p) method show that the compound forming enantiomeric pairs via weak N-H...N hydrogen bonds is subject to greater distortion of the geometry under the influence of the intermolecular interactions in the crystal. For intramolecular N-H...O and S...O interactions, an analysis of the noncovalent interactions (NCIs) was carried out. The cellular activities of the compounds were tested by evaluating their antiproliferative effect against two normal human cell lines and two cancer cell lines in terms of half-maximum inhibitory concentration (IC50). Some derivatives have been found to be very effective in inhibiting the growth of Hela cells at nanomolar and submicromolar concentrations with minimal cytotoxicity in relation to normal cells.
Collapse
Affiliation(s)
- Konstantin L'vovich Obydennov
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Street, Yekaterinburg 620002, Russian Federation
| | - Tatiana Andreevna Kalinina
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Street, Yekaterinburg 620002, Russian Federation
| | - Olga Alexandrovna Vysokova
- Institute of Chemical Engineering, Ural Federal University, 19 Mira Street, Yekaterinburg 620002, Russian Federation
| | - Pavel Alexandrovich Slepukhin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences (UB RAS), 22 Sofia Kovalevskaya Street, Yekaterinburg 620990, Russian Federation
| | - Varvara Alexandrovna Pozdina
- Institute Natural Sciences and Mathematics, Ural Federal University, Kuibysheva str. 48a, Yekaterinburg 620000, Russian Federation
| | - Maria Valer'evna Ulitko
- Institute Natural Sciences and Mathematics, Ural Federal University, Kuibysheva str. 48a, Yekaterinburg 620000, Russian Federation
| | | |
Collapse
|
14
|
An efficient method for accessing carboannulated and functionalized [1,2,3]triazolo[4,5-b]pyridines. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02771-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
15
|
Ertl P, Altmann E, McKenna JM. The Most Common Functional Groups in Bioactive Molecules and How Their Popularity Has Evolved over Time. J Med Chem 2020; 63:8408-8418. [DOI: 10.1021/acs.jmedchem.0c00754] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Peter Ertl
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | - Eva Altmann
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | - Jeffrey M. McKenna
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Malik MS, Ahmed SA, Althagafi II, Ansari MA, Kamal A. Application of triazoles as bioisosteres and linkers in the development of microtubule targeting agents. RSC Med Chem 2020; 11:327-348. [PMID: 33479639 PMCID: PMC7580775 DOI: 10.1039/c9md00458k] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
The triazole ring system has emerged as an exciting prospect in the optimization studies of promising lead molecules in the quest for new drugs for clinical usage. Several marketed drugs possess these versatile moieties that are used in a wide range of medical indications. This stems from the unique intrinsic properties of triazoles, which impart stability to the basic pharmacophoric unit with an added advantage of being a bioisostere of different chemical functionalities. In the last decade, the use of triazoles as bioisosteres and linkers in the development of microtubule targeting agents has been extensively investigated. The present review highlights the advances in this promising area of drug discovery and development.
Collapse
Affiliation(s)
- M Shaheer Malik
- Department of Chemistry , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia . ;
- Central Research Laboratories , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
| | - Saleh A Ahmed
- Department of Chemistry , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia . ;
- Central Research Laboratories , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
- Chemistry Department , Faculty of Science , Assiut University , 71516 Assiut , Egypt
| | - Ismail I Althagafi
- Department of Chemistry , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia . ;
- Central Research Laboratories , Faculty of Applied Sciences , Umm Al-Qura University , 21955 Makkah , Saudi Arabia
| | - Mohammed Azam Ansari
- Department of Epidemic Disease Research , Institute of Research and Medical Consultation , Imam AbdurRahman Bin Faisal University , 34212 Dammam , Saudi Arabia
| | - Ahmed Kamal
- School of Pharmaceutical Education and Research (SPER) , Jamia Hamdard , New Delhi-110062 , India . ; ; Tel: +91 11 26059665
| |
Collapse
|
17
|
Carta A, Bua A, Corona P, Piras S, Briguglio I, Molicotti P, Zanetti S, Laurini E, Aulic S, Fermeglia M, Pricl S. Design, synthesis and antitubercular activity of 4-alkoxy-triazoloquinolones able to inhibit the M. tuberculosis DNA gyrase. Eur J Med Chem 2018; 161:399-415. [PMID: 30384044 DOI: 10.1016/j.ejmech.2018.10.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 01/30/2023]
Abstract
A number of new F-triazolequinolones (FTQs) and alkoxy-triazolequinolones (ATQs) were designed, synthesized and evaluated for their activity against Mycobacterium tuberculosis H37Rv. Five out of 21 compounds exhibited interesting minimum inhibitory concentration (MIC) values (6.6-57.9 μM), ATQs generally being more potent than FTQs. Two ATQs, 21a and 30a, were endowed with the best anti-Mtb potency (MIC = 6.9 and 6.6 μM, respectively), and were not cytotoxic in a Vero cell line. Tested for activity against M. tuberculosis DNA gyrase in a DNA supercoiling activity assay, 21a and 30a showed IC50 values (27-28 μM) comparable to that of ciprofloxacin (10.6 μM). 21a was next selected for screening against several Mtb strains obtained from clinical isolates, including multi-drug-resistant (MDR) variants. Importantly, this compound was effective in all cases, with very promising MIC values (4 μM) in the case of some isoniazid/rifampicin-resistant Mtb strains. Finally, computer-based simulations revealed that the binding mode of 21a in the Mtb gyrase cleavage core complexed with DNA and the relevant network of intermolecular interactions are utterly similar to those described for ciprofloxacin, yielding a molecular rationale for the comparable anti-mycobacterial and DNA gyrase inhibition activity of this quinolone.
Collapse
Affiliation(s)
- Antonio Carta
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23, 07100, Sassari, Italy.
| | - Alessandra Bua
- Department of Biomedical Sciences, University of Sassari, V.le San Pietro 43/C, 07100, Sassari, Italy
| | - Paola Corona
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23, 07100, Sassari, Italy
| | - Sandra Piras
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23, 07100, Sassari, Italy
| | - Irene Briguglio
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23, 07100, Sassari, Italy
| | - Paola Molicotti
- Department of Biomedical Sciences, University of Sassari, V.le San Pietro 43/C, 07100, Sassari, Italy
| | - Stefania Zanetti
- Department of Biomedical Sciences, University of Sassari, V.le San Pietro 43/C, 07100, Sassari, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy.
| |
Collapse
|
18
|
Discovery of the cancer cell selective dual acting anti-cancer agent (Z)-2-(1H-indol-3-yl)-3-(isoquinolin-5-yl)acrylonitrile (A131). Eur J Med Chem 2018; 156:344-367. [DOI: 10.1016/j.ejmech.2018.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 11/17/2022]
|