1
|
Zhou Q, Catalán P, Bell H, Baumann P, Cooke R, Evans R, Yang J, Zhang Z, Zappalà D, Zhang Y, Blackburn GM, He Y, Jin Y. An Ion-Pair Induced Intermediate Complex Captured in Class D Carbapenemase Reveals Chloride Ion as a Janus Effector Modulating Activity. ACS CENTRAL SCIENCE 2023; 9:2339-2349. [PMID: 38161376 PMCID: PMC10755735 DOI: 10.1021/acscentsci.3c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024]
Abstract
Antibiotic-resistant Enterobacterales that produce oxacillinase (OXA)-48-like Class D β-lactamases are often linked to increased clinical mortality. Though the catalytic mechanism of OXA-48 is known, the molecular origin of its biphasic kinetics has been elusive. We here identify selective chloride binding rather than decarbamylation of the carbamylated lysine as the source of biphasic kinetics, utilizing isothermal titration calorimetry (ITC) to monitor the complete reaction course with the OXA-48 variant having a chemically stable N-acetyl lysine. Further structural investigation enables us to capture an unprecedented inactive acyl intermediate wedged in place by a halide ion paired with a conserved active site arginine. Supported by mutagenesis and mathematical simulation, we identify chloride as a "Janus effector" that operates by allosteric activation of the burst phase and by inhibition of the steady state in kinetic assays of β-lactams. We show that chloride-induced biphasic kinetics directly affects antibiotic efficacy and facilitates the differentiation of clinical isolates encoding Class D from Class A and B carbapenemases. As chloride is present in laboratory and clinical procedures, our discovery greatly expands the roles of chloride in modulating enzyme catalysis and highlights its potential impact on the pharmacokinetics and efficacy of antibiotics during in vivo treatment.
Collapse
Affiliation(s)
- Qi Zhou
- Key
Laboratory of Synthetic and Natural Functional Molecule, College of
Chemistry and Materials Science, Northwest
University, Xi’an 710127, P. R. China
| | - Pablo Catalán
- Grupo
Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Helen Bell
- School
of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Patrick Baumann
- School
of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Rebekah Cooke
- School
of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Rhodri Evans
- School
of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Jianhua Yang
- Key
Laboratory of Synthetic and Natural Functional Molecule, College of
Chemistry and Materials Science, Northwest
University, Xi’an 710127, P. R. China
| | - Zhen Zhang
- Key
Laboratory of Synthetic and Natural Functional Molecule, College of
Chemistry and Materials Science, Northwest
University, Xi’an 710127, P. R. China
- School
of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Davide Zappalà
- School
of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Ye Zhang
- Key
Laboratory of Synthetic and Natural Functional Molecule, College of
Chemistry and Materials Science, Northwest
University, Xi’an 710127, P. R. China
| | - George Michael Blackburn
- School
of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Yuan He
- Key
Laboratory of Synthetic and Natural Functional Molecule, College of
Chemistry and Materials Science, Northwest
University, Xi’an 710127, P. R. China
| | - Yi Jin
- School
of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
2
|
Zhang Y, Chen C, Cheng B, Gao L, Qin C, Zhang L, Zhang X, Wang J, Wan Y. Discovery of Quercetin and Its Analogs as Potent OXA-48 Beta-Lactamase Inhibitors. Front Pharmacol 2022; 13:926104. [PMID: 35814247 PMCID: PMC9258905 DOI: 10.3389/fphar.2022.926104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Carbapenem resistance in Enterobacteriaceae caused by OXA-48 β-lactamase is a growing global health threat and has rapidly spread in many regions of the world. Developing inhibitors is a promising way to overcome antibiotic resistance. However, there are few options for problematic OXA-48. Here we identified quercetin, fisetin, luteolin, 3′,4′,7-trihydroxyflavone, apigenin, kaempferol, and taxifolin as potent inhibitors of OXA-48 with IC50 values ranging from 0.47 to 4.54 μM. Notably, the structure-activity relationship revealed that the substitute hydroxyl groups in the A and B rings of quercetin and its structural analogs improved the inhibitory effect against OXA-48. Mechanism studies including enzymatic kinetic assay, isothermal titration calorimetry (ITC), and surface plasmon resonance (SPR) analysis demonstrated that quercetin reversibly inhibited OXA-48 through a noncompetitive mode. Molecular docking suggested that hydroxyl groups at the 3′, 4′ and 7 positions in flavonoids formed hydrogen-bonding interactions with the side chains of Thr209, Ala194, and Gln193 in OXA-48. Quercetin, fisetin, luteolin, and 3′,4′,7-trihydroxyflavone effectively restored the antibacterial efficacy of piperacillin or imipenem against E. coli producing OXA-48, resulting in 2–8-fold reduction in MIC. Moreover, quercetin combined with piperacillin showed antimicrobial efficacy in mice infection model. These studies provide potential lead compounds for the development of β-lactamase inhibitors and in combination with β-lactams to combat OXA-48 producing pathogen.
Collapse
Affiliation(s)
- Yuejuan Zhang
- Microbiology Institute of Shaanxi, Xi’an, China
- Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, China
| | - Cheng Chen
- College of Forestry, Northwest A&F University, Yangling, China
| | - Bin Cheng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lei Gao
- Microbiology Institute of Shaanxi, Xi’an, China
- Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, China
| | - Chuan Qin
- Microbiology Institute of Shaanxi, Xi’an, China
- Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, China
| | - Lixia Zhang
- Clinical Laboratory, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xu Zhang
- Microbiology Institute of Shaanxi, Xi’an, China
- Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, China
| | - Jun Wang
- Microbiology Institute of Shaanxi, Xi’an, China
- Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, China
| | - Yi Wan
- Microbiology Institute of Shaanxi, Xi’an, China
- Engineering Center of Qinling Mountains Natural Products, Shaanxi Academy of Sciences, Xi’an, China
- *Correspondence: Yi Wan,
| |
Collapse
|
3
|
Hirvonen VA, Weizmann TM, Mulholland AJ, Spencer J, van der Kamp MW. Multiscale Simulations Identify Origins of Differential Carbapenem Hydrolysis by the OXA-48 β-Lactamase. ACS Catal 2022; 12:4534-4544. [PMID: 35571461 PMCID: PMC9097296 DOI: 10.1021/acscatal.1c05694] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/22/2022] [Indexed: 12/27/2022]
Abstract
OXA-48 β-lactamases are frequently encountered in bacterial infections caused by carbapenem-resistant Gram-negative bacteria. Due to the importance of carbapenems in the treatment of healthcare-associated infections and the increasingly wide dissemination of OXA-48-like enzymes on plasmids, these β-lactamases are of high clinical significance. Notably, OXA-48 hydrolyzes imipenem more efficiently than other commonly used carbapenems, such as meropenem. Here, we use extensive multiscale simulations of imipenem and meropenem hydrolysis by OXA-48 to dissect the dynamics and to explore differences in the reactivity of the possible conformational substates of the respective acylenzymes. Quantum mechanics/molecular mechanics (QM/MM) simulations of the deacylation reaction for both substrates demonstrate that deacylation is favored when the 6α-hydroxyethyl group is able to hydrogen bond to the water molecule responsible for deacylation but disfavored by the increasing hydration of either oxygen of the carboxylated Lys73 general base. Differences in free energy barriers calculated from the QM/MM simulations correlate well with the experimentally observed differences in hydrolytic efficiency between meropenem and imipenem. We conclude that the impaired breakdown of meropenem, compared to imipenem, which arises from a subtle change in the hydrogen bonding pattern between the deacylating water molecule and the antibiotic, is most likely induced by the meropenem 1β-methyl group. In addition to increased insights into carbapenem breakdown by OXA β-lactamases, which may aid in future efforts to design antibiotics or inhibitors, our approach exemplifies the combined use of atomistic simulations in determining the possible different enzyme-substrate substates and their influence on enzyme reaction kinetics.
Collapse
Affiliation(s)
- Viivi
H. A. Hirvonen
- School
of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K.
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Tal Moshe Weizmann
- School
of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K.
| | - Adrian J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - James Spencer
- School
of Cellular and Molecular Medicine, University
of Bristol, University
Walk, Bristol BS8 1TD, U.K.
| | - Marc W. van der Kamp
- School
of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K.
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
4
|
C6 Hydroxymethyl-Substituted Carbapenem MA-1-206 Inhibits the Major Acinetobacter baumannii Carbapenemase OXA-23 by Impeding Deacylation. mBio 2022; 13:e0036722. [PMID: 35420470 PMCID: PMC9239083 DOI: 10.1128/mbio.00367-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Acinetobacter baumannii has become a major nosocomial pathogen, as it is often multidrug-resistant, which results in infections characterized by high mortality rates. The bacterium achieves high levels of resistance to β-lactam antibiotics by producing β-lactamases, enzymes which destroy these valuable agents. Historically, the carbapenem family of β-lactam antibiotics have been the drugs of choice for treating A. baumannii infections. However, their effectiveness has been significantly diminished due to the pathogen’s production of carbapenem-hydrolyzing class D β-lactamases (CHDLs); thus, new antibiotics and inhibitors of these enzymes are urgently needed. Here, we describe a new carbapenem antibiotic, MA-1-206, in which the canonical C6 hydroxyethyl group has been replaced with hydroxymethyl. The antimicrobial susceptibility studies presented here demonstrated that this compound is more potent than meropenem and imipenem against A. baumannii producing OXA-23, the most prevalent CHDL of this pathogen, and also against strains producing the CHDL OXA-24/40 and the class B metallo-β-lactamase VIM-2. Our kinetic and mass spectrometry studies revealed that this drug is a reversible inhibitor of OXA-23, where inhibition takes place through a branched pathway. X-ray crystallographic studies, molecular docking, and molecular dynamics simulations of the OXA-23-MA-1-206 complex show that the C6 hydroxymethyl group forms a hydrogen bond with the carboxylated catalytic lysine of OXA-23, effectively preventing deacylation. These results provide a promising strategy for designing a new generation of CHDL-resistant carbapenems to restore their efficacy against deadly A. baumannii infections.
Collapse
|
5
|
Taylor DM, Anglin J, Hu L, Wang L, Sankaran B, Wang J, Matzuk MM, Prasad BV, Palzkill T. Unique Diacidic Fragments Inhibit the OXA-48 Carbapenemase and Enhance the Killing of Escherichia coli Producing OXA-48. ACS Infect Dis 2021; 7:3345-3354. [PMID: 34817169 PMCID: PMC9677231 DOI: 10.1021/acsinfecdis.1c00501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite the advances in β-lactamase inhibitor development, limited options exist for the class D carbapenemase known as OXA-48. OXA-48 is one of the most prevalent carbapenemases in carbapenem-resistant Enterobacteriaceae infections and is not susceptible to most available β-lactamase inhibitors. Here, we screened various low-molecular-weight compounds (fragments) against OXA-48 to identify functional scaffolds for inhibitor development. Several biphenyl-, naphthalene-, fluorene-, anthraquinone-, and azobenzene-based compounds were found to inhibit OXA-48 with low micromolar potency despite their small size. Co-crystal structures of OXA-48 with several of these compounds revealed key interactions with the carboxylate-binding pocket, Arg214, and various hydrophobic residues of β-lactamase that can be exploited in future inhibitor development. A number of the low-micromolar-potency inhibitors, across different scaffolds, synergize with ampicillin to kill Escherichia coli expressing OXA-48, albeit at high concentrations of the respective inhibitors. Additionally, several compounds demonstrated micromolar potency toward the OXA-24 and OXA-58 class D carbapenemases that are prevalent in Acinetobacter baumannii. This work provides foundational information on a variety of chemical scaffolds that can guide the design of effective OXA-48 inhibitors that maintain efficacy as well as potency toward other major class D carbapenemases.
Collapse
Affiliation(s)
- Doris Mia Taylor
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Justin Anglin
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lingfei Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Advanced Light Source, Lawrence Berkeley National Laboratory, CA, 94720, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Martin M. Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - B.V. Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Timothy Palzkill
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
6
|
Mora-Ochomogo M, Lohans CT. β-Lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates. RSC Med Chem 2021; 12:1623-1639. [PMID: 34778765 PMCID: PMC8528271 DOI: 10.1039/d1md00200g] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/25/2021] [Indexed: 12/24/2022] Open
Abstract
The β-lactams are the most widely used antibacterial agents worldwide. These antibiotics, a group that includes the penicillins and cephalosporins, are covalent inhibitors that target bacterial penicillin-binding proteins and disrupt peptidoglycan synthesis. Bacteria can achieve resistance to β-lactams in several ways, including the production of serine β-lactamase enzymes. While β-lactams also covalently interact with serine β-lactamases, these enzymes are capable of deacylating this complex, treating the antibiotic as a substrate. In this tutorial-style review, we provide an overview of the β-lactam antibiotics, focusing on their covalent interactions with their target proteins and resistance mechanisms. We begin by describing the structurally diverse range of β-lactam antibiotics and β-lactamase inhibitors that are currently used as therapeutics. Then, we introduce the penicillin-binding proteins, describing their functions and structures, and highlighting their interactions with β-lactam antibiotics. We next describe the classes of serine β-lactamases, exploring some of the mechanisms by which they achieve the ability to degrade β-lactams. Finally, we introduce the l,d-transpeptidases, a group of bacterial enzymes involved in peptidoglycan synthesis which are also targeted by β-lactam antibiotics. Although resistance mechanisms are now prevalent for all antibiotics in this class, past successes in antibiotic development have at least delayed this onset of resistance. The β-lactams continue to be an essential tool for the treatment of infectious disease, and recent advances (e.g., β-lactamase inhibitor development) will continue to support their future use.
Collapse
Affiliation(s)
| | - Christopher T Lohans
- Department of Biomedical and Molecular Sciences, Queen's University Kingston ON K7L 3N6 Canada
| |
Collapse
|
7
|
Lund BA, Thomassen AM, Carlsen TJW, Leiros HKS. Biochemical and biophysical characterization of the OXA-48-like carbapenemase OXA-436. Acta Crystallogr F Struct Biol Commun 2021; 77:312-318. [PMID: 34473108 PMCID: PMC8411929 DOI: 10.1107/s2053230x21008645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/18/2021] [Indexed: 11/08/2023] Open
Abstract
The crystal structure of the class D β-lactamase OXA-436 was solved to a resolution of 1.80 Å. Higher catalytic rates were found at higher temperatures for the clinically important antibiotic imipenem, indicating better adaptation of OXA-436 to its mesophilic host than OXA-48, which is believed to originate from an environmental source. Furthermore, based on the most populated conformations during 100 ns molecular-dynamics simulations, it is postulated that the modulation of activity involves conformational shifts of the α3-α4 and β5-β6 loops. While these changes overall do not cause clinically significant shifts in the resistance profile, they show that antibiotic-resistance enzymes exist in a continuum. It is believed that these seemingly neutral differences in the sequence exist on a path leading to significant changes in substrate selectivity.
Collapse
Affiliation(s)
- Bjarte Aarmo Lund
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Ane Molden Thomassen
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Trine Josefine Warg Carlsen
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Hanna-Kirsti Schrøder Leiros
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
8
|
Discovery of Novel Chemical Series of OXA-48 β-Lactamase Inhibitors by High-Throughput Screening. Pharmaceuticals (Basel) 2021; 14:ph14070612. [PMID: 34202402 PMCID: PMC8308845 DOI: 10.3390/ph14070612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
The major cause of bacterial resistance to β-lactams is the production of hydrolytic β-lactamase enzymes. Nowadays, the combination of β-lactam antibiotics with β-lactamase inhibitors (BLIs) is the main strategy for overcoming such issues. Nevertheless, particularly challenging β-lactamases, such as OXA-48, pose the need for novel and effective treatments. Herein, we describe the screening of a proprietary compound collection against Klebsiella pneumoniae OXA-48, leading to the identification of several chemotypes, like the 4-ideneamino-4H-1,2,4-triazole (SC_2) and pyrazolo[3,4-b]pyridine (SC_7) cores as potential inhibitors. Importantly, the most potent representative of the latter series (ID2, AC50 = 0.99 μM) inhibited OXA-48 via a reversible and competitive mechanism of action, as demonstrated by biochemical and X-ray studies; furthermore, it slightly improved imipenem’s activity in Escherichia coli ATCC BAA-2523 β-lactam resistant strain. Also, ID2 showed good solubility and no sign of toxicity up to the highest tested concentration, resulting in a promising starting point for further optimization programs toward novel and effective non-β-lactam BLIs.
Collapse
|
9
|
Antimicrobial Resistance Conferred by OXA-48 β-Lactamases: Towards a Detailed Mechanistic Understanding. Antimicrob Agents Chemother 2021; 65:AAC.00184-21. [PMID: 33753332 DOI: 10.1128/aac.00184-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OXA-48-type β-lactamases are now routinely encountered in bacterial infections caused by carbapenem-resistant Enterobacterales These enzymes are of high and growing clinical significance due to the importance of carbapenems in treatment of health care-associated infections by Gram-negative bacteria, the wide and increasing dissemination of OXA-48 enzymes on plasmids, and the challenges posed by their detection. OXA-48 confers resistance to penicillin (which is efficiently hydrolyzed) and carbapenem antibiotics (which is more slowly broken down). In addition to the parent enzyme, a growing array of variants of OXA-48 is now emerging. The spectrum of activity of these variants varies, with some hydrolyzing expanded-spectrum oxyimino-cephalosporins. The growth in importance and diversity of the OXA-48 group has motivated increasing numbers of studies that aim to elucidate the relationship between structure and specificity and establish the mechanistic basis for β-lactam turnover in this enzyme family. In this review, we collate recently published structural, kinetic, and mechanistic information on the interactions between clinically relevant β-lactam antibiotics and inhibitors and OXA-48 β-lactamases. Collectively, these studies are starting to form a detailed picture of the underlying bases for the differences in β-lactam specificity between OXA-48 variants and the consequent differences in resistance phenotype. We focus specifically on aspects of carbapenemase and cephalosporinase activities of OXA-48 β-lactamases and discuss β-lactamase inhibitor development in this context. Throughout the review, we also outline key open research questions for future investigation.
Collapse
|
10
|
Abstract
Very low antibiotic concentrations have been shown to drive the evolution of antimicrobial resistance. While substantial progress has been made to understand the driving role of low concentrations during resistance development for different antimicrobial classes, the importance of β-lactams, the most commonly used antibiotics, is still poorly studied. Our current understanding of how low antibiotic concentrations shape the evolution of contemporary β-lactamases is limited. Using the widespread carbapenemase OXA-48, we tested the long-standing hypothesis that selective compartments with low antibiotic concentrations cause standing genetic diversity that could act as a gateway to developing clinical resistance. Here, we subjected Escherichia coli expressing blaOXA-48, on a clinical plasmid, to experimental evolution at sub-MICs of ceftazidime. We identified and characterized seven single variants of OXA-48. Susceptibility profiles and dose-response curves showed that they increased resistance only marginally. However, in competition experiments at sub-MICs of ceftazidime, they demonstrated strong selectable fitness benefits. Increased resistance was also reflected in elevated catalytic efficiencies toward ceftazidime. These changes are likely caused by enhanced flexibility of the Ω- and β5-β6 loops and fine-tuning of preexisting active site residues. In conclusion, low-level concentrations of β-lactams can drive the evolution of β-lactamases through cryptic phenotypes which may act as stepping-stones toward clinical resistance. IMPORTANCE Very low antibiotic concentrations have been shown to drive the evolution of antimicrobial resistance. While substantial progress has been made to understand the driving role of low concentrations during resistance development for different antimicrobial classes, the importance of β-lactams, the most commonly used antibiotics, is still poorly studied. Here, we shed light on the evolutionary impact of low β-lactam concentrations on the widespread β-lactamase OXA-48. Our data indicate that the exposure to β-lactams at very low concentrations enhances β-lactamase diversity and drives the evolution of β-lactamases by significantly influencing their substrate specificity. Thus, in contrast to high concentrations, low levels of these drugs may substantially contribute to the diversification and divergent evolution of these enzymes, providing a standing genetic diversity that can be selected and mobilized when antibiotic pressure increases.
Collapse
|
11
|
Stojanoski V, Hu L, Sankaran B, Wang F, Tao P, Prasad BV, Palzkill T. Mechanistic Basis of OXA-48-like β-Lactamases' Hydrolysis of Carbapenems. ACS Infect Dis 2021; 7:445-460. [PMID: 33492952 PMCID: PMC8571991 DOI: 10.1021/acsinfecdis.0c00798] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Carbapenem-hydrolyzing class D β-lactamases (CHDLs) are an important source of resistance to these last resort β-lactam antibiotics. OXA-48 is a member of a group of CHDLs named OXA-48-like enzymes. On the basis of sequence similarity, OXA-163 can be classified as an OXA-48-like enzyme, but it has altered substrate specificity. Compared to OXA-48, it shows impaired activity for carbapenems but displays an enhanced hydrolysis of oxyimino-cephalosporins. Here, we address the mechanistic and structural basis for carbapenem hydrolysis by OXA-48-like enzymes. Pre-steady-state kinetic analysis indicates that the rate-limiting step for OXA-48 and OXA-163 hydrolysis of carbapenems is deacylation and that the greatly reduced carbapenemase activity of OXA-163 compared to that of OXA-48 is due entirely to a slower deacylation reaction. Furthermore, our structural data indicate that the positioning of the β5-β6 loop is necessary for carbapenem hydrolysis by OXA-48. A major difference between the OXA-48 and OXA-163 complexes with carbapenems is that the 214-RIEP-217 deletion in OXA-163 creates a large opening in the active site that is absent in the OXA-48/carbapenem structures. We propose that the larger active site results in less constraint on the conformation of the 6α-hydroxyethyl group in the acyl-enzyme. The acyl-enzyme intermediate assumes multiple conformations, most of which are incompatible with rapid deacylation. Consistent with this hypothesis, molecular dynamics simulations indicate that the most stable complex is formed between OXA-48 and imipenem, which correlates with the OXA-48 hydrolysis of imipenem being the fastest observed. Furthermore, the OXA-163 complexes with imipenem and meropenem are the least stable and show significant conformational fluctuations, which correlates with the slow hydrolysis of these substrates.
Collapse
Affiliation(s)
- Vlatko Stojanoski
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Feng Wang
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, USA
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, USA
| | - B.V. Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Timothy Palzkill
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
12
|
Aertker KMJ, Chan HTH, Lohans CT, Schofield CJ. Analysis of β-lactone formation by clinically observed carbapenemases informs on a novel antibiotic resistance mechanism. J Biol Chem 2020; 295:16604-16613. [PMID: 32963107 PMCID: PMC7864059 DOI: 10.1074/jbc.ra120.014607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/07/2020] [Indexed: 01/18/2023] Open
Abstract
An important mechanism of resistance to β-lactam antibiotics is via their β-lactamase-catalyzed hydrolysis. Recent work has shown that, in addition to the established hydrolysis products, the reaction of the class D nucleophilic serine β-lactamases (SBLs) with carbapenems also produces β-lactones. We report studies on the factors determining β-lactone formation by class D SBLs. We show that variations in hydrophobic residues at the active site of class D SBLs (i.e. Trp105, Val120, and Leu158, using OXA-48 numbering) impact on the relative levels of β-lactones and hydrolysis products formed. Some variants, i.e. the OXA-48 V120L and OXA-23 V128L variants, catalyze increased β-lactone formation compared with the WT enzymes. The results of kinetic and product studies reveal that variations of residues other than those directly involved in catalysis, including those arising from clinically observed mutations, can alter the reaction outcome of class D SBL catalysis. NMR studies show that some class D SBL variants catalyze formation of β-lactones from all clinically relevant carbapenems regardless of the presence or absence of a 1β-methyl substituent. Analysis of reported crystal structures for carbapenem-derived acyl-enzyme complexes reveals preferred conformations for hydrolysis and β-lactone formation. The observation of increased β-lactone formation by class D SBL variants, including the clinically observed carbapenemase OXA-48 V120L, supports the proposal that class D SBL-catalyzed rearrangement of β-lactams to β-lactones is important as a resistance mechanism.
Collapse
Affiliation(s)
| | - H T Henry Chan
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Christopher T Lohans
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| | | |
Collapse
|
13
|
Leiros HKS, Thomassen AM, Samuelsen Ø, Flach CF, Kotsakis SD, Larsson DGJ. Structural insights into the enhanced carbapenemase efficiency of OXA-655 compared to OXA-10. FEBS Open Bio 2020; 10:1821-1832. [PMID: 32683794 PMCID: PMC7459404 DOI: 10.1002/2211-5463.12935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/17/2020] [Accepted: 07/15/2020] [Indexed: 11/17/2022] Open
Abstract
Carbapenemases are the main cause of carbapenem resistance in Gram‐negative bacteria. How β‐lactamases with weak carbapenemase activity, such as the OXA‐10‐type class D β‐lactamases, contribute to anti‐bacterial drug resistance is unclear. OXA‐655 is a T26M and V117L OXA‐10 variant, recently identified from hospital wastewater. Despite exhibiting stronger carbapenemase activity towards ertapenem (ETP) and meropenem (MEM) in Escherichia coli, OXA‐655 exhibits reduced activity towards oxyimino‐substituted β‐lactams like ceftazidime. Here, we have solved crystal structures of OXA‐10 in complex with imipenem (IPM) and ETP, and OXA‐655 in complex with MEM in order to unravel the structure–function relationship and the impact of residue 117 in enzyme catalysis. The new crystal structures show that L117 is situated at a critical position with enhanced Van der Waals interactions to L155 in the omega loop. This restricts the movements of L155 and could explain the reduced ability for OXA‐655 to bind a bulky oxyimino group. The V117L replacement in OXA‐655 makes the active site S67 and the carboxylated K70 more water exposed. This could affect the supply of new deacylation water molecules required for hydrolysis and possibly the carboxylation rate of K70. But most importantly, L117 leaves more space for binding of the hydroxyethyl group in carbapenems. In summary, the crystal structures highlight the importance of residue 117 in OXA‐10 variants for carbapenemase activity. This study also illustrates the impact of a single amino acid substitution on the substrate profile of OXA‐10 and the evolutionary potential of new OXA‐10 variants.
Collapse
Affiliation(s)
- Hanna-Kirsti S Leiros
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ane Molden Thomassen
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ørjan Samuelsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.,Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Carl-Fredrik Flach
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Stathis D Kotsakis
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Taylor DM, Anglin J, Park S, Ucisik MN, Faver JC, Simmons N, Jin Z, Palaniappan M, Nyshadham P, Li F, Campbell J, Hu L, Sankaran B, Prasad BV, Huang H, Matzuk MM, Palzkill T. Identifying Oxacillinase-48 Carbapenemase Inhibitors Using DNA-Encoded Chemical Libraries. ACS Infect Dis 2020; 6:1214-1227. [PMID: 32182432 PMCID: PMC7673237 DOI: 10.1021/acsinfecdis.0c00015] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacterial resistance to β-lactam antibiotics is largely mediated by β-lactamases, which catalyze the hydrolysis of these drugs and continue to emerge in response to antibiotic use. β-Lactamases that hydrolyze the last resort carbapenem class of β-lactam antibiotics (carbapenemases) are a growing global health threat. Inhibitors have been developed to prevent β-lactamase-mediated hydrolysis and restore the efficacy of these antibiotics. However, there are few inhibitors available for problematic carbapenemases such as oxacillinase-48 (OXA-48). A DNA-encoded chemical library approach was used to rapidly screen for compounds that bind and potentially inhibit OXA-48. Using this approach, a hit compound, CDD-97, was identified with submicromolar potency (Ki = 0.53 ± 0.08 μM) against OXA-48. X-ray crystallography showed that CDD-97 binds noncovalently in the active site of OXA-48. Synthesis and testing of derivatives of CDD-97 revealed structure-activity relationships and informed the design of a compound with a 2-fold increase in potency. CDD-97, however, synergizes poorly with β-lactam antibiotics to inhibit the growth of bacteria expressing OXA-48 due to poor accumulation into E. coli. Despite the low in vivo activity, CDD-97 provides new insights into OXA-48 inhibition and demonstrates the potential of using DNA-encoded chemistry technology to rapidly identify β-lactamase binders and to study β-lactamase inhibition, leading to clinically useful inhibitors.
Collapse
Affiliation(s)
- Doris Mia Taylor
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Justin Anglin
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Suhyeorn Park
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Melek N. Ucisik
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - John C. Faver
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nicholas Simmons
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhuang Jin
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Murugesan Palaniappan
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Pranavanand Nyshadham
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Feng Li
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - James Campbell
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Advanced Light Source, Lawrence Berkeley National Lab, CA, 94720, USA
| | - B.V. Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hongbing Huang
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Martin M. Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030 USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Timothy Palzkill
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
15
|
Dabos L, Zavala A, Bonnin RA, Beckstein O, Retailleau P, Iorga BI, Naas T. Substrate Specificity of OXA-48 after β5-β6 Loop Replacement. ACS Infect Dis 2020; 6:1032-1043. [PMID: 32156115 DOI: 10.1021/acsinfecdis.9b00452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OXA-48 carbapenemase has rapidly spread in many countries worldwide with several OXA-48-variants being described, differing by a few amino acid (AA) substitutions or deletions, mostly in the β5-β6 loop. While single AA substitutions have only a minor impact on OXA-48 hydrolytic profiles, others with 4 AA deletions result in loss of carbapenem hydrolysis and gain of expanded-spectrum cephalosporin (ESC) hydrolysis. We have replaced the β5-β6 loop of OXA-48 with that of OXA-18, a clavulanic-acid inhibited oxacillinase capable of hydrolyzing ESCs but not carbapenems. The hybrid enzyme OXA-48Loop18 was able to hydrolyze ESCs and carbapenems (although with a lower kcat), even though the β5-β6 loop was longer and its sequence quite different from that of OXA-48. The kinetic parameters of OXA-48Loop18 were in agreement with the MIC values. X-ray crystallography and molecular modeling suggest that the conformation of the grafted loop allows the binding of bulkier substrates, unlike that of the native loop, expanding the hydrolytic profile. This seems to be due not only to differences in AA sequence, but also to the backbone conformation the loop can adopt. Finally, our results provide further experimental evidence for the role of the β5-β6 loop in substrate selectivity of OXA-48-like enzymes and additional details on the structure-function relationship of β-lactamases, demonstrating how localized changes in these proteins can alter or expand their function, highlighting their plasticity.
Collapse
Affiliation(s)
- Laura Dabos
- EA7361 “Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases”, Université Paris Sud, Université Paris Saclay, LabEx Lermit, Faculty of Medicine, 94270 Le Kremlin-Bicêtre, France
- Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur−APHP−Université Paris Sud, 75015 Paris, France
| | - Agustin Zavala
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, Labex LERMIT, 91190 Gif-sur-Yvette, France
| | - Rémy A. Bonnin
- EA7361 “Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases”, Université Paris Sud, Université Paris Saclay, LabEx Lermit, Faculty of Medicine, 94270 Le Kremlin-Bicêtre, France
- Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur−APHP−Université Paris Sud, 75015 Paris, France
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
| | - Oliver Beckstein
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, 85281 Arizona, United States
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, Labex LERMIT, 91190 Gif-sur-Yvette, France
| | - Bogdan I. Iorga
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, Labex LERMIT, 91190 Gif-sur-Yvette, France
| | - Thierry Naas
- EA7361 “Structure, Dynamic, Function and Expression of Broad Spectrum β-Lactamases”, Université Paris Sud, Université Paris Saclay, LabEx Lermit, Faculty of Medicine, 94270 Le Kremlin-Bicêtre, France
- Evolution and Ecology of Resistance to Antibiotics Unit, Institut Pasteur−APHP−Université Paris Sud, 75015 Paris, France
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique/Hôpitaux de Paris, Bicêtre Hospital, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
16
|
Hirvonen VHA, Mulholland AJ, Spencer J, van der Kamp MW. Small Changes in Hydration Determine Cephalosporinase Activity of OXA-48 β-Lactamases. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00596] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Viivi H. A. Hirvonen
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD United Kingdom
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS United Kingdom
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS United Kingdom
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol, BS8 1TD United Kingdom
| | - Marc W. van der Kamp
- School of Biochemistry, University of Bristol, University Walk, Bristol, BS8 1TD United Kingdom
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS United Kingdom
| |
Collapse
|
17
|
Akhtar A, Pemberton OA, Chen Y. Structural Basis for Substrate Specificity and Carbapenemase Activity of OXA-48 Class D β-Lactamase. ACS Infect Dis 2020; 6:261-271. [PMID: 31872762 DOI: 10.1021/acsinfecdis.9b00304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Carbapenem-hydrolyzing class D β-lactamases (CHDLs) are a diverse family of enzymes that are rapidly becoming the predominant cause of bacterial resistance against β-lactam antibiotics in many regions of the world. OXA-48, an atypical member of CHDLs, is one of the most frequently observed in the clinic and exhibits a unique substrate profile. We applied X-ray crystallography to OXA-48 complexes with multiple β-lactam antibiotics to elucidate this enzyme's carbapenemase activity and its preference of imipenem over meropenem and other substrates such as cefotaxime. In particular, we obtained acyl-enzyme complexes of OXA-48 with imipenem, meropenem, faropenem, cefotaxime, and cefoxitin, and a product complex with imipenem. Importantly, the product complex captures a key reaction milestone with the newly generated carboxylate group still in the oxyanion hole, and represents the first such complex with a wild-type serine β-lactamase. A potential hydrogen bond is observed between the two carboxylate groups from the product and the carbamylated Lys73, representing the stage immediately after the breakage of the acyl-enzyme bond where the product carboxylate would be neutral. The placement of the product carboxylate also illustrates the approximate transient location of the deacylation water that has long eluded structural characterization in class D β-lactamases. Additionally, comparing the product complex with the acyl-enzyme intermediates provides new insights into the various mechanisms by which specific side chain groups hinder the access of the deacylation water to the acyl-enzyme linkage, especially in meropenem. Taken together, these data offer valuable information on the substrate specificity of OXA-48 and the catalytic mechanism of CHDLs.
Collapse
Affiliation(s)
- Afroza Akhtar
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Boulevard, MDC 3522, Tampa, Florida 33612, United States
| | - Orville A. Pemberton
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Boulevard, MDC 3522, Tampa, Florida 33612, United States
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Boulevard, MDC 3522, Tampa, Florida 33612, United States
| |
Collapse
|
18
|
Smith CA, Stewart NK, Toth M, Vakulenko SB. Structural Insights into the Mechanism of Carbapenemase Activity of the OXA-48 β-Lactamase. Antimicrob Agents Chemother 2019; 63:e01202-19. [PMID: 31358584 PMCID: PMC6761500 DOI: 10.1128/aac.01202-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/24/2019] [Indexed: 01/02/2023] Open
Abstract
Carbapenem-hydrolyzing class D carbapenemases (CHDLs) are enzymes that produce resistance to the last-resort carbapenem antibiotics, severely compromising the available therapeutic options for the treatment of life-threatening infections. A broad variety of CHDLs, including OXA-23, OXA-24/40, and OXA-58, circulate in Acinetobacter baumannii, while the OXA-48 CHDL is predominant in Enterobacteriaceae Extensive structural studies of A. baumannii enzymes have provided important information regarding their interactions with carbapenems and significantly contributed to the understanding of the mechanism of their carbapenemase activity. However, the interactions between carbapenems and OXA-48 have not yet been elucidated. We determined the X-ray crystal structures of the acyl-enzyme complexes of OXA-48 with four carbapenems, imipenem, meropenem, ertapenem, and doripenem, and compared them with those of known carbapenem complexes of A. baumannii CHDLs. In the A. baumannii enzymes, acylation by carbapenems triggers significant displacement of one of two conserved hydrophobic surface residues, resulting in the formation of a channel for entry of the deacylating water into the active site. We show that such a channel preexists in apo-OXA-48 and that only minor displacement of the conserved hydrophobic surface residues occurs upon the formation of OXA-48 acyl-enzyme intermediates. We also demonstrate that the extensive hydrophobic interactions that occur between a conserved hydrophobic bridge of the A. baumannii CHDLs and the carbapenem tails are lost in OXA-48 in the absence of an equivalent bridge structure. These data highlight significant differences between the interactions of carbapenems with OXA-48 and those with A. baumannii enzymes and provide important insights into the mechanism of carbapenemase activity of the major Enterobacteriaceae CHDL, OXA-48.
Collapse
Affiliation(s)
- Clyde A Smith
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California, USA
| | - Nichole K Stewart
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Sergei B Vakulenko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
19
|
Wang X, Gao Y, Yu Y, Yang Y, Wang G, Sun L, Niu X. Design of dipicolinic acid derivatives as New Delhi metallo-β-lactamase-1 inhibitors using a combined computational approach. J Biomol Struct Dyn 2019; 38:3384-3395. [PMID: 31549586 DOI: 10.1080/07391102.2019.1663262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
New Delhi metallo-β-lactamase (NDM-1) is the most recent addition to the class of metallo-β-lactamases (MBLs). This enzyme leads to antibiotic resistance in clinical treatments owing to its exertion of hydrolysis activity in almost all clinically available β-lactam antibiotics. Consequently, inhibitors targeting NDM-1 have attracted considerable research attention. However, progress has been slow regarding the study of the quantitative structure-activity relationship (QSAR) of NDM-1 inhibitors. In this study, a three-dimensional QSAR (3 D-QSAR) for NDM-1 inhibitors was established using Topomer CoMFA. The multiple correlation coefficients of the fitting model, leave-one-out cross validation, and external validation were found to be 0.761, 0.976, and 0.972, respectively. Topomer Search was used to design 16 new molecules that inhibit NDM-1 using R-group search from ZINC databases, 10 of which had comparatively high activities against NDM-1. The results indicate that Topomer CoMFA and Topomer Search can be used to design new NDM-1 inhibitors and guide the design of new NDM-1 drugs with good predictive capability. Furthermore, from molecular modeling and binding free-energy calculation, it was found that the newly designed molecules can bind to the catalytic region of NDM-1. Additionally, the newly designed inhibitors formed strong interactions with Ile35, Met67, Phe70, Trp93, His122, His189, Cys208, and His250 around the Zn2+-centered active region of NDM-1. These findings will facilitate the development of more effective NDM-1 inhibitors for use as potential antibacterial agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiyan Wang
- College of Food Science and Engineering, Jilin University, Changchun China
| | - Yawen Gao
- College of Food Science and Engineering, Jilin University, Changchun China
| | - Yiding Yu
- College of Food Science and Engineering, Jilin University, Changchun China
| | - Yanan Yang
- College of Food Science and Engineering, Jilin University, Changchun China
| | - Guizhen Wang
- College of Food Science and Engineering, Jilin University, Changchun China
| | - Lin Sun
- College of Food Science and Engineering, Jilin University, Changchun China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun China
| |
Collapse
|
20
|
Pemberton OA, Jaishankar P, Akhtar A, Adams JL, Shaw LN, Renslo AR, Chen Y. Heteroaryl Phosphonates as Noncovalent Inhibitors of Both Serine- and Metallocarbapenemases. J Med Chem 2019; 62:8480-8496. [PMID: 31483651 DOI: 10.1021/acs.jmedchem.9b00728] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gram-negative pathogens expressing serine β-lactamases (SBLs) and metallo-β-lactamases (MBLs), especially those with carbapenemase activity, threaten the clinical utility of almost all β-lactam antibiotics. Here we describe the discovery of a heteroaryl phosphonate scaffold that exhibits noncovalent cross-class inhibition of representative carbapenemases, specifically the SBL KPC-2 and the MBLs NDM-1 and VIM-2. The most potent lead, compound 16, exhibited low nM to low μM inhibition of KPC-2, NDM-1, and VIM-2. Compound 16 potentiated imipenem efficacy against resistant clinical and laboratory bacterial strains expressing carbapenemases while showing some cytotoxicity toward human HEK293T cells only at concentrations above 100 μg/mL. Complex structures with KPC-2, NDM-1, and VIM-2 demonstrate how these inhibitors achieve high binding affinity to both enzyme classes. These findings provide a structurally and mechanistically new scaffold for drug discovery targeting multidrug resistant Gram-negative pathogens and more generally highlight the active site features of carbapenemases that can be leveraged for lead discovery.
Collapse
Affiliation(s)
- Orville A Pemberton
- Department of Molecular Medicine , University of South Florida Morsani College of Medicine , 12901 Bruce B. Downs Boulevard, MDC 3522 , Tampa , Florida 33612 , United States
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center , University of California, San Francisco , 600 16th Street, Genentech Hall N574 , San Francisco , California 94158 , United States
| | - Afroza Akhtar
- Department of Molecular Medicine , University of South Florida Morsani College of Medicine , 12901 Bruce B. Downs Boulevard, MDC 3522 , Tampa , Florida 33612 , United States
| | - Jessie L Adams
- Department of Cell Biology, Microbiology & Molecular Biology , University of South Florida , 4202 E. Fowler Avenue , Tampa , Florida 33620 , United States
| | - Lindsey N Shaw
- Department of Cell Biology, Microbiology & Molecular Biology , University of South Florida , 4202 E. Fowler Avenue , Tampa , Florida 33620 , United States
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center , University of California, San Francisco , 600 16th Street, Genentech Hall N574 , San Francisco , California 94158 , United States
| | - Yu Chen
- Department of Molecular Medicine , University of South Florida Morsani College of Medicine , 12901 Bruce B. Downs Boulevard, MDC 3522 , Tampa , Florida 33612 , United States
| |
Collapse
|
21
|
Structural Analysis of The OXA-48 Carbapenemase Bound to A "Poor" Carbapenem Substrate, Doripenem. Antibiotics (Basel) 2019; 8:antibiotics8030145. [PMID: 31514291 PMCID: PMC6783824 DOI: 10.3390/antibiotics8030145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae are a significant threat to public health, and a major resistance determinant that promotes this phenotype is the production of the OXA-48 carbapenemase. The activity of OXA-48 towards carbapenems is a puzzling phenotype as its hydrolytic activity against doripenem is non-detectable. To probe the mechanistic basis for this observation, we determined the 1.5 Å resolution crystal structure of the deacylation deficient K73A variant of OXA-48 in complex with doripenem. Doripenem is observed in the Δ1R and Δ1S tautomeric states covalently attached to the catalytic S70 residue. Likely due to positioning of residue Y211, the carboxylate moiety of doripenem is making fewer hydrogen bonding/salt-bridge interactions with R250 compared to previously determined carbapenem OXA structures. Moreover, the hydroxyethyl side chain of doripenem is making van der Waals interactions with a key V120 residue, which likely affects the deacylation rate of doripenem. We hypothesize that positions V120 and Y211 play important roles in the carbapenemase profile of OXA-48. Herein, we provide insights for the further development of the carbapenem class of antibiotics that could render them less effective to hydrolysis by or even inhibit OXA carbapenemases.
Collapse
|
22
|
van Groesen E, Lohans CT, Brem J, Aertker KMJ, Claridge TDW, Schofield CJ. 19 F NMR Monitoring of Reversible Protein Post-Translational Modifications: Class D β-Lactamase Carbamylation and Inhibition. Chemistry 2019; 25:11837-11841. [PMID: 31310409 PMCID: PMC6771976 DOI: 10.1002/chem.201902529] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/11/2019] [Indexed: 11/05/2022]
Abstract
Bacterial production of β‐lactamases with carbapenemase activity is a global health threat. The active sites of class D carbapenemases such as OXA‐48, which is of major clinical importance, uniquely contain a carbamylated lysine residue which is essential for catalysis. Although there is significant interest in characterizing this post‐translational modification, and it is a promising inhibition target, protein carbamylation is challenging to monitor in solution. We report the use of 19F NMR spectroscopy to monitor the carbamylation state of 19F‐labelled OXA‐48. This method was used to investigate the interactions of OXA‐48 with clinically used serine β‐lactamase inhibitors, including avibactam and vaborbactam. Crystallographic studies on 19F‐labelled OXA‐48 provide a structural rationale for the sensitivity of the 19F label to active site interactions. The overall results demonstrate the use of 19F NMR to monitor reversible covalent post‐translational modifications.
Collapse
Affiliation(s)
- Emma van Groesen
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Christopher T Lohans
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Jürgen Brem
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | | | | | | |
Collapse
|
23
|
Torelli NJ, Akhtar A, DeFrees K, Jaishankar P, Pemberton OA, Zhang X, Johnson C, Renslo AR, Chen Y. Active-Site Druggability of Carbapenemases and Broad-Spectrum Inhibitor Discovery. ACS Infect Dis 2019; 5:1013-1021. [PMID: 30942078 DOI: 10.1021/acsinfecdis.9b00052] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Serine and metallo-carbapenemases are a serious health concern due to their capability to hydrolyze nearly all β-lactam antibiotics. However, the molecular basis for their unique broad-spectrum substrate profile is poorly understood, particularly for serine carbapenemases, such as KPC-2. Using substrates and newly identified small molecules, we compared the ligand binding properties of KPC-2 with the noncarbapenemase CTX-M-14, both of which are Class A β-lactamases with highly similar active sites. Notably, compared to CTX-M-14, KPC-2 was more potently inhibited by hydrolyzed β-lactam products (product inhibition), as well as by a series of novel tetrazole-based inhibitors selected from molecular docking against CTX-M-14. Together with complex crystal structures, these data suggest that the KPC-2 active site has an enhanced ability to form favorable interactions with substrates and small molecule ligands due to its increased hydrophobicity and flexibility. Such properties are even more pronounced in metallo-carbapenemases, such as NDM-1, which was also inhibited by some of the novel tetrazole compounds, including one displaying comparable low μM affinities against both KPC-2 and NDM-1. Our results suggest that carbapenemase activity confers an evolutionary advantage on producers via a broad β-lactam substrate scope but also a mechanistic Achilles' heel that can be exploited for new inhibitor discovery. The complex structures demonstrate, for the first time, how noncovalent inhibitors can be engineered to simultaneously target both serine and metallo-carbapenemases. Despite the relatively modest activity of the current compounds, these studies also demonstrate that hydrolyzed products and tetrazole-based chemotypes can provide valuable starting points for broad-spectrum inhibitor discovery against carbapenemases.
Collapse
Affiliation(s)
- Nicholas J. Torelli
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Afroza Akhtar
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Kyle DeFrees
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, 600 16th Street, Genentech Hall N572B, San Francisco, California 94158, United States
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, 600 16th Street, Genentech Hall N572B, San Francisco, California 94158, United States
| | - Orville A. Pemberton
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Xiujun Zhang
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Cody Johnson
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, 600 16th Street, Genentech Hall N572B, San Francisco, California 94158, United States
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| |
Collapse
|
24
|
Abstract
Infections due to carbapenemase-producing Gram-negative pathogens are associated with limited treatment options and consequently lead to increased mortality and morbidity. In response, combinations of existing β-lactams and novel β-lactamase inhibitors, such as ceftazidime-avibactam (CAZ-AVI), have been developed as alternative treatment options. To understand the development of resistance and evolutionary trajectories under CAZ-AVI exposure, we studied the effects of ceftazidime (CAZ) and CAZ-AVI on the carbapenemase OXA-48 and the epidemic OXA-48 plasmid in Escherichia coli Exposure of CAZ and CAZ-AVI resulted in single (P68A) and double (P68A,Y211S) amino acid substitutions in OXA-48, respectively. The antimicrobial susceptibility data and enzyme kinetics showed that the P68A substitution was responsible for an increased activity toward CAZ, whereas P68A,Y211S led to a decrease in the inhibitory activity of AVI. X-ray crystallography and molecular modeling of the mutants demonstrated increased flexibility within the active site, which could explain the elevated CAZ hydrolysis and reduced inhibitory activity of AVI. Interestingly, these substitutions resulted in collateral effects compromising the activity of OXA-48 toward carbapenems and penicillins. Moreover, exposure to CAZ-AVI selected for mutations within the OXA-48-encoding plasmid that severely reduced fitness in the absence of antimicrobial selection. These evolutionary trade-offs may contribute to limit the evolution of OXA-48-mediated CAZ and CAZ-AVI resistance, as well as potentially resensitize isolates toward other therapeutic alternatives.IMPORTANCE The recent introduction of novel β-lactam/β-lactamase inhibitor combinations like ceftazidime-avibactam has increased our ability to treat infections caused by multidrug-resistant Gram-negative bacteria, including carbapenemase-producing Enterobacterales However, the increasing number of cases of reported resistance to ceftazidime-avibactam is a concern. OXA-48 is a carbapenemase that has no significant effect on ceftazidime, but is inhibited by avibactam. Since isolates with OXA-48 frequently harbor extended-spectrum β-lactamases that are inhibited by avibactam, it is likely that ceftazidime-avibactam will be used to treat infections caused by OXA-48-producing Enterobacterales. Our data show that exposure to ceftazidime-avibactam can lead to changes in OXA-48, resulting in increased ability to hydrolyze ceftazidime and withstand the inhibitory effect of avibactam. Thus, resistance toward ceftazidime-avibactam among OXA-48-producing Enterobacterales should be monitored. Interestingly, the compromising effect of the amino acid substitutions in OXA-48 on other β-lactams and the effect of ceftazidime-avibactam exposure on the epidemic OXA-48 plasmid indicate that the evolution of ceftazidime-avibactam resistance comes with collateral effects.
Collapse
|
25
|
Zhang Y, Lei J, He Y, Yang J, Wang W, Wasey A, Xu J, Lin Y, Fan H, Jing G, Zhang C, Jin Y. Label‐Free Visualization of Carbapenemase Activity in Living Bacteria. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ye Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Jin‐E Lei
- The First Affiliated Hospital of Xi'an Jiaotong University Xi'an Jiatong University Xi'an 710061 P. R. China
| | - Yuan He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Jianhua Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Wenjing Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Abdul Wasey
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Jiru Xu
- The First Affiliated Hospital of Xi'an Jiaotong University Xi'an Jiatong University Xi'an 710061 P. R. China
| | - Yue Lin
- Scion New Zealand Forest Research Institute) Rotorua 3010 New Zealand
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Guangyin Jing
- College of Physics Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Ce Zhang
- College of Physics Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Yi Jin
- School of Chemistry Cardiff University Cardiff CF10 3AT UK
| |
Collapse
|
26
|
Zhang Y, Lei J, He Y, Yang J, Wang W, Wasey A, Xu J, Lin Y, Fan H, Jing G, Zhang C, Jin Y. Label‐Free Visualization of Carbapenemase Activity in Living Bacteria. Angew Chem Int Ed Engl 2018; 57:17120-17124. [DOI: 10.1002/anie.201810834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/19/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Ye Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Jin‐E Lei
- The First Affiliated Hospital of Xi'an Jiaotong University Xi'an Jiatong University Xi'an 710061 P. R. China
| | - Yuan He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Jianhua Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Wenjing Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Abdul Wasey
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Jiru Xu
- The First Affiliated Hospital of Xi'an Jiaotong University Xi'an Jiatong University Xi'an 710061 P. R. China
| | - Yue Lin
- Scion New Zealand Forest Research Institute) Rotorua 3010 New Zealand
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Guangyin Jing
- College of Physics Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Ce Zhang
- College of Physics Northwest University 1 Xue Fu Avenue Xi'an 710127 P. R. China
| | - Yi Jin
- School of Chemistry Cardiff University Cardiff CF10 3AT UK
| |
Collapse
|
27
|
Abstract
Carbapenemase-producing Enterobacteriaceae (CPE) contribute significantly to the global public health threat of antimicrobial resistance. OXA-48 and its variants are unique carbapenemases with low-level hydrolytic activity toward carbapenems but no intrinsic activity against expanded-spectrum cephalosporins. bla OXA-48 is typically located on a plasmid but may also be integrated chromosomally, and this gene has progressively disseminated throughout Europe and the Middle East. Despite the inability of OXA-48-like carbapenemases to hydrolyze expanded-spectrum cephalosporins, pooled isolates demonstrate high variable resistance to ceftazidime and cefepime, likely representing high rates of extended-spectrum beta-lactamase (ESBL) coproduction. In vitro data from pooled studies suggest that avibactam is the most potent beta-lactamase inhibitor when combined with ceftazidime, cefepime, aztreonam, meropenem, or imipenem. Resistance to novel avibactam combinations such as imipenem-avibactam or aztreonam-avibactam has not yet been reported in OXA-48 producers, although only a few clinical isolates have been tested. Although combination therapy is thought to improve the chances of clinical cure and survival in CPE infection, successful outcomes were seen in ∼70% of patients with infections caused by OXA-48-producing Enterobacteriaceae treated with ceftazidime-avibactam monotherapy. A carbapenem in combination with either amikacin or colistin has achieved treatment success in a few case reports. Uncertainty remains regarding the best treatment options and strategies for managing these infections. Newly available antibiotics such as ceftazidime-avibactam show promise; however, recent reports of resistance are concerning. Newer choices of antimicrobial agents will likely be required to combat this problem.
Collapse
|