1
|
Quan YS, Liu JY, Wang YL, Liu Z, Quan ZS, Wang SH, Yin XM. Application of Chalcone in the Structural Modification of Natural Products: An Overview. Chem Biodivers 2025; 22:e202401953. [PMID: 39560393 DOI: 10.1002/cbdv.202401953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/20/2024]
Abstract
Natural products frequently display a range of biological activities, yet many exhibit only moderate efficacy during initial evaluations. Often, these natural substances necessitate structural alterations to yield promising lead compounds. Chalcones, characterized by their β-unsaturated carbonyl aromatic ketone structure, are prevalent in plant life and serve as fundamental scaffolds for the biosynthetic precursors of flavonoids and isoflavones. Due to their straightforward synthesis and extensive spectrum of biological effects, chalcones have found extensive application in medicinal chemistry. Chalcone analogs have demonstrated significant potential for drug discovery and development, as structural modifications can both amplify pharmacological efficacy and effectively mitigate toxic side effects. This paper endeavors to delve into the applications of chalcones in the structural modification of natural products, providing a theoretical foundation for future endeavors in derivatization and drug development. The full paper is organized into categories based on the biological activities of the derivatives, including anti-dyslipidemic, antibacterial, antimalarial, anti-inflammatory, anticancer, anti-Alzheimer, and α-glucosidase inhibitory activities.
Collapse
Affiliation(s)
- Yin-Sheng Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, P. R. China
| | - Jin-Ying Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, P. R. China
| | - Ya-Lan Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, P. R. China
| | - Zheng Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, P. R. China
| | - Zhe-Shan Quan
- College of Pharmacy, Yanbian University, Yanji, Jilin, P. R. China
| | - Si-Hong Wang
- Analysis and Inspection Center, Yanbian University, Yanji, Jilin, P. R. China
| | - Xiu-Mei Yin
- College of Pharmacy, Yanbian University, Yanji, Jilin, P. R. China
| |
Collapse
|
2
|
Olszewski M, Maciejewska N, Kallingal A, Chylewska A, Dąbrowska AM, Biedulska M, Makowski M, Padrón JM, Baginski M. Palindromic carbazole derivatives: unveiling their antiproliferative effect via topoisomerase II catalytic inhibition and apoptosis induction. J Enzyme Inhib Med Chem 2024; 39:2302920. [PMID: 38221785 PMCID: PMC10791108 DOI: 10.1080/14756366.2024.2302920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/24/2023] [Indexed: 01/16/2024] Open
Abstract
Human DNA topoisomerases are essential for crucial cellular processes, including DNA replication, transcription, chromatin condensation, and maintenance of its structure. One of the significant strategies employed in cancer treatment involves the inhibition of a specific type of topoisomerase, known as topoisomerase II (Topo II). Carbazole derivatives, recognised for their varied biological activities, have recently become a significant focus in oncological research. This study assesses the efficacy of three symmetrically substituted carbazole derivatives: 2,7-Di(2-furyl)-9H-carbazole (27a), 3,6-Di(2-furyl)-9H-carbazole (36a), and 3,6-Di(2-thienyl)-9H-carbazole (36b) - as anticancer agents. Among investigated carbazole derivatives, compound 3,6-di(2-furyl)-9H-carbazole bearing two furan moieties emerged as a novel catalytic inhibitor of Topo II. Notably, 3,6-di(2-furyl)-9H-carbazole effectively selectively inhibited the relaxation and decatenation activities of Topo IIα, with minimal effects on the IIβ isoform. These findings underscore the potential of compound 3,6-Di(2-furyl)-9H-carbazole as a promising lead candidate warranting further investigation in the realm of anticancer drug development.
Collapse
Affiliation(s)
- Mateusz Olszewski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Natalia Maciejewska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Anoop Kallingal
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Agnieszka Chylewska
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Aleksandra M. Dąbrowska
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Małgorzata Biedulska
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Mariusz Makowski
- Department of Bioinorganic Chemistry, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - José M. Padrón
- BioLab, Instituto Universitario de Bio-Orgánica “Antonio González”, Universidad de La Laguna, La Laguna, Spain
| | - Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
3
|
Ali MI, Thirukovela NS, Kumar GB, Dasari G, Badithapuram V, Manchal R, Bandari S. Design, synthesis, in silico molecular docking, and ADMET studies of quinoxaline-isoxazole-piperazine conjugates as EGFR-targeting agents. Chem Biol Drug Des 2024; 103:e14499. [PMID: 38444047 DOI: 10.1111/cbdd.14499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/09/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
In this paper, we report the synthesis of quinoxaline-isoxazole-piperazine conjugates. The anticancer activity was evaluated against three human cancer cell lines, including MCF-7 (breast), HepG-2 (liver), and HCT-116 (colorectal). The outcomes of the tested compounds 5d, 5e, and 5f have shown more potent activity when compared to the standard drug erlotinib. In a cell survivability test (MCF-10A), three potent compounds (5d, 5e, and 5f) were evaluated against the normal breast cell line, although neither of them displayed any significant cytotoxicity with IC50 values greater than 84 μM. Furthermore, the compounds 5d, 5e, and 5f were tested for tyrosine kinase EGFR inhibitory action using erlotinib as the reference drug and compound 5e was shown to be more potent in inhibiting the tyrosine kinase EGFR than sorafenib. In addition to this, molecular docking studies of compounds 5d, 5e, and 5f demonstrated that these compounds had more EGFR-binding interactions. The potent compounds 5d, 5e, and 5f were subjected to in silico pharmacokinetic assessment by SWISS, ADME, and pkCSM. While the compounds 5d, 5e, and 5f followed Lipinski, Veber, Egan, and Muegge rules without any deviation.
Collapse
Affiliation(s)
- Mohammad Imtiyaz Ali
- Department of Chemistry, Chaitanya Deemed to be University, Warangal, Telangana, India
| | | | - Gajjela Bharath Kumar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Gouthami Dasari
- Department of Chemistry, Chaitanya Deemed to be University, Warangal, Telangana, India
| | - Vinitha Badithapuram
- Department of Chemistry, Chaitanya Deemed to be University, Warangal, Telangana, India
| | - Ravinder Manchal
- Department of Chemistry, Chaitanya Deemed to be University, Warangal, Telangana, India
| | - Srinivas Bandari
- Department of Chemistry, Chaitanya Deemed to be University, Warangal, Telangana, India
| |
Collapse
|
4
|
Munawar S, Zahoor AF, Mansha A, Bokhari TH, Irfan A. Update on novel synthetic approaches towards the construction of carbazole nuclei: a review. RSC Adv 2024; 14:2929-2946. [PMID: 38239436 PMCID: PMC10794906 DOI: 10.1039/d3ra07270c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
The carbazole scaffold is a significant entity in organic compounds due to its variety of biological and synthetic applications. Traditionally, carbazole skeletons have been synthesized either via the Grabe-Ullman method, Clemo-Perkin method or Tauber method. With the passage of time, these methods have been modified and explored to accomplish the synthesis of target compounds. These methods include hydroarylations, C-H activations, annulations and cyclization reactions mediated by a variety of catalysts to construct carbazole-based compounds. This brief review article intends to provide recent updates on important methodological developments reported for the synthesis of carbazole nuclei covering 2019-2023.
Collapse
Affiliation(s)
- Saba Munawar
- Department of Chemistry, Government College University Faisalabad, 38000-Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, 38000-Faisalabad Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad, 38000-Faisalabad Pakistan
| | - Tanveer Hussain Bokhari
- Department of Chemistry, Government College University Faisalabad, 38000-Faisalabad Pakistan
| | - Ahmad Irfan
- Department of Chemistry, King Khalid University Abha 61413 P.O. Box 9004 Saudi Arabia
| |
Collapse
|
5
|
Kamzeeva P, Dagaev N, Lizunova S, Khodarovich Y, Sogomonyan A, Kolchanova A, Pokrovsky V, Alferova V, Chistov A, Eshtukov-Shcheglov A, Eshtukova-Shcheglova E, Belyaev E, Skvortsov D, Varizhuk A, Aralov A. Synthesis and Biological Evaluation of Benzo [4,5]- and Naphtho[2',1':4,5]imidazo[1,2-c]pyrimidinone Derivatives. Biomolecules 2023; 13:1669. [PMID: 38002351 PMCID: PMC10669118 DOI: 10.3390/biom13111669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Azacarbazoles have attracted significant interest due to their valuable properties, such as anti-pathogenic and antitumor activity. In this study, a series of structurally related tricyclic benzo[4,5]- and tertacyclic naphtho[2',1':4,5]imidazo[1,2-c]pyrimidinone derivatives with one or two positively charged tethers were synthesized and evaluated for anti-proliferative activity. Lead tetracyclic derivative 5b with two amino-bearing arms inhibited the metabolic activity of A549 lung adenocarcinoma cells with a CC50 value of 3.6 μM, with remarkable selectivity (SI = 17.3) over VA13 immortalized fibroblasts. Cell-cycle assays revealed that 5b triggers G2/M arrest without signs of apoptosis. A study of its interaction with various DNA G4s and duplexes followed by dual luciferase and intercalator displacement assays suggests that intercalation, rather than the modulation of G4-regulated oncogene expression, might contribute to the observed activity. Finally, a water-soluble salt of 5b was shown to cause no acute toxic effects, changes in mice behavior, or any decrease in body weight after a 72 h treatment at concentrations up to 20 mg/kg. Thus, 5b is a promising candidate for studies in vivo; however, further investigations are needed to elucidate its molecular target(s).
Collapse
Affiliation(s)
- Polina Kamzeeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.K.)
| | - Nikolai Dagaev
- Department of Chemistry and Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.D.)
| | - Sofia Lizunova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Yuri Khodarovich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.K.)
- Research and Educational Resource Center for Cellular Technologies, The Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Anna Sogomonyan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.K.)
| | - Anastasia Kolchanova
- Department of Chemistry and Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.D.)
| | - Vadim Pokrovsky
- N.N. Blokhin Cancer Research Center, 115478 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, RUDN University, 117198 Moscow, Russia
| | - Vera Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.K.)
| | - Alexey Chistov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.K.)
| | - Artur Eshtukov-Shcheglov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.K.)
| | | | - Evgeny Belyaev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Dmitry Skvortsov
- Department of Chemistry and Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.D.)
| | - Anna Varizhuk
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- G4_Interact, USERN, University of Pavia, 27100 Pavia, Italy
| | - Andrey Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (P.K.)
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- G4_Interact, USERN, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
6
|
Çapan İ, Hawash M, Jaradat N, Sert Y, Servi R, Koca İ. Design, synthesis, molecular docking and biological evaluation of new carbazole derivatives as anticancer, and antioxidant agents. BMC Chem 2023; 17:60. [PMID: 37328860 DOI: 10.1186/s13065-023-00961-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/25/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND The carbazole skeleton is an important structural motif occurring naturally or synthesized chemically and has antihistaminic, antioxidant, antitumor, antimicrobial, and anti-inflammatory activities. OBJECTIVES This study aimed to design and synthesize a novel series of carbazole derivatives and evaluate their antiproliferative and antioxidant activities. METHODS The synthesized compounds were characterized utilizing HRMS, 1H-, and 13CAPT-NMR, and assessed for their anticancer, antifibrotic, and antioxidant effects utilizing reference biomedical procedures. In addition, the AutoDock Vina application was used to perform in-silico docking computations. RESULTS A series of carbazole derivatives were synthesized and characterized in the current study. Compounds 10 and 11 were found to have a stronger antiproliferative effect than compounds 2-5 against HepG2, HeLa, and MCF7 cancer cell lines with IC50 values of 7.68, 10.09, and 6.44 µM, respectively. Moreover, compound 9 showed potent antiproliferative activity against HeLa cancer cell lines with an IC50 value of 7.59 µM. However, except for compound 5, all of the synthesized compounds showed moderate antiproliferative activities against CaCo-2 with IC50 values in the range of 43.7-187.23 µM. All of these values were compared with the positive control anticancer drug 5-Fluorouracil (5-FU). In addition, compound 9 showed the most potent anti-fibrotic compound, and the cellular viability of LX-2 was found 57.96% at 1 µM concentration in comparison with the positive control 5-FU. Moreover, 4 and 9 compounds showed potent antioxidant activities with IC50 values of 1.05 ± 0.77 and 5.15 ± 1.01 µM, respectively. CONCLUSION Most of the synthesized carbazole derivatives showed promising antiproliferative, antioxidant, and antifibrotic biological effects, and further in-vivo investigations are needed to approve or disapprove these results.
Collapse
Affiliation(s)
- İrfan Çapan
- Department of Material and Material Processing Technologies, Gazi University, Technical Sciences Vocational College, 06560, Ankara, Turkey.
| | - Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, 00970, Nablus, Palestine.
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, 00970, Nablus, Palestine
| | - Yusuf Sert
- Yozgat Bozok University, Sorgun Vocational School, Yozgat, Turkey
| | - Refik Servi
- Department of Anatomy, Faculty of Medicine, Firat University, Elazig, Turkey
| | - İrfan Koca
- Department of Chemistry, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
7
|
Mallia A, Sloop J. Advances in the Synthesis of Heteroaromatic Hybrid Chalcones. Molecules 2023; 28:molecules28073201. [PMID: 37049964 PMCID: PMC10096121 DOI: 10.3390/molecules28073201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Chalcones continue to occupy a venerated status as scaffolds for the construction of a variety of heterocyclic molecules with medicinal and industrial properties. Syntheses of hybrid chalcones featuring heteroaromatic components, especially those methods utilizing green chemistry principles, are important additions to the preparative methodologies for this valuable class of molecules. This review outlines the advances made in the last few decades toward the incorporation of heteroaromatic components in the construction of hybrid chalcones and highlights examples of environmentally responsible processes employed in their preparation.
Collapse
Affiliation(s)
- Ajay Mallia
- Department of Chemistry, School of Science & Technology, Georgia Gwinnett College, 1000 University Center Lane, Lawrenceville, GA 30043, USA
| | - Joseph Sloop
- Department of Chemistry, School of Science & Technology, Georgia Gwinnett College, 1000 University Center Lane, Lawrenceville, GA 30043, USA
| |
Collapse
|
8
|
Zhao M, Yang K, Zhu X, Gao T, Yu W, Liu H, You Z, Liu Z, Qiao X, Song Y. Design, synthesis and biological evaluation of dual Topo II/HDAC inhibitors bearing pyrimido[5,4-b]indole and pyrazolo[3,4-d]pyrimidine motifs. Eur J Med Chem 2023; 252:115303. [PMID: 36996717 DOI: 10.1016/j.ejmech.2023.115303] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Both topoisomerase II (Topo II) and histone deacetylase (HDAC) are important therapeutic targets for cancer. In this study, two series of novel compounds containing pyrimido[5,4-b]indole and pyrazolo[3,4-d]pyrimidine motifs were designed and synthesized as dual Topo II/HDAC inhibitors. MTT assay indicated that all the compounds displayed potential antiproliferative activity against three cancer cell lines (MGC-803, MCF-7 and U937) and low cytotoxicity on normal cell line (3T3). In the enzyme activity inhibition experiments, compounds 7d and 8d exhibited excellent dual inhibitory activities against Topo II and HDAC. Cleavage reaction assay showed that 7d was a Topo II poison, which was consistent with the docking results. Further experimental results revealed that compounds 7d and 8d could promote apoptosis and significantly inhibit the migration in MCF-7 cells. Molecular docking showed that compounds 7d and 8d bind Topo II and HDAC at the active sites. Molecular dynamics simulation showed that 7d can stably bind to Topo II and HDAC.
Collapse
Affiliation(s)
- Mengmiao Zhao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Xinyue Zhu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Tian Gao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Wei Yu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Han Liu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Zhihao You
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaoqiang Qiao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China.
| | - Yali Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
9
|
Chalcones: Promising therapeutic agents targeting key players and signaling pathways regulating the hallmarks of cancer. Chem Biol Interact 2023; 369:110297. [PMID: 36496109 DOI: 10.1016/j.cbi.2022.110297] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The need for innovative anticancer treatments with high effectiveness and low toxicity is urgent due to the development of malignancies that are resistant to chemotherapeutic agents and the poor specificity of existing anticancer treatments. Chalcones are 1,3-diaryl-2-propen-1-ones, which are the precursors for flavonoids and isoflavonoids. Chalcones are readily available from a wide range of natural resources and consist of very basic chemical scaffolds. Because the ease with which the synthesis it allows for the production of several chalcone derivatives. Various in-vitro and in-vivo studies indicate that naturally occurring and synthetic chalcone derivatives exhibit promising biological activities against cancer hallmarks such as proliferation, angiogenesis, invasion, metastasis, inflammation, stemness, and regulation of cancer epigenetics. According to their structure and functional groups, chalcones derivatives and their hybrid compounds exert a broad range of biological activities through targeting key elements and signaling molecules relevant to cancer progression. This review will provide valuable insights into the latest updates of chalcone groups as anticancer agents and extensively discuss their underlying molecular mechanisms of action.
Collapse
|
10
|
Nolasco-Quintana NY, González-Maya L, Razo-Hernández RS, Alvarez L. Exploring the Gallic and Cinnamic Acids Chimeric Derivatives as Anticancer Agents over HeLa Cell Line: An in silico and in vitro Study. Mol Inform 2023; 42:e2200016. [PMID: 36065495 DOI: 10.1002/minf.202200016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/03/2022] [Indexed: 01/12/2023]
Abstract
Cervical cancer is one of the most aggressive and important cancer types in the female population, due to its low survival rate. Actually, the search for new bioactive compounds, like gallic and cinnamic acid, is one of the most employed options to finding a treatment. In the present study, 134 phenolic compounds with cytotoxic activity over HeLa cell line were used to generate a descriptive ( R 2 ${{R}^{2}}$ =0.76) and predictive ( Q 2 ${{Q}^{2}}$ =0.69 and Q e x t 2 ${{Q}_{{\rm e}{\rm x}{\rm t}}^{2}}$ =0.62) QSAR model. Structural, electronic, steric, and hydrophobic features are represented as different molecular descriptors in our QSAR model. From this model, nine gallate-cinnamate ester derivatives (N1-N9) were designed and synthesized. Furthermore, in vitro cytotoxic activity was evaluated against HeLa and non-tumorigenic cells. Derivatives N6, N5, N1, and N9 were the most active molecules with IC50ExpHeLa values from 7.26 to 11.95 μM. Finally, the binding of the synthesized compounds to the colchicine binding site on tubulin was evaluated by molecular docking as a possible action mechanism. N1, N5 and N6 can be considered as templates for the design of new cervical anticancer compounds.
Collapse
Affiliation(s)
- Ninfa Yaret Nolasco-Quintana
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, C.P. 62210, Cuernavaca, Mor., México.,Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, C.P. 62210, Cuernavaca, Mor., México
| | - Leticia González-Maya
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, 62209, Morelos, México
| | - Rodrigo Said Razo-Hernández
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, C.P. 62210, Cuernavaca, Mor., México
| | - Laura Alvarez
- Centro de Investigaciones Químicas, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, C.P. 62210, Cuernavaca, Mor., México
| |
Collapse
|
11
|
Elmorsy MR, Eltoukhi M, Fadda AA, Abdel-Latif E, Abdelmoaz MA. Synthesis of New Carbazole–Thiazole Analogues and Evaluating their Anticancer Activity. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2144909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Mohamed R. Elmorsy
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mariam Eltoukhi
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ahmed A. Fadda
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ehab Abdel-Latif
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Miral A. Abdelmoaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University, Kantra, Egypt
| |
Collapse
|
12
|
Constantinescu T, Mihis AG. Two Important Anticancer Mechanisms of Natural and Synthetic Chalcones. Int J Mol Sci 2022; 23:11595. [PMID: 36232899 PMCID: PMC9570335 DOI: 10.3390/ijms231911595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
ATP-binding cassette subfamily G and tubulin pharmacological mechanisms decrease the effectiveness of anticancer drugs by modulating drug absorption and by creating tubulin assembly through polymerization. A series of natural and synthetic chalcones have been reported to have very good anticancer activity, with a half-maximal inhibitory concentration lower than 1 µM. By modulation, it is observed in case of the first mechanism that methoxy substituents on the aromatic cycle of acetophenone residue and substitution of phenyl nucleus by a heterocycle and by methoxy or hydroxyl groups have a positive impact. To inhibit tubulin, compounds bind to colchicine binding site. Presence of methoxy groups, amino groups or heterocyclic substituents increase activity.
Collapse
Affiliation(s)
- Teodora Constantinescu
- Department of Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University, 400012 Cluj-Napoca, Romania
| | - Alin Grig Mihis
- Advanced Materials and Applied Technologies Laboratory, Institute of Research-Development-Innovation in Applied Natural Sciences, “Babes-Bolyai” University, Fantanele Str. 30, 400294 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Bonakolluru Y, Nukala SK, Dasari G, Badithapuram V, Manchal R, Bandari S. Design and Synthesis of Some New N-(Thiazol-2-yl) Benzamides of Quinoxaline as DNA Topoisomerase II Targeting Anticancer Agents and ADMET. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2117208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | | | - Gouthami Dasari
- Department of Chemistry, Chaitanya Deemed to Be University, Warangal, India
| | | | - Ravinder Manchal
- Department of Chemistry, Chaitanya Deemed to Be University, Warangal, India
| | - Srinivas Bandari
- Department of Chemistry, Chaitanya Deemed to Be University, Warangal, India
| |
Collapse
|
14
|
Elkanzi NAA, Hrichi H, Alolayan RA, Derafa W, Zahou FM, Bakr RB. Synthesis of Chalcones Derivatives and Their Biological Activities: A Review. ACS OMEGA 2022; 7:27769-27786. [PMID: 35990442 PMCID: PMC9386807 DOI: 10.1021/acsomega.2c01779] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/21/2022] [Indexed: 05/27/2023]
Abstract
Chalcone derivatives are considered valuable species because they possess a ketoethylenic moiety, CO-CH=CH-. Due to the presence of a reactive α,β-unsaturated carbonyl group, chalcones and their derivatives possess a wide spectrum of antiproliferative, antifungal, antibacterial, antiviral, antileishmanial, and antimalarial pharmacological properties. Recent developments in heterocyclic chemistry have led to the synthesis of chalcone derivatives, which had been biologically investigated toward certain disease targets. The major aspect of this review is to present the most recent synthesis of chalcones bearing N, O, and/or S heterocycles, revealing their biological potential during the past decade (2010-2021). Based on a review of the literature, many chalcone-heterocycle hybrids appear to exhibit promise as future drug candidates owing to their similar or superior activities compared to those of the standards. Thus, this review may prove to be beneficial for the development and design of new potent therapeutic drugs based on previously developed strategies.
Collapse
Affiliation(s)
- Nadia A. A. Elkanzi
- Chemistry
Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Hajer Hrichi
- Chemistry
Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Ruba A. Alolayan
- Chemistry
Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Wassila Derafa
- Chemistry
Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Fatin M. Zahou
- Biology
Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Rania B. Bakr
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
15
|
Su XX, Chen YR, Wu JQ, Wu XZ, Li KT, Wang XN, Sun JW, Wang H, Ou TM. Design, synthesis, and evaluation of 9-(pyrimidin-2-yl)-9H-carbazole derivatives disrupting mitochondrial homeostasis in human lung adenocarcinoma. Eur J Med Chem 2022; 232:114200. [DOI: 10.1016/j.ejmech.2022.114200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/06/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022]
|
16
|
Identification of a novel catalytic inhibitor of topoisomerase II alpha that engages distinct mechanisms in p53 wt or p53 -/- cells to trigger G2/M arrest and senescence. Cancer Lett 2022; 526:284-303. [PMID: 34843865 DOI: 10.1016/j.canlet.2021.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/10/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022]
Abstract
We report a novel topoisomerase IIα inhibitor, mercaptopyridine oxide (MPO), which induces G2/M arrest and senescence with distinctly different cell cycle regulators (p21 or p14ARF) in HCT116p 53WT and HCT116 p53-/- cells, respectively. MPO treatment induced defective topoisomerase IIα-mediated decatenation process and inhibition of the enzyme's catalytic activity that stalled entry into mitosis. Topoisomerase IIα inhibition was associated with ROS-mediated activation of ATM-Chk2 kinase axis in HCT116 p53WT cells, but not in HCT116 p53-/- cells displaying early Chk1 activation. Results suggest that E2F1 stabilization might link MPO-induced p53 phospho-activation in HCT116 p53WT cells or p14ARF induction in HCT116 p53-/- cells. Also, interaction between topoisomerase IIα and Chk1 was induced in both cell lines, which could be important for decatenation checkpoint activation, even upon p53 ablation. Notably, TCGA dataset analyses revealed topoisomerase IIα upregulation across a wide array of cancers, which was associated with lower overall survival. Corroborating that increased topoisomerase IIα expression might offer susceptibility to the novel inhibitor, MPO (5 μM) induced strong inhibition in colony forming ability of pancreatic and hepatocellular cancer cell lines. These data highlight a novel topoisomerase IIα inhibitor and provide proof-of-concept for its therapeutic potential against cancers even with loss-of-function of p53.
Collapse
|
17
|
Wang X, Zhang H, Wang Y, Wang Y, Han Q, Yan H, Yang T, Guo Z. Platinum Complexes as Inhibitors of DNA Repair Protein Ku70 and Topoisomerase IIα in Cancer Cells. Dalton Trans 2022; 51:3188-3197. [DOI: 10.1039/d1dt03700e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ku70 protein and topoisomerase IIα (Topo IIα) are promising targets of anticancer drugs, which play critical roles in DNA repair and replication processes. Three platinum(II) complexes, [PtCl(NH3)2(9-(pyridin-2-ylmethyl)-9H-carbazole)]NO3 (OPPC), [PtCl(NH3)2(9-(pyridin-3-ylmethyl)-9H-carbazole)]NO3 (MPPC),...
Collapse
|
18
|
Wang G, Sun S, Guo H. Current status of carbazole hybrids as anticancer agents. Eur J Med Chem 2021; 229:113999. [PMID: 34838335 DOI: 10.1016/j.ejmech.2021.113999] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/07/2021] [Accepted: 11/13/2021] [Indexed: 12/15/2022]
Abstract
The drug resistance and low specificity of current available chemotherapeutics to cancer cells are the main reasons responsible for the failure of cancer chemotherapy and remain dramatic challenges for cancer therapy, creating an urgent need to develop novel anticancer agents. Carbazole nucleus, widely distributed in nature, is a predominant feature of a vast array of biologically active compounds. Carbazole derivatives exhibited potential antiproliferative activity against different cancer cell lines by diverse mechanisms, inclusive of arrest cell cycle and induce apoptosis, and several anticancer agents are carbazole-based compounds. Thus, carbazole derivatives represent a fertile source for discovery of novel anticancer therapeutic agents. Over the past several years, a variety of carbazole hybrids have been developed as potential anticancer agents. The present review focuses on the recent progress, from 2016 until now, in knowledge on anticancer properties, structure-activity relationships and mechanisms of action of carbazole hybrids to provide a basis for development of relevant therapeutic agents.
Collapse
Affiliation(s)
- Gangqiang Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, PR China; School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, PR China.
| | - Shaofa Sun
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Hua Guo
- School of Chemistry and Life Science, Anshan Normal University, Anshan, 114005, Liaoning, PR China
| |
Collapse
|
19
|
Sirin S, Duyar H, Aslım B, Seferoğlu Z. Synthesis and biological activity of pyrrolidine/piperidine substituted 3-amido-9-ethylcarbazole derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Mermer A. The Importance of Rhodanine Scaffold in Medicinal Chemistry: A Comprehensive Overview. Mini Rev Med Chem 2021; 21:738-789. [PMID: 33334286 DOI: 10.2174/1389557521666201217144954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 11/22/2022]
Abstract
After the clinical use of epalrestat that contains a rhodanine ring, in type II diabetes mellitus and diabetic complications, rhodanin-based compounds have become an important class of heterocyclic in the field of medicinal chemistry. Various modifications to the rhodanine ring have led to a broad spectrum of biological activity of these compounds. Synthesis of rhodanine derivatives, depended on advenced throughput scanning hits, frequently causes potent and selective modulators of targeted enzymes or receptors, which apply their pharmacological activities through different mechanisms of action. Rhodanine-based compounds will likely stay a privileged scaffold in drug discovery because of different probability of chemical modifications of the rhodanine ring. We have, therefore reviewed their biological activities and structure activity relationship.
Collapse
Affiliation(s)
- Arif Mermer
- Department of Biotechnology, Hamidiye Health Science Institute, University of Health Sciences Turkey, 34668, İstanbul, Turkey
| |
Collapse
|
21
|
Ouyang Y, Li J, Chen X, Fu X, Sun S, Wu Q. Chalcone Derivatives: Role in Anticancer Therapy. Biomolecules 2021; 11:894. [PMID: 34208562 PMCID: PMC8234180 DOI: 10.3390/biom11060894] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Chalcones (1,3-diaryl-2-propen-1-ones) are precursors for flavonoids and isoflavonoids, which are common simple chemical scaffolds found in many naturally occurring compounds. Many chalcone derivatives were also prepared due to their convenient synthesis. Chalcones as weandhetic analogues have attracted much interest due to their broad biological activities with clinical potentials against various diseases, particularly for antitumor activity. The chalcone family has demonstrated potential in vitro and in vivo activity against cancers via multiple mechanisms, including cell cycle disruption, autophagy regulation, apoptosis induction, and immunomodulatory and inflammatory mediators. It represents a promising strategy to develop chalcones as novel anticancer agents. In addition, the combination of chalcones and other therapies is expected to be an effective way to improve anticancer therapeutic efficacy. However, despite the encouraging results for their response to cancers observed in clinical studies, a full description of toxicity is required for their clinical use as safe drugs for the treatment of cancer. In this review, we will summarize the recent advances of the chalcone family as potential anticancer agents and the mechanisms of action. Besides, future applications and scope of the chalcone family toward the treatment and prevention of cancer are brought out.
Collapse
Affiliation(s)
- Yang Ouyang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Xinyue Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Xiaoyu Fu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| |
Collapse
|
22
|
A carbazole compound, 9-ethyl-9H-carbazole-3-carbaldehyde, plays an antitumor function through reactivation of the p53 pathway in human melanoma cells. Cell Death Dis 2021; 12:591. [PMID: 34103468 PMCID: PMC8187445 DOI: 10.1038/s41419-021-03867-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 11/30/2022]
Abstract
p53, the major tumor suppressor, is frequently mutated in many cancers, and up to 84% of human melanomas harbor wild-type p53, which is considered to be an ideal target for melanoma therapy. Here, we evaluated the antitumor activity of a carbazole derivative, 9-ethyl-9H-carbazole-3-carbaldehyde (ECCA), on melanoma cells. ECCA had a selectively strong inhibitory activity against the growth of BRAF-mutated and BRAF-wild-type melanoma cells but had little effect on normal human primary melanocytes. ECCA inhibited melanoma cell growth by increasing cell apoptosis, which was associated with the upregulation of caspase activities and was significantly abrogated by the addition of a caspase inhibitor. In vivo assays confirmed that ECCA suppressed melanoma growth by enhancing cell apoptosis and reducing cell proliferation, and importantly ECCA did not have any evident toxic effects on normal tissues. RNA-Seq analysis identified several pathways related to cell apoptosis that were affected by ECCA, notably, activation of the p53 signaling pathway. Biochemical assays demonstrated that ECCA enhanced the phosphorylation of p53 at Ser15 in melanoma cells harboring wild-type p53, and importantly, the knockdown or deletion of p53 in those cells counteracted the ECCA-induced apoptosis, as well as senescence. Further investigations revealed that ECCA enhanced the phosphorylation of p38-MAPK and c-Jun N-terminal kinase (JNK), and treatment with either a p38-MAPK or a JNK inhibitor rescued the cell growth inhibition elicited by ECCA, which depended on the expression of the p53 gene. Finally, the combination of ECCA with a BRAF inhibitor significantly enhanced the growth inhibition of melanoma cells. In summary, our study demonstrates that the carbazole derivative, ECCA, induces melanoma cell apoptosis and senescence through the activation of p53 to significantly and selectively suppress the growth of melanoma cells without affecting normal human melanocytes, suggesting its potential to develop a new drug for melanoma therapy.
Collapse
|
23
|
Xie YP, Ansari MF, Zhang SL, Zhou CH. Novel carbazole-oxadiazoles as potential Staphylococcus aureus germicides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104849. [PMID: 33993967 DOI: 10.1016/j.pestbp.2021.104849] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Staphylococcus aureus resistance poses nonnegligible threats to the livestock industry. In light of this, carbazole-oxadiazoles were designed and synthesized for treating S. aureus infection. Bioassay discovered that 3,6-dibromocarbazole derivative 13a had effective inhibitory activities to several Gram-positive bacteria, in particular to S. aureus, S. aureus ATCC 29213, MRSA and S. aureus ATCC 25923 (MICs = 0.6-4.6 nmol/mL), which was more active than norfloxacin (MICs = 6-40 nmol/mL). Subsequent studies showed that 3,6-dibromocarbazole derivative 13a acted rapidly on S. aureus ATCC 29213 and possessed no obvious tendency to induce bacterial resistance. Further evaluations indicated that 3,6-dibromocarbazole derivative 13a showed strong abilities to disrupt bacterial biofilm and interfere with DNA, which might be the power sources of antibacterial performances. Moreover, 3,6-dibromocarbazole derivative 13a also exhibited slight cell lethality toward Hek 293 T and LO2 cells and low hemolytic toxicity to red blood cells. The above results implied that the active molecule 13a could be studied in the future development of agricultural available antibiotics.
Collapse
Affiliation(s)
- Yun-Peng Xie
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
24
|
Alesawy MS, Al-Karmalawy AA, Elkaeed EB, Alswah M, Belal A, Taghour MS, Eissa IH. Design and discovery of new 1,2,4-triazolo[4,3-c]quinazolines as potential DNA intercalators and topoisomerase II inhibitors. Arch Pharm (Weinheim) 2021; 354:e2000237. [PMID: 33226150 DOI: 10.1002/ardp.202000237] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 02/05/2023]
Abstract
A new series of 1,2,4-triazolo[4,3-c]quinazoline derivatives was designed and synthesized as Topo II inhibitors and DNA intercalators. The cytotoxic effect of the new members was evaluated in vitro against a group of cancer cell lines including HCT-116, HepG-2, and MCF-7. Compounds 14c , 14d , 14e , 14e , 15b , 18b , 18c , and 19b exhibited the highest activities with IC50 values ranging from 5.22 to 24.24 µM. Furthermore, Topo II inhibitory activities and DNA intercalating affinities of the most promising candidates were evaluated as a possible mechanism for the antiproliferative effect. The results of the Topo II inhibition and DNA binding tests were coherent with that of in vitro cytotoxicity. Additionally, the most promising compound 18c was analyzed in HepG-2 cells for its apoptotic effect and cell cycle arrest. It was found that 18c can induce apoptosis and arrest the cell cycle at the G2-M phase. Finally, molecular docking studies were carried out for the designed compounds against the crystal structure of the DNA-Topo II complex as a potential target to explore their binding modes. On the basis of these studies, it was hypothesized that the DNA binding and/or Topo II inhibition would participate in the noted cytotoxicity of the synthesized compounds.
Collapse
Affiliation(s)
- Mohamed S Alesawy
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed Alswah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed Belal
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
25
|
Abstract
The association of leishmaniasis and malignancies in human and animal models has been highlighted in recent years. The misdiagnosis of coexistence of leishmaniasis and cancer and the use of common drugs in the treatment of such diseases prompt us to further survey the molecular biology of Leishmania parasites and cancer cells. The information regarding common expressed proteins, as possible therapeutic targets, in Leishmania parasites and cancer cells is scarce. Therefore, the current study reviews proteins, and investigates the regulation and functions of several key proteins in Leishmania parasites and cancer cells. The up- and down-regulations of such proteins were mostly related to survival, development, pathogenicity, metabolic pathways and vital signalling in Leishmania parasites and cancer cells. The presence of common expressed proteins in Leishmania parasites and cancer cells reveals valuable information regarding the possible shared mechanisms of pathogenicity and opportunities for therapeutic targeting in leishmaniasis and cancers in the future.
Collapse
|
26
|
Ghamri M, Harkati D, Belaidi S, Boudergua S, Said RB, Linguerri R, Chambaud G, Hochlaf M. Carbazole derivatives containing chalcone analogues targeting topoisomerase II inhibition: First principles characterization and QSAR modelling. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118724. [PMID: 32769058 DOI: 10.1016/j.saa.2020.118724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/29/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Recently, a series of carbazole derivatives containing chalcone analogues (CDCAs) were synthetized as potent anticancer agents and apoptosis inducers. These compounds target the inhibition of topoisomerase II and present cytotoxic activities. After comparison to experiment, we validated the use of B3LYP, a density functional theory-based approach, to describe the structure and molecular properties of the carbazole subunit and CDCAs compounds of interest. Then, we derived relationships between the chemical descriptors and activity of these carbazole derivatives using multi-parameter optimization and quantitative structure activity relationships (QSAR) approaches. For the QSAR studies, we used multiple linear regression and artificial neural network statistical modelling. Our predicted activities are in good agreement with the experimental ones. We found that the most important parameter influencing the activity of the considered compounds is the octanol-water partition coefficient, highlighting the importance of flexibility as a key molecular parameter to favor cell membrane crossing and enhance the action of these CDCAs against topoisomerase II. Our results provide useful guidelines for designing new oral active CDCAs medicaments for cytotoxic inhibition.
Collapse
Affiliation(s)
- M Ghamri
- University of Biskra, Group of Computational and Pharmaceutical Chemistry, LMCE Laboratory, 07000 Biskra, Algeria; Université Gustave Eiffel, COSYS/LISIS, 5 Bd Descartes, 77454, Champs sur Marne, France
| | - D Harkati
- University of Biskra, Group of Computational and Pharmaceutical Chemistry, LMCE Laboratory, 07000 Biskra, Algeria
| | - S Belaidi
- University of Biskra, Group of Computational and Pharmaceutical Chemistry, LMCE Laboratory, 07000 Biskra, Algeria.
| | - S Boudergua
- University of Biskra, Group of Computational and Pharmaceutical Chemistry, LMCE Laboratory, 07000 Biskra, Algeria
| | - R Ben Said
- Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia.
| | - R Linguerri
- Université Gustave Eiffel, COSYS/LISIS, 5 Bd Descartes, 77454, Champs sur Marne, France
| | - G Chambaud
- Université Gustave Eiffel, COSYS/LISIS, 5 Bd Descartes, 77454, Champs sur Marne, France
| | - M Hochlaf
- Université Gustave Eiffel, COSYS/LISIS, 5 Bd Descartes, 77454, Champs sur Marne, France.
| |
Collapse
|
27
|
Zhou W, Zhang W, Peng Y, Jiang ZH, Zhang L, Du Z. Design, Synthesis and Anti-Tumor Activity of Novel Benzimidazole-Chalcone Hybrids as Non-Intercalative Topoisomerase II Catalytic Inhibitors. Molecules 2020; 25:molecules25143180. [PMID: 32664629 PMCID: PMC7397320 DOI: 10.3390/molecules25143180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Chemical diversification of type II topoisomerase (Topo II) inhibitors remains indispensable to extend their anti-tumor therapeutic values which are limited by their side effects. Herein, we designed and synthesized a novel series of benzimidazole-chalcone hybrids (BCHs). These BCHs showed good inhibitory effect in the Topo II mediated DNA relaxation assay and anti-proliferative effect in 4 tumor cell lines. 4d and 4n were the most potent, with IC50 values less than 5 μM, superior to etoposide. Mechanistic studies indicated that the BCHs functioned as non-intercalative Topo II catalytic inhibitors. Moreover, 4d and 4n demonstrated versatile properties against tumors, including inhibition on the colony formation and cell migration, and promotion of apoptosis of A549 cells. The structure-activity relationship and molecular docking analysis suggested possible contribution of the chalcone motif to the Topo II inhibitory and anti-proliferative potency. These results indicated that 4d and 4n could be promising lead compounds for further anti-tumor drug research.
Collapse
Affiliation(s)
- Wei Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.Z.); (Y.P.); (L.Z.)
- Correspondence: (W.Z.); (Z.D.)
| | - Wenjin Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.Z.); (Y.P.); (L.Z.)
| | - Yi Peng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.Z.); (Y.P.); (L.Z.)
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China;
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.Z.); (Y.P.); (L.Z.)
| | - Zhiyun Du
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (W.Z.); (Y.P.); (L.Z.)
- Correspondence: (W.Z.); (Z.D.)
| |
Collapse
|
28
|
Jeong JH, Kim H, Park SH, Park H, Jeong M, Kwak S, Sung GJ, Song JH, Na Y, Choi KC. A New TGF-β1 Inhibitor, CTI-82, Antagonizes Epithelial-Mesenchymal Transition through Inhibition of Phospho-SMAD2/3 and Phospho-ERK. BIOLOGY 2020; 9:biology9070143. [PMID: 32605257 PMCID: PMC7408591 DOI: 10.3390/biology9070143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) is highly expressed in the tumor microenvironment and known to play a multifunctional role in cancer progression. In addition, TGF-β1 promotes metastasis by inducing epithelial–mesenchymal transition (EMT) in a variety of tumors. Thus, inhibition of TGF-β1 is considered an important strategy in the treatment of cancer. In most tumors, TGF-β1 signal transduction exhibits modified or non-functional characteristics, and TGF-β1 inhibitors have various inhibitory effects on cancer cells. Currently, many studies are being conducted to develop TGF-β1 inhibitors from non-toxic natural compounds. We aimed to develop a new TGF-β1 inhibitor to suppress EMT in cancer cells. As a result, improved chalcone-like chain CTI-82 was identified, and its effect was confirmed in vitro. We showed that CTI-82 blocked TGF-β1-induced EMT by inhibiting the cell migration and metastasis of A549 lung cancer cells. In addition, CTI-82 reduced the TGF-β1-induced phosphorylation of SMAD2/3 and inhibited the expression of various EMT markers. Our results suggest that CTI-82 inhibits tumor growth, migration, and metastasis.
Collapse
Affiliation(s)
- Ji-Hoon Jeong
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-H.J.); (H.K.); (S.-H.P.); (H.P.); (M.J.); (S.K.); (G.-J.S.); (J.-H.S.)
| | - Hyunhee Kim
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-H.J.); (H.K.); (S.-H.P.); (H.P.); (M.J.); (S.K.); (G.-J.S.); (J.-H.S.)
| | - Seung-Ho Park
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-H.J.); (H.K.); (S.-H.P.); (H.P.); (M.J.); (S.K.); (G.-J.S.); (J.-H.S.)
| | - Hayeon Park
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-H.J.); (H.K.); (S.-H.P.); (H.P.); (M.J.); (S.K.); (G.-J.S.); (J.-H.S.)
| | - Minseok Jeong
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-H.J.); (H.K.); (S.-H.P.); (H.P.); (M.J.); (S.K.); (G.-J.S.); (J.-H.S.)
| | - Sungmin Kwak
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-H.J.); (H.K.); (S.-H.P.); (H.P.); (M.J.); (S.K.); (G.-J.S.); (J.-H.S.)
| | - Gi-Jun Sung
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-H.J.); (H.K.); (S.-H.P.); (H.P.); (M.J.); (S.K.); (G.-J.S.); (J.-H.S.)
| | - Ji-Hye Song
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-H.J.); (H.K.); (S.-H.P.); (H.P.); (M.J.); (S.K.); (G.-J.S.); (J.-H.S.)
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon 487-010, Korea
- Correspondence: (Y.N.); (K.-C.C.); Tel.: +82-2-3010-2087 (K.-C.C.); Fax: +82-2-3010-2642 (K.-C.C.)
| | - Kyung-Chul Choi
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.-H.J.); (H.K.); (S.-H.P.); (H.P.); (M.J.); (S.K.); (G.-J.S.); (J.-H.S.)
- Correspondence: (Y.N.); (K.-C.C.); Tel.: +82-2-3010-2087 (K.-C.C.); Fax: +82-2-3010-2642 (K.-C.C.)
| |
Collapse
|
29
|
Gao F, Huang G, Xiao J. Chalcone hybrids as potential anticancer agents: Current development, mechanism of action, and structure-activity relationship. Med Res Rev 2020; 40:2049-2084. [PMID: 32525247 DOI: 10.1002/med.21698] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022]
Abstract
The continuous emergency of drug-resistant cancers and the low specificity of anticancer agents have been the major challenges in the control and treatment of cancer, making an urgent need to develop novel anticancer agents with high efficacy. Chalcones, precursors of flavonoids and isoflavonoids, exhibit structural heterogeneity and can act on various drug targets. Chalcones which demonstrated potential in vitro and in vivo activity against both drug-susceptible and drug-resistant cancers, are useful templates for the development of novel anticancer agents. Hybridization of chalcone moiety with other anticancer pharmacophores could provide the hybrids which have the potential to overcome drug resistance and improve the specificity, so it represents a promising strategy to develop novel anticancer agents. This review emphasizes the development, the mechanisms of action as well as structure-activity relationships of chalcone hybrids with potential therapeutic application for many cancers in recent 10 years.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
30
|
Liu Y, Wu Y, Sun L, Gu Y, Hu L. Synthesis and structure-activity relationship study of water-soluble carbazole sulfonamide derivatives as new anticancer agents. Eur J Med Chem 2020; 191:112181. [PMID: 32113125 DOI: 10.1016/j.ejmech.2020.112181] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022]
Abstract
Here, we formulated and investigated the structure-activity relationships of novel N-substituted carbazole sulfonamide derivatives with improved physicochemical properties. Most of these new compounds displayed good aqueous solubility. Certain molecules presented strong in vitro antiproliferative and in vivo antitumor activity. Relative to the control, 50 mg/kg compound 3v substantially reduced human HepG2 xenograft mouse tumor growth by 54.5% and its efficacy was comparable to that of CA-4P. Compound 3h demonstrated anticancer efficacy in both subcutaneous and orthotopic HepG2 xenograft mouse models. We also developed a novel synthetic method for 7-hydroxy-substituted carbazole sulfonamides. Compared with the control, 25 mg/kg compound 4c inhibited human HepG2 xenograft mouse tumor growth by 71.7% and was more potent than 50 mg/kg CA-4P with only 50% tumor shrinkage efficacy. Among the three water-soluble carbazole sulfonamide derivatives formulated in the present study, compound 4c displayed the most effective tumor growth inhibition in vivo and merit further investigation as potential antitumor agents for cancer therapy.
Collapse
Affiliation(s)
- Yonghua Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, PR China.
| | - Yanbin Wu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, PR China
| | - Lianqi Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, PR China
| | - Yuxi Gu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, PR China
| | - Laixing Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
31
|
Kazmi M, Khan I, Khan A, Halim SA, Saeed A, Mehsud S, Al-Harrasi A, Ibrar A. Developing new hybrid scaffold for urease inhibition based on carbazole-chalcone conjugates: Synthesis, assessment of therapeutic potential and computational docking analysis. Bioorg Med Chem 2019; 27:115123. [DOI: 10.1016/j.bmc.2019.115123] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 12/11/2022]
|
32
|
Patel OP, Arun A, Singh PK, Saini D, Karade SS, Chourasia MK, Konwar R, Yadav PP. Pyranocarbazole derivatives as potent anti-cancer agents triggering tubulin polymerization stabilization induced activation of caspase-dependent apoptosis and downregulation of Akt/mTOR in breast cancer cells. Eur J Med Chem 2019; 167:226-244. [DOI: 10.1016/j.ejmech.2019.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/11/2022]
|
33
|
Riaz S, Iqbal M, Ullah R, Zahra R, Chotana GA, Faisal A, Saleem RSZ. Synthesis and evaluation of novel α-substituted chalcones with potent anti-cancer activities and ability to overcome multidrug resistance. Bioorg Chem 2019; 87:123-135. [PMID: 30884306 DOI: 10.1016/j.bioorg.2019.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/24/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
A series of forty α-substituted chalcones were synthesized and screened for their antiproliferative activities against HCT116 (colorectal) and HCC1954 (breast) cancer cell lines. Compounds 5a and 5e were found to be the most potent compounds with GI50 values of 0.63 µM and 0.725 µM in HCC1954 cell line and 0.69 µM and 1.59 µM in HCT116 cell line, respectively. Both compounds induced a G2/M cell cycle arrest and caused apoptotic cell death in HCT116 cells as shown by the induction of PARP cleavage. The compounds also stabilized p53 in a dose-dependent manner in HCT116 cells following 24-hour treatment. Furthermore, both 5a and 5e were able to overcome multidrug resistance in two MDR-1 overexpressing multidrug resistant cell lines.
Collapse
Affiliation(s)
- Sharon Riaz
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Maheen Iqbal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Rahim Ullah
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Rida Zahra
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Ghayoor Abbas Chotana
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Amir Faisal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan.
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan.
| |
Collapse
|
34
|
Chen Z, Xu Y, Qian X. Naphthalimides and analogues as antitumor agents: A review on molecular design, bioactivity and mechanism of action. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.09.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
35
|
Saturnino C, Caruso A, Iacopetta D, Rosano C, Ceramella J, Muià N, Mariconda A, Bonomo MG, Ponassi M, Rosace G, Sinicropi MS, Longo P. Inhibition of Human Topoisomerase II by N,N,N-Trimethylethanammonium Iodide Alkylcarbazole Derivatives. ChemMedChem 2018; 13:2635-2643. [PMID: 30347518 DOI: 10.1002/cmdc.201800546] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/29/2018] [Indexed: 12/14/2022]
Abstract
Chemotherapy is used for the treatment of all stages of breast cancer, including the metastatic stage of the disease. Treatment regimens are generally tailored for each patient's particular situation. However, chemotherapeutic agents are the leading cause of serious drug-related adverse effects; moreover, drug resistance often occurs. In this study, we designed and synthesized a new series of N-alkylcarbazoles derived from ellipticine, an alkaloid with a carbazole skeleton initially used in the treatment of metastatic breast cancer and later dismissed because of poor aqueous solubility and severe side effects. After evaluating the binding modes of our class of newly synthesized compounds with human topoisomerase II (hTopo II), we performed hTopo II decatenation assays, identifying compound 4 f (2-(4-((3-chloro-9H-carbazol-9-yl)pentyl)piperazin-1-yl)-N,N,N-trimethylethanammonium iodide) as a good inhibitor. Moreover, 4 f and 4 g (2-(4-((3-chloro-9H-carbazol-9-yl)hexyl)piperazin-1-yl)-N,N,N-trimethylethanammonium iodide) showed a good anti-proliferative activity toward breast cancer cells, causing apoptosis by activation of the caspase pathway. Interestingly, the activity of these two compounds on triple-negative MDA-MB-231 cells, which tend to be highly metastatic and aggressive, is strictly connected to the observed inhibition of hTopo II.
Collapse
Affiliation(s)
- Carmela Saturnino
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Camillo Rosano
- Biopolymers and Proteomics IRCCS, Ospedale Policlinico San Martino - IST, Largo R. Benzi 10, 16132, Genova, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Noemi Muià
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Annaluisa Mariconda
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044, Dalmine, BG, Italy
| | - Maria Grazia Bonomo
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Marco Ponassi
- Biopolymers and Proteomics IRCCS, Ospedale Policlinico San Martino - IST, Largo R. Benzi 10, 16132, Genova, Italy
| | - Giuseppe Rosace
- Department of Engineering and Applied Sciences, University of Bergamo, Viale Marconi 5, 24044, Dalmine, BG, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Italy
| | - Pasquale Longo
- Department of Biology and Chemistry, University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Italy
| |
Collapse
|
36
|
Hevener K, Verstak TA, Lutat KE, Riggsbee DL, Mooney JW. Recent developments in topoisomerase-targeted cancer chemotherapy. Acta Pharm Sin B 2018; 8:844-861. [PMID: 30505655 PMCID: PMC6251812 DOI: 10.1016/j.apsb.2018.07.008] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 12/17/2022] Open
Abstract
The DNA topoisomerase enzymes are essential to cell function and are found ubiquitously in all domains of life. The various topoisomerase enzymes perform a wide range of functions related to the maintenance of DNA topology during DNA replication, and transcription are the targets of a wide range of antimicrobial and cancer chemotherapeutic agents. Natural product-derived agents, such as the camptothecin, anthracycline, and podophyllotoxin drugs, have seen broad use in the treatment of many types of cancer. Selective targeting of the topoisomerase enzymes for cancer treatment continues to be a highly active area of basic and clinical research. The focus of this review will be to summarize the current state of the art with respect to clinically used topoisomerase inhibitors for targeted cancer treatment and to discuss the pharmacology and chemistry of promising new topoisomerase inhibitors in clinical and pre-clinical development.
Collapse
Affiliation(s)
- KirkE. Hevener
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
37
|
Jeong JH, Jang HJ, Kwak S, Sung GJ, Park SH, Song JH, Kim H, Na Y, Choi KC. Novel TGF-β1 inhibitor antagonizes TGF-β1-induced epithelial-mesenchymal transition in human A549 lung cancer cells. J Cell Biochem 2018; 120:977-987. [PMID: 30216515 DOI: 10.1002/jcb.27460] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/18/2018] [Indexed: 01/18/2023]
Abstract
Transforming growth factor β1 (TGF-β1), a multifunctional cytokine, is known to promote tumor invasion and metastasis and induce epithelial-mesenchymal transition (EMT) in various cancer cells. Inhibition of TGF-β1 signaling is a new strategy for cancer therapy. Most cancer cells display altered or nonfunctional TGF-β1 signaling; hence, TGF-β1 inhibitors exert limited effects on these cells. Recent studies have suggested that developing a TGF-β1 inhibitor from natural compounds is a key step to create novel therapeutic agents. This study aimed to develop a new anti-TGF-β1 therapy for cancer. We found an improved analog of chalcones, compound 67, and investigated its effects in vitro. We demonstrated the inhibitory role of compound 67 through migration and invasion assays on TGF-β1-induced EMT of human A549 lung cancer cells. Compound 67 inhibited TGF-β1-induced smad2 phosphorylation, suppressed TGF-β1-induced EMT markers, matrix metalloproteinase-2 (MMP-2) and MMP-9, and inhibited migration and invasion of A549 cells. The study results showed that compound 67 is useful to prevent tumor growth and metastasis.
Collapse
Affiliation(s)
- Ji-Hoon Jeong
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Pharmacology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hae Jin Jang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Sungmin Kwak
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Pharmacology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Gi-Jun Sung
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Pharmacology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seung-Ho Park
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Pharmacology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Ji-Hye Song
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Pharmacology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyunhee Kim
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Pharmacology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon, South Korea
| | - Kyung-Chul Choi
- Department of Biomedical Sciences, Asan Medical Center, AMIST, University of Ulsan College of Medicine, Seoul, South Korea.,Department of Pharmacology, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
38
|
Design, synthesis, molecular modeling and anti-proliferative evaluation of novel quinoxaline derivatives as potential DNA intercalators and topoisomerase II inhibitors. Eur J Med Chem 2018; 155:117-134. [DOI: 10.1016/j.ejmech.2018.06.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/01/2023]
|
39
|
Li P, Zhang W, Jiang H, Li Y, Dong C, Chen H, Zhang K, Du Z. Design, synthesis and biological evaluation of benzimidazole-rhodanine conjugates as potent topoisomerase II inhibitors. MEDCHEMCOMM 2018; 9:1194-1205. [PMID: 30109008 DOI: 10.1039/c8md00278a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/01/2018] [Indexed: 11/21/2022]
Abstract
In this study, a series of benzimidazole-rhodanine conjugates were designed, synthesized and investigated for their topoisomerase II (Topo II) inhibitory and cytotoxic activities. The results from Topo II-mediated pBR322 DNA relaxation and cleavage assays showed that the synthesized compounds might act as Topo II catalytic inhibitors. Certain compounds displayed potent Topo II inhibition at 10 μM. The cytotoxic activities of these compounds against HeLa, A549, Raji, PC-3, MDA-MB-201, and HL-60 cancer cell lines were evaluated. The results indicated that these compounds exhibited strong antiproliferative activity. A good relationship was observed between the Topo II inhibitory potency and the cytotoxicity of these compounds. The structure-activity relationship revealed that the electronic effects, the phenyl group, and the rhodanine moiety were particularly important for the Topo II inhibitory potency and cytotoxicity.
Collapse
Affiliation(s)
- Penghui Li
- Institute of Natural Medicine & Green Chemistry , School of Chemical Engineering and Light Industry , Guandong University of Technology , Guangzhou 510006 , China .
| | - Wenjin Zhang
- Institute of Natural Medicine & Green Chemistry , School of Chemical Engineering and Light Industry , Guandong University of Technology , Guangzhou 510006 , China .
| | - Hong Jiang
- Institute of Natural Medicine & Green Chemistry , School of Chemical Engineering and Light Industry , Guandong University of Technology , Guangzhou 510006 , China .
| | - Yongliang Li
- Institute of Natural Medicine & Green Chemistry , School of Chemical Engineering and Light Industry , Guandong University of Technology , Guangzhou 510006 , China .
| | - Changzhi Dong
- Institute of Natural Medicine & Green Chemistry , School of Chemical Engineering and Light Industry , Guandong University of Technology , Guangzhou 510006 , China . .,Universite Paris Diderot , Sorbonne Paris Cite , ITODYS , UMR 7086 CNRS , 15 rue J-A de Baif , 75270 Cedex 13 Paris , France
| | - Huixiong Chen
- Institute of Natural Medicine & Green Chemistry , School of Chemical Engineering and Light Industry , Guandong University of Technology , Guangzhou 510006 , China . .,CNRS , UMR8601 , Laboratoire de Chimine et Biochimie Pharmacologiques et Toxicologiques , CBNIT , Universite Paris Descartes PRES Sorbonne Paris Cite , UFR Biomedicale , 45 rue des Saints-Peres , 75270 Cedex 06 Paris , France
| | - Kun Zhang
- Institute of Natural Medicine & Green Chemistry , School of Chemical Engineering and Light Industry , Guandong University of Technology , Guangzhou 510006 , China . .,Wuyi University , Jiangmen 529020 , China
| | - Zhiyun Du
- Institute of Natural Medicine & Green Chemistry , School of Chemical Engineering and Light Industry , Guandong University of Technology , Guangzhou 510006 , China .
| |
Collapse
|
40
|
Synthesis and biological evaluation of novel carbazole-rhodanine conjugates as topoisomerase II inhibitors. Bioorg Med Chem Lett 2018; 28:1320-1323. [DOI: 10.1016/j.bmcl.2018.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 12/18/2022]
|