1
|
Anjomshoa M, Amirheidari B, Sahihi M, Janczak J, Forootanfar H, Farsinejad A, Abolhassani Y, Karami-Mohajeri S. In vitro cellular and molecular plus in silico studies of a substituted bipyridine-coordinated Zn(II) ion: cytotoxicity, ROS-induced apoptosis, anti-metastasis, and BAX/BCL2 genes expression. J Biol Inorg Chem 2025:10.1007/s00775-025-02114-z. [PMID: 40253669 DOI: 10.1007/s00775-025-02114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 03/21/2025] [Indexed: 04/22/2025]
Abstract
A new dimethyl-substituted bipyridine-Zn(II) complex (2Mebpy-Zn) was synthesized and structurally characterized. Single-crystalline structure of the complex was elucidated as [Zn(2Mebpy)3](ClO4)2∙1.5(dioxane) by X-ray diffraction, where 2Mebpy is 4,4'-dimethyl-2,2'-bipyridine. The three-dimensional electrostatic potential maps (3D ESP) were plotted for [Zn(2Mebpy)3]2+ cation and [Zn(2Mebpy)3](ClO4)2 molecule. In vitro cytotoxicity studies indicated significant cytotoxicity of 2Mebpy-Zn against both breast (MCF-7) and glioblastoma (U-87) cancer cells relative to normal murine embryo cells (NIH/3T3). The results are indicative of a superior selectivity toward MCF-7 over the other cell lines as confirmed by IC50 value of 5.1 ± 0.5 µM after 48 h. Interestingly, MCF-7 and U-87 cells death induced by 2Mebpy-Zn mostly proceed through an apoptotic pathway which probably associates with the overproduction of reactive oxygen species (ROS). The Zn(II) complex suppressed the metastatic affinity of MCF-7 cells by blocking migration as well as formation of colonies. Also, the expression of two opponent apoptosis-relevant genes (BAX and BCL2) measured by real-time polymerase chain reaction (qPCR) experiments indicated that 2Mebpy-Zn could potentially trigger apoptotic cell death. Moreover, 2Mebpy-Zn could cleave hydrolytically the pUC19 DNA without the need to add any external agent. Finally, the binding affinity of two enantiomers of 2Mebpy-Zn toward cancer therapeutic targets, such as anti-apoptotic proteins, estrogen receptor α, tubulin, and topoisomerase II, was studied by in silico molecular docking. In conclusion, 2Mebpy-Zn can be introduced as a potential therapeutic agent in breast cancer and indicates that other metal complexes with bipyridine derivatives can also exhibit promising anticancer effects.
Collapse
Affiliation(s)
- Marzieh Anjomshoa
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical sciences, Kerman, Iran.
| | - Bagher Amirheidari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical sciences, Kerman, Iran.
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mehdi Sahihi
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Jan Janczak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2 Str., 50-422, Wrocław, Poland
| | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical sciences, Kerman, Iran
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Farsinejad
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasaman Abolhassani
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical sciences, Kerman, Iran
| | - Somayyeh Karami-Mohajeri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Zangade SB, Dhulshette BS, Patil PB. Flavonoid-metal ion Complexes as Potent Anticancer Metallodrugs: A Comprehensive Review. Mini Rev Med Chem 2024; 24:1046-1060. [PMID: 37867263 DOI: 10.2174/0113895575273658231012040250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Flavonoids and their analogous are mainly found in pink lady apples, green and black tea (catechins), celery and red peppers, onions, broccoli and spinach, berries, cherries, soybean, citrus fruits, and fungi. The different derivatives of flavonoids belonging to polyphenolic compounds such as 3,4',5,7-Tetrahydroxyflavylium (pelargonidin), 2-(3,4-Dihydroxyphenyl)chromenylium-3,5,7-triol (cyanidin), 3,3',4',5,5',7-Hexahydroxyflavylium (delphinidin), 3,3',4',5,7-Pentahydroxy-5'-methoxyflavylium (petunidin), and 3,4',5,7-Tetrahydroxy-3',5'-dimethoxyflavylium (malvidin) can act as good chelating agents for metal-chelate complex formation. These flavonoid-metal complexes have been reported to have various biomedical and pharmacological activities. OBJECTIVE Flavonoid-metal ion complexes display a broad spectrum of biological properties such as antioxidant, anti-inflammatory, anti-allergic, antiviral, anticarcinogenic, and cytotoxic activity. The literature survey showed that flavonoid metal complexes have potential therapeutic properties against various cancerous cells. The objective is to gain insight into the current perspective and development of novel anticancer metallodrugs. METHODS The flavonoid-metal ion complexes can be prepared by reacting flavonoid ligand with appropriate metal salt in aqueous or alcoholic reaction medium under stirring or refluxing conditions. In this review article, the various reported methods for the synthesis of flavonoid-metal complexes have been included. The utility of synthetic methods for flavonoid-metal complexes will support the discovery of novel therapeutic drugs. RESULTS In this review study, short libraries of flavonoid-metal ion complexes were studied as potential anticancer agents against various human cancer cell lines. The review report reveals that metal ions such as Fe, Co, Ni, Cu, Zn, Rh, Ru, Ga, Ba, Sn etc., when binding to flavonoid ligands, enhance the anticancer activity compared to free ligands. This review study covered some important literature surveys for the last two decades. CONCLUSION It has been concluded that flavonoid metal complexes have been associated with a wide range of biological properties that could be noteworthy in the medicinal field. Therefore, to develop a new anticancer drug, it is essential to determine the primordial interaction of drug with DNA under physiological or anatomical conditions. The study of numerous flavonoid metal complexes mentioned in this paper could be the future treatment against various cancerous diseases.
Collapse
Affiliation(s)
- Sainath B Zangade
- Department of Chemistry, Madhavrao Patil, ACS College, Palam Dist. Parbhani, 431720, (M.S.), India
| | - Bashweshawar S Dhulshette
- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Pravinkumar B Patil
- Department of Chemistry, Mudhoji College, Phaltan, Dist. Satara, 415523, (M.S.), India
| |
Collapse
|
3
|
Li R, Zhao W, Jin C, Xiong H. Dual-target platinum(IV) complexes reverse cisplatin resistance in triple negative breast via inhibiting poly(ADP-ribose) polymerase (PARP-1) and enhancing DNA damage. Bioorg Chem 2023; 133:106354. [PMID: 36720184 DOI: 10.1016/j.bioorg.2023.106354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/29/2022] [Accepted: 01/08/2023] [Indexed: 01/19/2023]
Abstract
Platinum(II)-based drugs play an important role in many chemotherapeutic protocols, but their further clinical applications are hindered by the development of drug resistance and serious side effects. Therefore, to reverse cisplatin (CDDP) resistance in tandem with reduced side effects, nine novel platinum(IV) complexes modified with key pharmacophore of Olaparib were synthesized and evaluated for biological activities. Among them, the optimal complex 8-2 showed good inhibitory activity against PARP-1 and superior anticancer effects over CDDP on parental (MDA-MB-231, IC50 = 1.13 μM) and CDDP -resistant triple-negative breast cancer (TNBC) cell line (MDA-MB-231/CDDP, IC50 = 1.72 μM). Detailed mechanisms revealed that compared with Olaparib and CDDP, the enhanced intracellular accumulation of 8-2 could efficiently reverse CDDP resistance in MDA-MB-231/CDDP cells via inhibiting DNA repair-associated mechanisms, enhancing DNA damage, and activating mitochondrion-dependent apoptosis pathway. Furthermore, 8-2 obtained higher tumor growth inhibition rate (64.1 %) than CDDP (26.5 %) in MDA-MB-231/CDDP xenografts, but it did not induce significant toxicity in vivo and in intro, making it a potential drug candidate for the treatment of TNBC.
Collapse
Affiliation(s)
- Rui Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chen Jin
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Liu Z, Wang M, Huang R, Hu T, Jing Y, Huang X, Hu W, Cao G, Wang H. Novel Indole-Chalcone Derivative-Ligated Platinum(IV) Prodrugs Attenuate Cisplatin Resistance in Lung Cancer through ROS/ER Stress and Mitochondrial Dysfunction. J Med Chem 2023; 66:4868-4887. [PMID: 36946996 DOI: 10.1021/acs.jmedchem.2c02036] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Developing multifunctional platinum(IV) prodrugs via integrating bioactive pharmacophores into one entity is an attractive strategy to ameliorate the defects of platinum(II) drugs. Herein, a series of indole-chalcone derivative-ligated platinum(IV) complexes were synthesized and evaluated for their anticancer activities. Among them, optimal complex 17a exerted superior activity compared to that of cisplatin (CDDP) against the tested cells but showed lower cytotoxicity toward human normal lung cells. Detailed mechanisms demonstrated that 17a significantly enhanced intracellular accumulation, induced DNA damage, and inhibited migration in A549/CDDP cells. Furthermore, 17a efficiently disturbed the tubulin-microtubule system, initiated reactive oxygen species (ROS)-mediated endoplasmic reticulum stress, and activated a mitochondrion-dependent apoptosis signaling pathway. Besides, 17a was superior to free drugs or their combination in inhibiting cancer growth in A549/CDDP xenografts without inducing obvious side effects. The physical mixture of 16a and CDDP was almost identical to 17a but showed apparent systematic side effects. In summary, our studies may provide an efficient treatment regimen for CDDP resistance.
Collapse
Affiliation(s)
- Zhikun Liu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Meng Wang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Rizhen Huang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Tianhui Hu
- Traditional Chinese Medicine Department, Huai'an Maternal and Child Health-Care Center, Huai'an 2230003, China
| | - Yi Jing
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Xiaochao Huang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Weiwei Hu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Guoxiu Cao
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
5
|
Heteroleptic Copper(II) Complexes Containing 2'-Hydroxy-4-(Dimethylamino)Chalcone Show Strong Antiproliferative Activity. Pharmaceutics 2023; 15:pharmaceutics15020307. [PMID: 36839630 PMCID: PMC9967299 DOI: 10.3390/pharmaceutics15020307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
A series of six heteroleptic copper(II) complexes with 2'-hydroxy-4-(dimethylamino)chalcone (HL) with the composition [Cu(N-N)(L)]NO3 (1-6), where N-N stands for dmbpy = 5,5'-dimethyl-2,2'-bipyridine (1), bphen = 4,7-diphenyl-1,10-phenanthroline (2), dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine (3), nphen = 5-nitro-1,10-phenanthroline (4), bpy = 2,2'-bipyridine, (5), and dpa = 2,2'-dipyridylamine (6), was prepared and thoroughly characterized. The in vitro cytotoxicity screening on eight human cancer cell lines identified complex 2, containing the bulkiest N-donor ligands (bphen) as highly cytotoxic against cancer cells, with IC50 values ranking from 1.0 to 2.3 μM, with good selectivity and low toxicity against healthy human fetal lung fibroblasts MRC-5. The cell-based assays, involving the most effective complex 2 in A2780 cancer cells, revealed its strong pro-apoptotic effects based on the effective activation of caspases 3/7, ROS overproduction, and autophagy in the A2780 cells while not impeding the cell cycle and mitochondrial membrane functions. The cellular uptake studies in A2780 and 22Rv1 cells uncovered no intracellular transport of the cationic complex 2, supporting the hypothesis that the in vitro anticancer effects of complex 2 are based on the combined extrinsic activation of apoptosis and autophagy induction.
Collapse
|
6
|
Marotta C, Giorgi E, Binacchi F, Cirri D, Gabbiani C, Pratesi A. An overview of recent advancements in anticancer Pt(IV) prodrugs: New smart drug combinations, activation and delivery strategies. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Larasati L, Lestari WW, Firdaus M. Dual-Action Pt(IV) Prodrugs and Targeted Delivery in Metal-Organic Frameworks: Overcoming Cisplatin Resistance and Improving Anticancer Activity. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Larasati Larasati
- Master of Chemistry Program, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret Surakarta, Jl. Ir. Sutami No. 36A, Kentingan Jebres, Surakarta, Central Java, Indonesia, 57126
| | - Witri Wahyu Lestari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret Surakarta, Jl. Ir. Sutami No. 36A, Kentingan Jebres, Surakarta, Central Java, Indonesia, 57126
| | - Maulidan Firdaus
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret Surakarta, Jl. Ir. Sutami No. 36A, Kentingan Jebres, Surakarta, Central Java, Indonesia, 57126
| |
Collapse
|
8
|
Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y, Han B. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther 2022; 7:286. [PMID: 35963853 PMCID: PMC9376115 DOI: 10.1038/s41392-022-01110-y] [Citation(s) in RCA: 412] [Impact Index Per Article: 137.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023] Open
Abstract
Regulated cell death (RCD), also well-known as programmed cell death (PCD), refers to the form of cell death that can be regulated by a variety of biomacromolecules, which is distinctive from accidental cell death (ACD). Accumulating evidence has revealed that RCD subroutines are the key features of tumorigenesis, which may ultimately lead to the establishment of different potential therapeutic strategies. Hitherto, targeting the subroutines of RCD with pharmacological small-molecule compounds has been emerging as a promising therapeutic avenue, which has rapidly progressed in many types of human cancers. Thus, in this review, we focus on summarizing not only the key apoptotic and autophagy-dependent cell death signaling pathways, but the crucial pathways of other RCD subroutines, including necroptosis, pyroptosis, ferroptosis, parthanatos, entosis, NETosis and lysosome-dependent cell death (LCD) in cancer. Moreover, we further discuss the current situation of several small-molecule compounds targeting the different RCD subroutines to improve cancer treatment, such as single-target, dual or multiple-target small-molecule compounds, drug combinations, and some new emerging therapeutic strategies that would together shed new light on future directions to attack cancer cell vulnerabilities with small-molecule drugs targeting RCD for therapeutic purposes.
Collapse
Affiliation(s)
- Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minru Liao
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shiou Zhu
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Leilei Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yi Chen
- West China School of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
9
|
Liu W, He M, Li Y, Peng Z, Wang G. A review on synthetic chalcone derivatives as tubulin polymerisation inhibitors. J Enzyme Inhib Med Chem 2021; 37:9-38. [PMID: 34894980 PMCID: PMC8667932 DOI: 10.1080/14756366.2021.1976772] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microtubules play an important role in the process of cell mitosis and can form a spindle in the mitotic prophase of the cell, which can pull chromosomes to the ends of the cell and then divide into two daughter cells to complete the process of mitosis. Tubulin inhibitors suppress cell proliferation by inhibiting microtubule dynamics and disrupting microtubule homeostasis. Thereby inducing a cell cycle arrest at the G2/M phase and interfering with the mitotic process. It has been found that a variety of chalcone derivatives can bind to microtubule proteins and disrupt the dynamic balance of microtubules, inhibit the proliferation of tumour cells, and exert anti-tumour effects. Consequently, a great number of studies have been conducted on chalcone derivatives targeting microtubule proteins. In this review, synthetic or natural chalcone microtubule inhibitors in recent years are described, along with their structure-activity relationship (SAR) for anticancer activity.
Collapse
Affiliation(s)
- Wenjing Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,Teaching and Research Section of Natural Medicinal Chemistry, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Min He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.,Teaching and Research Section of Natural Medicinal Chemistry, School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yongjun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Guangcheng Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| |
Collapse
|
10
|
Xiao J, Gao M, Diao Q, Gao F. Chalcone Derivatives and their Activities against Drug-resistant Cancers: An Overview. Curr Top Med Chem 2021; 21:348-362. [PMID: 33092509 DOI: 10.2174/1568026620666201022143236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 11/22/2022]
Abstract
Drug resistance, including multidrug resistance resulting from different defensive mechanisms in cancer cells, is the leading cause of the failure of the cancer therapy, posing an urgent need to develop more effective anticancer agents. Chalcones, widely distributed in nature, could act on diverse enzymes and receptors in cancer cells. Accordingly, chalcone derivatives possess potent activity against various cancers, including drug-resistant, even multidrug-resistant cancer. This review outlines the recent development of chalcone derivatives with potential activity against drug-resistant cancers covering articles published between 2010 and 2020 so as to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Meixiang Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qiang Diao
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
11
|
Shuai W, Wang G, Zhang Y, Bu F, Zhang S, Miller DD, Li W, Ouyang L, Wang Y. Recent Progress on Tubulin Inhibitors with Dual Targeting Capabilities for Cancer Therapy. J Med Chem 2021; 64:7963-7990. [PMID: 34101463 DOI: 10.1021/acs.jmedchem.1c00100] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Microtubules play a crucial role in multiple cellular functions including mitosis, cell signaling, and organelle trafficking, which makes the microtubule an important target for cancer therapy. Despite the great successes of microtubule-targeting agents in the clinic, the development of drug resistance and dose-limiting toxicity restrict their clinical efficacy. In recent years, multitarget therapy has been considered an effective strategy to achieve higher therapeutic efficacy, in particular dual-target drugs. In terms of the synergetic effect of tubulin and other antitumor agents such as receptor tyrosine kinases inhibitors, histone deacetylases inhibitors, DNA-damaging agents, and topoisomerase inhibitors in combination therapy, designing dual-target tubulin inhibitors is regarded as a promising approach to overcome these limitations and improve therapeutic efficacy. In this Perspective, we discussed rational target combinations, design strategies, structure-activity relationships, and future directions of dual-target tubulin inhibitors.
Collapse
Affiliation(s)
- Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yiwen Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Faqian Bu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Sicheng Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.,Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
12
|
Acharya S, Maji M, Chakraborty MP, Bhattacharya I, Das R, Gupta A, Mukherjee A. Disruption of the Microtubule Network and Inhibition of VEGFR2 Phosphorylation by Cytotoxic N, O-Coordinated Pt(II) and Ru(II) Complexes of Trimethoxy Aniline-Based Schiff Bases. Inorg Chem 2021; 60:3418-3430. [PMID: 33554592 DOI: 10.1021/acs.inorgchem.0c03820] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Platinum-based complexes are one of the most successful chemotherapeutic agents having a significant ground in cancer chemotherapy despite their side effects. During the past few decades, Ru(II) complexes have been emerging as efficient alternatives owing to their promising activities against platinum-resistant cancer. The pathway of action, lipophilicity, and cytotoxicity of a Pt or Ru complex may be tuned by varying the attached ligands, the coordination mode, and the leaving group. In this work, we report a family of Pt(II) and Ru(II) complexes (1-5) of three N,O and N,N donor-based trimethoxyanilines containing Schiff bases with the general formula [PtII(L)(DMSO)Cl], [RuII(L)(p-cymene)Cl], [RuII(L)(p-cymene)Cl]+, and [PtII(L)Cl2]. All of the complexes are characterized by different analytical techniques. 1H NMR and electrospray ionization mass spectrometry (ESI-MS) data suggest that the N,O-coordinated Pt(II) complexes undergo slower aquation compared to the Ru(II) analogues. The change of the coordination mode to N,N causes the Ru complexes to be more inert to aquation. The N,O-coordinating complexes show superiority over N,N-coordinating complexes by displaying excellent in vitro antiproliferative activity against different aggressive cancer cells, viz., triple-negative human metastatic breast adenocarcinoma MDA-MB-231, human pancreatic carcinoma MIA PaCa-2, and hepatocellular carcinoma Hep G2. In vitro cytotoxicity studies suggest that Pt(II) complexes are more effective than their corresponding Ru(II) analogues, and the most cytotoxic complex 3 is 10-15 times more toxic than the clinical drugs cisplatin and oxaliplatin against MDA-MB-231 cells. Cellular studies show that all of the N,O-coordinated complexes (1-3) initiate disruption of the microtubule network in MDA-MB-231 cells in a dose-dependent manner within 6 h of incubation and finally lead to the arrest of the cell cycle in the G2/M phase and render apoptotic cell death. The disruption of the microtubule network affects the agility of the cytoskeleton rendering inhibition of tyrosine phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2), a key step in angiogenesis. Complexes 1 and 2 inhibit VEGFR2 phosphorylation in a dose-dependent fashion. Among the Pt(II) and Ru(II) complexes, the former displays higher cytotoxicity, a stronger effect on the cytoskeleton, better VEGFR2 inhibition, and strong interaction with the model nucleobase 9-ethylguanine (9-EtG).
Collapse
Affiliation(s)
- Sourav Acharya
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | - Moumita Maji
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | - Manas Pratim Chakraborty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | - Indira Bhattacharya
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | - Rahul Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | - Arindam Mukherjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur 741246, India
| |
Collapse
|
13
|
Lin S, Liang Y, Cheng J, Pan F, Wang Y. Novel diaryl-2H-azirines: Antitumor hybrids for dual-targeting tubulin and DNA. Eur J Med Chem 2021; 214:113256. [PMID: 33581556 DOI: 10.1016/j.ejmech.2021.113256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 01/30/2023]
Abstract
Multiple-target drugs may achieve better therapeutic effect via different pathways than single-target ones, especially for complex diseases. Tubulin and DNA are well-characterized molecular targets for anti-cancer drug development. A novel class of diaryl substituted 2H-azirines were designed based on combination of pharmacophores from Combretastatin A-4 (CA-4) and aziridine-type alkylating agents, which are known tubulin polymerization inhibitor and DNA damaging agents, respectively. The antitumor activities of these compounds were evaluated in vitro and 6h showed the most potent activities against four cancer cell lines with IC50 values ranging from 0.16 to 1.40 μM. Further mechanistic studies revealed that 6h worked as a bifunctional agent targeting both tubulin and DNA. In the nude mice xenograft model, 6h significantly inhibited the tumor growth with low toxicity, demonstrating the promising potential for further developing novel cancer therapy with a unique mechanism.
Collapse
Affiliation(s)
- Shibo Lin
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yuru Liang
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jiayi Cheng
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Feng Pan
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yang Wang
- School of Pharmacy, Fudan University, Shanghai, 201203, China; Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
14
|
Jia C, Deacon GB, Zhang Y, Gao C. Platinum(IV) antitumor complexes and their nano-drug delivery. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213640] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Liu Z, Wang C, Wang Y, Wang L, Zhang Y, Yan G. 4'-O-Methylbroussochalcone B as a novel tubulin polymerization inhibitor suppressed the proliferation and migration of acute myeloid leukaemia cells. BMC Cancer 2021; 21:91. [PMID: 33482772 PMCID: PMC7825173 DOI: 10.1186/s12885-020-07759-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Recent years, survival rates of human with high-risk acute myeloid leukaemia (AML) have not raised substantially. This research aimed to investigate the role of 4'-O-Methylbroussochalcone B, for the treatment of human AML. METHODS Firstly, we evaluated the effects of six chalcones on AML cells activity by MTT assay. Immunofluorescence staining, tubulin polymerization assay and N,N'-ethylenebis (iodoacetamide) (EBI) competition assay were performed on ML-2 cells. Transwell and apoptosis assay were also utilized in ML-2 cells and OCI-AML5 cells. The expressions of migration-related proteins, apoptosis-related proteins and Wnt/β-catenin pathway were detected by Western Blot. RESULTS The results found six chalcones exhibited the anti-proliferative activity against different AML cell lines. Based on the results of immunofluorescence staining, tubulin polymerization assay and EBI competition assay, 4'-O-Methylbroussochalcone B was discovered to be a novel colchicine site tubulin polymerization inhibitor. 4'-O-Methylbroussochalcone B could induce apoptosis, inhibit proliferation and migration of ML-2 cells and OCI-AML5 cells. The cells were arrested in the G2-M phase by the treatment of 4'-O-Methylbroussochalcone B. In addition, 4'-O-Methylbroussochalcone B regulated MAPK and Wnt/β-catenin pathways in AML cells. CONCLUSION 4'-O-Methylbroussochalcone B might inhibit proliferation and migration of the AML cells by MAPK and Wnt/β-catenin pathways as a tubulin polymerization inhibitor. It is promising for 4'-O-Methylbroussochalcone B to become a new drug to treat AML.
Collapse
Affiliation(s)
- Ziying Liu
- Department of pediatrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Changshui Wang
- Department of Clinical & Translational Medicine, Jining Life Science Center, Jining, China
| | - Yali Wang
- Department of Clinical & Translational Medicine, Jining Life Science Center, Jining, China
| | - Lei Wang
- Department of Clinical & Translational Medicine, Jining Life Science Center, Jining, China
| | - Yueyuan Zhang
- Department of Clinical & Translational Medicine, Jining Life Science Center, Jining, China
| | - Genquan Yan
- Department of pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
16
|
Karmakar S, Kostrhunova H, Ctvrtlikova T, Novohradsky V, Gibson D, Brabec V. Platinum(IV)-Estramustine Multiaction Prodrugs Are Effective Antiproliferative Agents against Prostate Cancer Cells. J Med Chem 2020; 63:13861-13877. [PMID: 33175515 DOI: 10.1021/acs.jmedchem.0c01400] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we describe the synthesis, characterization, and biological properties of Pt(IV) derivatives of cisplatin with estramustine at the first axial position, which is known to disrupt the microtubule assembly and act as an androgen antagonist, and varying the second axial position using an innocent ligand (acetate or hydroxyl) to prepare dual-action and triple-action prodrugs with known inhibitors of histone deacetylase, cyclooxygenase, and pyruvate dehydrogenase kinase. We demonstrate superior antiproliferative activity at submicromolar concentrations of the prodrugs against a panel of cancer cell lines, particularly against prostate cancer cell lines. The results obtained in this study exemplify the complex mode of action of "multiaction" Pt(IV) prodrugs. Interestingly, changing the second axial ligand in the Pt-estramustine complex has a significant effect on the mode of action, suggesting that all three components of the Pt(IV) prodrugs (platinum moiety and axial ligands) contribute to the killing of cells and not just one dominant component.
Collapse
Affiliation(s)
- Subhendu Karmakar
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hana Kostrhunova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, Brno CZ-61265, Czech Republic
| | - Tereza Ctvrtlikova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, Brno CZ-61265, Czech Republic
| | - Vojtech Novohradsky
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, Brno CZ-61265, Czech Republic
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Viktor Brabec
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, Brno CZ-61265, Czech Republic
| |
Collapse
|
17
|
Mohamed MFA, Abuo-Rahma GEDA. Molecular targets and anticancer activity of quinoline-chalcone hybrids: literature review. RSC Adv 2020; 10:31139-31155. [PMID: 35520674 PMCID: PMC9056499 DOI: 10.1039/d0ra05594h] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/30/2020] [Indexed: 01/01/2023] Open
Abstract
α,β-Unsaturated chalcone moieties and quinoline scaffolds play an important role in medicinal chemistry, especially in the identification and development of potential anticancer agents. The multi-target approach or hybridization is considered as a promising strategy in drug design and discovery. Hybridization may improve the affinity and potency while simultaneously decreasing the resistance and/or side effects. The conjugation of quinolines with chalcones has been a promising approach to the identification of potential anticancer agents. Most of these hybrids showed anticancer activities through the inhibition of tubulin polymerization, different kinases, topoisomerases, or by affecting DNA cleavage activity. Accordingly, this class of compounds can be classified based on their molecular modes of action. In this article, the quinolone-chalcone hybrids with potential anticancer activity have been reviewed. This class of compounds might be helpful for the design, discovery and development of new and potential multi-target anticancer agents or drugs.
Collapse
Affiliation(s)
- Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University 82524 Sohag Egypt (+20)-1018384461
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University Minia 61519 Egypt +201003069431
| |
Collapse
|
18
|
Mirzaei S, Eisvand F, Hadizadeh F, Mosaffa F, Ghasemi A, Ghodsi R. Design, synthesis and biological evaluation of novel 5,6,7-trimethoxy-N-aryl-2-styrylquinolin-4-amines as potential anticancer agents and tubulin polymerization inhibitors. Bioorg Chem 2020; 98:103711. [PMID: 32179282 DOI: 10.1016/j.bioorg.2020.103711] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 01/17/2023]
Abstract
A new series of styrylquinolines was designed and synthesized as anticancer agents and tubulin polymerization inhibitors. The in vitro anticancer activity of the synthesized quinolines was evaluated against four human cancer cell lines including A-2780 (human ovarian carcinoma), A-2780/RCIS (cisplatin resistant human ovarian carcinoma), MCF-7 (human breast cancer cells), MCF-7/MX (mitoxantrone resistant human breast cancer cells) and normal Huvec cells. Generally, among the forty-eight newly synthesized quinolines, compounds possessing N-trimethoxy phenyl showed stronger cytotoxic activity with IC50 values ranging from 0.38 to 5.01 μM against all four cancer cell lines. Compounds 9VII-c and 9IV-c showed significant cytotoxic activity on A-2780 cancer cells, stronger than the other compounds and comparable to reference drug CA-4. Compound 9IV-c possessing 3,4-dimethoxystyryl and N-trimethoxy phenyl groups demonstrated potent cytotoxic effects with IC50 values ranging from 0.5 to 1.66 µM on resistant cancer cells as well as their parental cells. Annexin V binding staining assay in A-2780 and MCF-7/MX cancer cells, revealed that compound 9IV-c induced early and late apoptosis. Compounds 9IV-c and 9VII-b, inhibited tubulin polymerization similar to CA4. Finally, molecular docking studies of 9IV-c and 9VII-b into the colchicine-binding site of tubulin displayed the possible interactions of these compounds with tubulin.
Collapse
Affiliation(s)
- Salimeh Mirzaei
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhad Eisvand
- Department of Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Ghasemi
- Department of Pediatric Oncology-Hematology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Mirzaei S, Hadizadeh F, Eisvand F, Mosaffa F, Ghodsi R. Synthesis, structure-activity relationship and molecular docking studies of novel quinoline-chalcone hybrids as potential anticancer agents and tubulin inhibitors. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127310] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Zhang YL, Yang R, Xia LY, Man RJ, Chu YC, Jiang AQ, Wang ZC, Zhu HL. Synthesis, anticancer activity and molecular docking studies on 1,2-diarylbenzimidazole analogues as anti-tubulin agents. Bioorg Chem 2019; 92:103219. [DOI: 10.1016/j.bioorg.2019.103219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 07/11/2019] [Accepted: 08/24/2019] [Indexed: 01/08/2023]
|
21
|
Acharya S, Maji M, Ruturaj, Purkait K, Gupta A, Mukherjee A. Synthesis, Structure, Stability, and Inhibition of Tubulin Polymerization by Ru II- p-Cymene Complexes of Trimethoxyaniline-Based Schiff Bases. Inorg Chem 2019; 58:9213-9224. [PMID: 31241921 DOI: 10.1021/acs.inorgchem.9b00853] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Four trimethoxy- and dimethoxyphenylamine-based Schiff base (L1-L4)-bearing RuII-p-cymene complexes (1-4) of the chemical formula [RuII(η6-p-cymene)(L)(Cl)] were synthesized, isolated in pure form, and structurally characterized using single-crystal X-ray diffraction and other analytical techniques. The complexes showed excellent in vitro antiproliferative activity against various forms of cancer that are difficult to cure, viz., triple negative human metastatic breast carcinoma MDA-MB-231, human pancreatic carcinoma MIA PaCa-2, and hepatocellular carcinoma Hep G2. The 1H nuclear magnetic resonance data in the presence of 10% dimethylformamide-d7 or dimethyl sulfoxide-d6 in phosphate buffer (pD 7.4, containing 4 mM NaCl) showed that the complexes immediately generate the aquated species that is stable for at least 24 h. Electrospray ionization mass spectrometry data showed that they do not bind with guanine nitrogen even in the presence of 5 molar equivalents of 9-EtG, during a period of 24 h. The best complex in the series, 1, exhibits an IC50 of approximately 10-15 μM in the panel of tested cancer cell lines. The complexes do not enhance the production of reactive oxygen species in the cells. Docking studies with a tubulin crystal structure (Protein Data Bank entry 1SAO ) revealed that 1 and 3 as well as L1 and L3 have a high affinity for the interface of the α and β tubulin dimer in the colchicine binding site. The immunofluorescence studies showed that 1 and 3 strongly inhibited microtubule network formation in MDA-MB-231 cells after treatment with an IC20 or IC50 dose for 12 h. The cell cycle analysis upon treatment with 1 showed that the complexes inhibit the mitotic phase because the arrest was observed in the G2/M phase. In summary, 1 and 3 are RuII half-sandwich complexes that are capable of disrupting a microtubule network in a dose-dependent manner. They depolarize the mitochondria, arrest the cell cycle in the G2/M phase, and kill the cells by an apoptotic pathway.
Collapse
Affiliation(s)
- Sourav Acharya
- Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur , Nadia, West Bengal 741246 , India
| | - Moumita Maji
- Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur , Nadia, West Bengal 741246 , India
| | - Ruturaj
- Department of Biological Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur , Nadia, West Bengal 741246 , India
| | - Kallol Purkait
- Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur , Nadia, West Bengal 741246 , India
| | - Arnab Gupta
- Department of Biological Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur , Nadia, West Bengal 741246 , India
| | - Arindam Mukherjee
- Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur , Nadia, West Bengal 741246 , India.,Center for Advanced Functional Materials (CAFM) , Indian Institute of Science Education and Research Kolkata , Mohanpur , Nadia, West Bengal 741246 , India
| |
Collapse
|
22
|
Rani A, Anand A, Kumar K, Kumar V. Recent developments in biological aspects of chalcones: the odyssey continues. Expert Opin Drug Discov 2019; 14:249-288. [DOI: 10.1080/17460441.2019.1573812] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Anu Rani
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Amit Anand
- Department of Chemistry, Khalsa College, Amritsar, India
| | - Kewal Kumar
- Department of Applied Chemistry, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
23
|
Lu S, Obianom ON, Ai Y. Novel hybrids derived from aspirin and chalcones potently suppress colorectal cancer in vitro and in vivo. MEDCHEMCOMM 2018; 9:1722-1732. [PMID: 30429977 DOI: 10.1039/c8md00284c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/23/2018] [Indexed: 01/06/2023]
Abstract
Colorectal cancer (CRC) remains the fourth leading cause of cancer deaths around the world despite the availability of many approved small molecules for treatment. The issues lie in the potency, selectivity and targeting of these compounds. Therefore, new strategies and targets are needed to optimize and develop novel treatments for CRC. Here, a group of novel hybrids derived from aspirin and chalcones were designed and synthesized based on recent reports of their individual benefits to CRC targeting and selectivity. The most active compound 7h inhibited proliferation of CRC cell lines with better potency compared to 5-fluorouracil, a currently used therapeutic agent for CRC. Importantly, 7h had 8-fold less inhibitory activity against non-cancer CCD841 cells. In addition, 7h inhibited CRC growth via the inhibition of the cell cycle in the G1 phase. Furthermore, 7h induced apoptosis by activating caspase 3 and PARP cleavage, as well as increasing ROS in CRC cells. Finally, 7h significantly retarded the CRC cell growth in a mouse xenograft model. These findings suggest that 7h may have potential to treat CRC.
Collapse
Affiliation(s)
- Shan Lu
- College of Pharmacy , Hubei University of Chinese Medicine , Hubei 430065 , PR China .
| | - Obinna N Obianom
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , MD 21201 , USA .
| | - Yong Ai
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , MD 21201 , USA .
| |
Collapse
|