1
|
Utpal BK, Bouenni H, Zehravi M, Sweilam SH, Mortuza MR, Arjun UVNV, Shanmugarajan TS, Mahesh PG, Roja P, Dodda RK, Thilagam E, Almahjari MS, Rab SO, Koula D, Emran TB. Exploring natural products as apoptosis modulators in cancers: insights into natural product-based therapeutic strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03876-8. [PMID: 40014131 DOI: 10.1007/s00210-025-03876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/02/2025] [Indexed: 02/28/2025]
Abstract
Cancer remains a leading cause of mortality globally, necessitating ongoing research and development of innovative therapeutic strategies. Natural products from plants, herbs, and marine species have shown great promise as anti-cancer therapies due to their bioactive components that alter cellular pathways, particularly apoptosis. This review explores the mechanism by which natural chemicals trigger the apoptosis of cancerous cells, which is crucial for eliminating them and halting tumor growth. These can affect the mitochondrial process by controlling the Bcl-2 protein family, increasing cytochrome c release, and activating caspases. They also activate death receptors like Fas and TRAIL to enhance the extrinsic apoptotic pathway. We focus on the main signaling channels involved, such as the endoplasmic reticulum (ER) stress-mediated apoptosis, extrinsic death receptor, and intrinsic mitochondrial pathways. The review explores the role of natural substances such as polyphenols, terpenoids, alkaloids, and flavonoids in promoting apoptotic cell death and increasing cancer cell susceptibility, potentially aiding in cancer treatments and the potential of combining natural products with traditional chemotherapeutic medicines to combat medication resistance and enhance therapeutic efficacy. Understanding cancer development involves inhibiting cell proliferation, regulating it, targeting apoptosis pathways, and using plant and marine extracts as apoptotic inducers.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Hasna Bouenni
- Laboratory of Agrobiotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, 51418, Buraydah, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829, Cairo, Egypt
| | | | - Uppuluri Varuna Naga Venkata Arjun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Thukani Sathanantham Shanmugarajan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Ponnammal Ganesan Mahesh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Pathakota Roja
- Department of Pharmacology, Sree Dattha Institute of Pharmacy, Sheriguda, Ibrahimpatnam, Hyderabad, Telangana, 501510, India
| | - Ravi Kalyan Dodda
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology and Advanced Studies (VISTAS), PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - E Thilagam
- Department of Pharmacognosy, JKKMMRF'S-ANNAI JKK Sampooorani Ammal College of Pharmacy, Ethirmedu, Komarapalayam (Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Chennai), India
| | - Mohammed Saeed Almahjari
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Doukani Koula
- Laboratory of Agrobiotechnology and Nutrition in Semi-Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
- Laboratory of Animal Production Sciences and Techniques, University of Abdelhamid Ibn Badis, Mostaganem, Algeria
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh
| |
Collapse
|
2
|
Zhang X, Wei X, Shi L, Jiang H, Ma F, Li Y, Li C, Ma Y, Ma Y. The latest research progress: Active components of Traditional Chinese medicine as promising candidates for ovarian cancer therapy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118811. [PMID: 39251149 DOI: 10.1016/j.jep.2024.118811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/19/2024] [Accepted: 09/07/2024] [Indexed: 09/11/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ovarian cancer ranks the first in the mortality of gynecological tumors. Because there are no obvious symptoms in the early stage of ovarian cancer, most patients are in the advanced stage of the disease at the time of diagnosis. The incidence of ovarian cancer is increasing year by year, and the incidence of ovarian cancer has a trend of younger age. In recent years. Traditional Chinese medicine (TCM) has a significant impact on improving the quality of life of cancer patients, reducing drug toxicity, preventing metastasis and recurrence, enhancing the efficacy of radiotherapy and chemotherapy, and prolonging survival time, so patients have benefited a lot. AIM OF THE STUDY This review summarizes the mechanisms and molecular pathways through which active ingredients of TCM act in ovarian cancer. It explores the advantages of TCM in treating ovarian cancer. This review provides theoretical support for the use of TCM in the treatment of ovarian cancer, offering new perspectives for its clinical prevention and treatment. MATERIALS AND METHODS This review conducted a literature search on PubMed, Web of Science, Wanfang Database, and China National Knowledge Infrastructure (CNKI) for relevant studies on TCM active ingredients in preventing ovarian cancer. The search terms included "ovarian cancer" combined with "Chinese herbal medicine," "Herbal medicine," "Traditional Chinese medicine," and "Active ingredients of Chinese medicine". Based on existing experimental and clinical research, the paper systematically summarized and analyzed the mechanisms of TCM in treating ovarian cancer. RESULTS Active ingredients of TCM inhibit the occurrence and development of ovarian cancer through inducing tumor cell apoptosis, inhibiting tumor cell proliferation, suppressing tumor cell migration and invasion, inducing tumor cell autophagy, promoting epithelial-mesenchymal transition, and enhancing the efficacy of radiotherapy and chemotherapy drugs. Chinese medicine provides a comprehensive treatment option for ovarian cancer patients, synergizing with radiotherapy and chemotherapy drugs to enhance treatment effectiveness and introduce new hope and possibilities in clinical therapy. CONCLUSIONS Active ingredients of TCM can inhibit the occurrence and development of ovarian cancer, but further clinical research is needed to support their application.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaocen Wei
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Shi
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hehe Jiang
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengjun Ma
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Li
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunjing Li
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuning Ma
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yuxia Ma
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Ma J, Li P, Ma Y, Liang L, Jia F, Wang Y, Yu L, Huang W. Extraction of flavonoids from black mulberry wine residues and their antioxidant and anticancer activity in vitro. Heliyon 2024; 10:e31518. [PMID: 38826714 PMCID: PMC11141385 DOI: 10.1016/j.heliyon.2024.e31518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024] Open
Abstract
Enhancing the valorization of fruit processing by-products is pivotal for advancing the industry. Black mulberry wine residues, a by-product, contains some bioactive compounds, yet its antioxidant and anticancer potentials remain unverified. In this study, ultrasound-assisted enzymatic extraction was optimized by response surface methodology to obtain the flavonoids extracts from black mulberry wine residues, whose antioxidant capacity and anti-cancer activity in vitro was investigated. The results showed that under the optimal extraction conditions (enzyme ratio at pectinase:cellulose = 2:1, mixed enzyme concentration 0.31 mg/mL, enzymatic hydrolysis temperature 55.35 °C, enzymatic hydrolysis time 79.03 min, and ultrasonic time 22.71 min), the extracts from black mulberry wine residues (BMWR-E) reached 5.672 mg/g. At a concentration of 1.2 mg/mL, BMWR-E exhibited strong DPPH and hydroxyl radical scavenging activities. At a concentration of 2.5 mg/mL, BMWR-E showed a strong superoxide anion radical scavenging capacity, with no significant distinction compared to the positive control group (Vitamin C) (p > 0.05). Cell viability assay results showed that BMWR-E was non-toxic to normal BRL-3A cells when applied at concentrations of 0.1-0.3 mg/mL for an incubation period of 24 h, but BMWR-E exhibited the ability to inhibit the proliferation of HepG2 cells. At concentrations of 0.2 mg/mL and above, BMWR-E could induce late apoptosis of HepG2 cells by increasing the protein expression levels of Bax, caspase-3, and caspase-12, reducing the protein expression levels of Bcl-2, inducing cell cycle arrest at G0/G1 phase, thereby inhibiting the proliferation of HepG2 cells. The bioactive properties make BMWR-E possess potential in developing new antioxidants and anti-cancer agents, which would significantly enhance the economic worth of agricultural by-products in product processing. This research can improve the utilization rate of agricultural product processing by-products and protect the environment.
Collapse
Affiliation(s)
- Jian Ma
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, 210014, PR China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Peng Li
- Technical Center for Public Testing and Evaluation and Identification, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Yanhong Ma
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, 210014, PR China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, PR China
- The Work of Forestry Administrative Station of Kirgiz Autonomous Prefecture, Artush, 845350, PR China
| | - Liya Liang
- College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, PR China
| | - Feihong Jia
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, 210014, PR China
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Yu Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Lijun Yu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, 210014, PR China
| | - Wuyang Huang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Nanjing, 210014, PR China
| |
Collapse
|
4
|
Nimal S, Kumbhar N, Saruchi, Rathore S, Naik N, Paymal S, Gacche RN. Apigenin and its combination with Vorinostat induces apoptotic-mediated cell death in TNBC by modulating the epigenetic and apoptotic regulators and related miRNAs. Sci Rep 2024; 14:9540. [PMID: 38664447 PMCID: PMC11045774 DOI: 10.1038/s41598-024-60395-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a metastatic disease and a formidable treatment challenge as it does not respond to existing therapies. Epigenetic regulators play a crucial role in the progression and metastasis by modulating the expression of anti-apoptotic, pro-apoptotic markers and related miRNAs in TNBC cells. We have investigated the anti-TNBC potential of dietary flavonoid 'Apigenin' and its combination with Vorinostat on MDA-MB-231 cells. At Apigenin generated ROS, inhibited cell migration, arrested the cell cycle at subG0/G1 phases, and induced apoptotic-mediated cell death. Apigenin reduced the expression of the class-I HDACs at the transcriptomic and proteomic levels. In the immunoblotting study, Apigenin has upregulated pro-apoptotic markers and downregulated anti-apoptotic proteins. Apigenin inhibited the enzymatic activity of HDAC/DNMT and increased HAT activity. Apigenin has manifested its effect on miRNA expression by upregulating the tumor-suppressor miR-200b and downregulation oncomiR-21. Combination study reduced the growth of TNBC cells synergistically by modulating the expression of epigenetic and apoptotic regulators. Molecular docking and MD simulations explored the mechanism of catalytic inhibition of HDAC1 and HDAC3 and supported the in-vitro studies. The overall studies demonstrated an anti-TNBC potential of Apigenin and may help to design an effective strategy to treat metastatic phenotype of TNBC.
Collapse
Affiliation(s)
- Snehal Nimal
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Pune, 411007, Maharashtra (MS), India
| | - Navanath Kumbhar
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Pune, 411007, Maharashtra (MS), India
- Medical Information Management, Department of Biochemistry, Shivaji University, Kolhapur, 416004, Maharashtra (MS), India
| | - Saruchi
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Pune, 411007, Maharashtra (MS), India
| | - Shriya Rathore
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Pune, 411007, Maharashtra (MS), India
| | - Nitin Naik
- Department of Microbiology, Shivaji University, Kolhapur, 416004, Maharashtra (MS), India
| | - Sneha Paymal
- Department of Microbiology, Shivaji University, Kolhapur, 416004, Maharashtra (MS), India
| | - Rajesh N Gacche
- Department of Biotechnology, Savitribai Phule Pune University (SPPU), Pune, 411007, Maharashtra (MS), India.
| |
Collapse
|
5
|
Zhang M, Ji X, Li Y, Chen X, Wu X, Tan R, Jiang H. Anthriscus sylvestris: An overview on Bioactive Compounds and Anticancer Mechanisms from a Traditional Medicinal Plant to Modern Investigation. Mini Rev Med Chem 2024; 24:1162-1176. [PMID: 38288817 DOI: 10.2174/0113895575271848231116095447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/20/2023] [Accepted: 10/05/2023] [Indexed: 07/16/2024]
Abstract
Anthriscus sylvestris (L.) Hoffm. Gen. is a biennial or perennial herb commonly found in China. It has a long history of use in traditional Chinese medicine to treat various ailments such as cough, gastric disorders, spleen deficiency, and limb weakness. Recently, its potential as an anticancer agent has gained considerable attention and has been the subject of extensive research focusing on extract efficacy, identification of active compounds, and proposed molecular mechanisms. Nevertheless, further high-quality research is still required to fully evaluate its potential as an anticancer drug. This review aims to comprehensively summarize the anticancer properties exhibited by the active components found in Anthriscus sylvestris. We conducted a comprehensive search, collation, and analysis of published articles on anticancer activity and active compounds of A. sylvestris using various databases that include, but are not limited to, PubMed, Web of Science, Science Direct and Google Scholar. The primary chemical composition of A. sylvestris consists of phenylpropanoids, flavonoids, steroids, fatty acids, and organic acids, showcasing an array of pharmacological activities like anticancer, antioxidant, anti-aging, and immunoregulatory properties. Thus, this review highlights the active compounds isolated from A. sylvestris extracts, which provide potential leads for the development of novel anticancer drugs and a better understanding of the plant's pharmacological effects, particularly its anticancer mechanism of action.
Collapse
Affiliation(s)
- Mengyu Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Jinniu District, Sichuan Province, Chengdu 610031, P.R. China
| | - Xiaoyun Ji
- School of Life Science and Engineering, Southwest Jiaotong University, Jinniu District, Sichuan Province, Chengdu 610031, P.R. China
| | - Yuxin Li
- School of Life Science and Engineering, Southwest Jiaotong University, Jinniu District, Sichuan Province, Chengdu 610031, P.R. China
| | - Xin Chen
- Department of Laboratory Medicine, The Third People's Hospital of Chengdu/ Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, P.R. China
| | - Xiaoqing Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Jinniu District, Sichuan Province, Chengdu 610031, P.R. China
| | - Rui Tan
- School of Life Science and Engineering, Southwest Jiaotong University, Jinniu District, Sichuan Province, Chengdu 610031, P.R. China
| | - Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Jinniu District, Sichuan Province, Chengdu 610031, P.R. China
| |
Collapse
|
6
|
Geng Y, Xie Y, Li W, Mou Y, Chen F, Xiao J, Liao X, Hu X, Ji J, Ma L. Toward the bioactive potential of myricitrin in food production: state-of-the-art green extraction and trends in biosynthesis. Crit Rev Food Sci Nutr 2023; 64:10668-10694. [PMID: 37395263 DOI: 10.1080/10408398.2023.2227262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Myricitrin is a member of flavonols, natural phenolic compounds extracted from plant resources. It has gained great attention for various biological activities, such as anti-inflammatory, anti-cancer, anti-diabetic, as well as cardio-/neuro-/hepatoprotective activities. These effects have been demonstrated in both in vitro and in vivo models, making myricitrin a favorable candidate for the exploitation of novel functional foods with potential protective or preventive effects against diseases. This review summarized the health benefits of myricitrin and attempted to uncover its action mechanism, expecting to provide a theoretical basis for their application. Despite enormous bioactive potential of myricitrin, low production, high cost, and environmental damage caused by extracting it from plant resources greatly constrain its practical application. Fortunately, innovative, green, and sustainable extraction techniques are emerging to extract myricitrin, which function as alternatives to conventional techniques. Additionally, biosynthesis based on synthetic biology plays an essential role in industrial-scale manufacturing, which has not been reported for myricitrin exclusively. The construction of microbial cell factories is absolutely an appealing and competitive option to produce myricitrin in large-scale manufacturing. Consequently, state-of-the-art green extraction techniques and trends in biosynthesis were reviewed and discussed to endow an innovative perspective for the large-scale production of myricitrin.
Collapse
Affiliation(s)
- Yaqian Geng
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yingfeng Xie
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Wei Li
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Yao Mou
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Wendlocha D, Krzykawski K, Mielczarek-Palacz A, Kubina R. Selected Flavonols in Breast and Gynecological Cancer: A Systematic Review. Nutrients 2023; 15:2938. [PMID: 37447264 DOI: 10.3390/nu15132938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The consumption of foods that are rich in phenolic compounds has chemopreventive effects on many cancers, including breast cancer, ovarian cancer, and endometrial cancer. A wide spectrum of their health-promoting properties such as antioxidant, anti-inflammatory, and anticancer activities, has been demonstrated. This paper analyzes the mechanisms of the anticancer action of selected common flavonols, including kemferol, myricetin, quercetin, fisetin, galangin, isorhamnetin, and morin, in preclinical studies, with particular emphasis on in vitro studies in gynecological cancers and breast cancer. In the future, these compounds may find applications in the prevention and treatment of gynecological cancers and breast cancer, but this requires further, more advanced research.
Collapse
Affiliation(s)
- Dominika Wendlocha
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Kamil Krzykawski
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Robert Kubina
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
8
|
Chen Q, Zu M, Gong H, Ma Y, Sun J, Ran S, Shi X, Zhang J, Xiao B. Tea leaf-derived exosome-like nanotherapeutics retard breast tumor growth by pro-apoptosis and microbiota modulation. J Nanobiotechnology 2023; 21:6. [PMID: 36600299 DOI: 10.1186/s12951-022-01755-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
While several artificial nanodrugs have been approved for clinical treatment of breast tumor, their long-term applications are restricted by unsatisfactory therapeutic outcomes, side reactions and high costs. Conversely, edible plant-derived natural nanotherapeutics (NTs) are source-widespread and cost-effective, which have been shown remarkably effective in disease treatment. Herein, we extracted and purified exosome-like NTs from tea leaves (TLNTs), which had an average diameter of 166.9 nm and a negative-charged surface of - 28.8 mV. These TLNTs contained an adequate slew of functional components such as lipids, proteins and pharmacologically active molecules. In vitro studies indicated that TLNTs were effectively internalized by breast tumor cells (4T1 cells) and caused a 2.5-fold increase in the amount of intracellular reactive oxygen species (ROS) after incubation for 8 h. The high levels of ROS triggered mitochondrial damages and arrested cell cycles, resulting in the apoptosis of tumor cells. The mouse experiments revealed that TLNTs achieved good therapeutic effects against breast tumors regardless of intravenous injection and oral administration through direct pro-apoptosis and microbiota modulation. Strikingly, the intravenous injection of TLNTs, not oral administration, yielded obvious hepatorenal toxicity and immune activation. These findings collectively demonstrate that TLNTs can be developed as a promising oral therapeutic platform for the treatment of breast cancer.
Collapse
Affiliation(s)
- Qiubing Chen
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China.,Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Materials and Energy, Southwest University, Beibei, Chongqing, 400715, China
| | - Menghang Zu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ya Ma
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Jianfeng Sun
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Headington, OX3 7LD, Oxford, UK
| | - Susan Ran
- Loomis Chaffee School, Windsor, CT, 06095, USA
| | - Xiaoxiao Shi
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
9
|
Lee CM, Lee J, Kang MA, Kim HT, Lee J, Park K, Yang YH, Jang KY, Park SH. Linifanib induces apoptosis in human ovarian cancer cells via activation of FOXO3 and reactive oxygen species. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
10
|
Chen SM, Feng JN, Zhao CK, Yao LC, Wang LX, Meng L, Cai SQ, Liu CY, Qu LK, Jia YX, Shou CC. A multi-targeting natural product, aiphanol, inhibits tumor growth and metastasis. Am J Cancer Res 2022; 12:4930-4953. [PMID: 36504899 PMCID: PMC9729891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/30/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the main causes of death in humans worldwide, the development of more effective anticancer drugs that can inhibit the malignant progression of cancer cells is of great significance. Aiphanol is a natural product identified from the seeds of Arecaceae and the rhizome of Smilax glabra Roxb. Our preliminary studies revealed that it had potential antiangiogenic and antilymphangiogenic activity by directly targeting VEGFR2/3 and COX2 in endothelial cells. However, the influence of aiphanol on cancer cells per se remains largely undefined. In this study, the effects and related mechanisms of aiphanol on cancer growth and metastasis were evaluated in vitro and in vivo. Acute toxicity assay and pharmacokinetic analysis were utilized to investigate the safety profile and metabolism characteristics of aiphanol. We revealed that aiphanol inhibited the proliferation of various types of cancer cells and the growth of xenograft tumors in mice and zebrafish models. The possible mechanism was associated with the inactivation of multiple kinases, including FAK, AKT and ERK, and the upregulation of BAX and cleaved caspase-3 to promote cancer cell apoptosis. Aiphanol significantly inhibited cancer cell migration and invasion, which was related to the inhibition of epithelial-mesenchymal transition (EMT) and F-actin aggregation. Aiphanol effectively attenuated the metastasis of several types of cancer cells in vivo. In addition, aiphanol exerted no significant toxicity and had fast metabolism. Collectively, we demonstrated the anticancer effects of aiphanol and suggested that aiphanol has potential as a safe and effective therapeutic agent to treat cancer.
Collapse
Affiliation(s)
- Shan-Mei Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & InstituteBeijing, China
| | - Jun-Nan Feng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & InstituteBeijing, China,Key Laboratory of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou UniversityZhengzhou, China
| | - Chuan-Ke Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & InstituteBeijing, China
| | - Li-Cheng Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking UniversityBeijing, China
| | - Li-Xin Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & InstituteBeijing, China
| | - Lin Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & InstituteBeijing, China
| | - Shao-Qing Cai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking UniversityBeijing, China
| | - Cai-Yun Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & InstituteBeijing, China
| | - Li-Ke Qu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & InstituteBeijing, China
| | - Yan-Xing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking UniversityBeijing, China
| | - Cheng-Chao Shou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & InstituteBeijing, China
| |
Collapse
|
11
|
Liu A, Huang B, Zuo S, Li Z, Zhou JL, Wong WL, Lu YJ. Enzymatic glucosylation of citrus flavonoids to enhance their bioactivity and taste as new food additives. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Antioxidant Activity and Inhibitory Effects of Black Rice Leaf on the Proliferation of Human Carcinoma Cells. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7270782. [PMID: 35726317 PMCID: PMC9206558 DOI: 10.1155/2022/7270782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/27/2022] [Indexed: 01/23/2023]
Abstract
The leaves of black rice, well-known as postharvest agricultural waste, contain a rich source of antioxidants with multiple benefits for human health. In the present study, the ethyl acetate fraction obtained from black rice leaf was separated into five subfractions using Sephadex LH-20 column chromatography, and their antioxidant and anticancer activities were investigated. The results revealed that among all the subfractions, subfraction 5 (Sub5) showed the highest total phenolic and flavonoid values. The antioxidant activity was also superior in Sub5 (the IC50 values are 3.23, 31.95, and 72.74 μg/mL, in the DPPH, ABTS, and reducing power assays, respectively) compared to the other subfractions. All subfractions, in a time-dependent manner, inhibited the proliferation of hepatoma (HepG2), breast (MCF-7), and colorectal (Caco-2) cancer cells, especially the Sub5. Thus, Sub5 was employed to conduct the cell cycle and cell apoptosis by flow cytometry. Sub5 significantly increased the accumulation of cells at the Sub-G1 phase in HepG2 cells (44.5%, at 48 h). Furthermore, it could trigger annexin V-detected apoptosis through mitochondrial and death receptor pathways accompanied by the suppression of PI3K/Akt and Erk signaling pathways. In addition, HPLC-DAD-MS/MS was conducted to characterize the bioactive constituents in the most potent antioxidant, cytotoxic, and apoptosis-inducing subfraction. Conclusively, Sub5 may have high potential as functional dietary supplements to inhibit the development of HepG2 liver cancer.
Collapse
|
13
|
Nuha D, Evren AE, Çiyanci ZŞ, Temel HE, Akalin Çiftçi G, Yurttaş L. Synthesis, density functional theory calculation, molecular docking studies, and evaluation of novel 5-nitrothiophene derivatives for anticancer activity. Arch Pharm (Weinheim) 2022; 355:e2200105. [PMID: 35584987 DOI: 10.1002/ardp.202200105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/29/2022]
Abstract
Within the scope of this study, new 2-{2-[(5-nitrothiophen-2-yl)methylene]hydrazinyl}thiazole derivatives (2a-j) were synthesized and investigated for their potential anticancer and enzyme inhibition activities. Spectroscopic techniques were used to determine the structures of substances. The anticancer activities of compounds were detected in A549 human lung carcinoma and L929 murine fibroblast cell lines, determining cytotoxicity, apoptosis, mitochondrial membrane integrity, and caspase-3 activation. Compounds 2b bearing 4-nitrophenyl, 2c bearing phenyl, and 2d bearing 4-cyanophenyl moieties were specified with high anticancer activity, acting through an apoptotic pathway with an apoptosis ratio of 9.61%-15.59%. Mitochondrial membrane depolarization was determined to be 25.53% and 22.33% for compounds 2b and 2c, respectively. Furthermore, compound 2c exhibited excellent caspase-3 activation. A molecular docking study was realized with compound 2c on the caspase-3 enzyme. Furthermore, the electronic characteristics of the active compounds were investigated using density functional theory (DFT) at the B3LYP/6-31G (d, p) level. The frontier molecular orbital energy and atomic net charges were examined.
Collapse
Affiliation(s)
- Demokrat Nuha
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Department of Chemistry, Faculty of Science, Eskisehir Technical University, Eskişehir, Turkey.,Faculty of Pharmacy, University of Business and Technology, Prishtina, Kosovo
| | - Asaf E Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Department of Pharmacy Services, Vocational School of Health Services, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Zennure Ş Çiyanci
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Halide E Temel
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Gülşen Akalin Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
14
|
Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules 2022; 27:molecules27092901. [PMID: 35566252 PMCID: PMC9100260 DOI: 10.3390/molecules27092901] [Citation(s) in RCA: 340] [Impact Index Per Article: 113.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022] Open
Abstract
Hydroxylated polyphenols, also called flavonoids, are richly present in vegetables, fruits, cereals, nuts, herbs, seeds, stems, and flowers of numerous plants. They possess numerous medicinal properties such as antioxidant, anti-cancer, anti-microbial, neuroprotective, and anti-inflammation. Studies show that flavonoids activate antioxidant pathways that render an anti-inflammatory effect. They inhibit the secretions of enzymes such as lysozymes and β-glucuronidase and inhibit the secretion of arachidonic acid, which reduces inflammatory reactions. Flavonoids such as quercetin, genistein, apigenin, kaempferol, and epigallocatechin 3-gallate modulate the expression and activation of a cytokine such as interleukin-1beta (IL-1β), Tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8); regulate the gene expression of many pro-inflammatory molecules such s nuclear factor kappa-light chain enhancer of activated B cells (NF-κB), activator protein-1 (AP-1), intercellular adhesion molecule-1 (ICAM), vascular cell adhesion molecule-1 (VCAM), and E-selectins; and also inhibits inducible nitric oxide (NO) synthase, cyclooxygenase-2, and lipoxygenase, which are pro-inflammatory enzymes. Understanding the anti-inflammatory action of flavonoids provides better treatment options, including coronavirus disease 2019 (COVID-19)-induced inflammation, inflammatory bowel disease, obstructive pulmonary disorder, arthritis, Alzheimer’s disease, cardiovascular disease, atherosclerosis, and cancer. This review highlights the sources, biochemical activities, and role of flavonoids in enhancing human health.
Collapse
|
15
|
Gaja SK, Bandi S, Pavuluri PK, Sambyal S, Jaina VK, Sampath Kumar HM, Andugulapati SB, V R, Babu KS. Synthesis and antiproliferative activities of novel piscidinol a derivatives as potential anticancer agents. Nat Prod Res 2022:1-7. [PMID: 35343322 DOI: 10.1080/14786419.2022.2056889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Piscidinol A (1), a major compound isolated from Aphanamixis polystachya, showed modest anticancer activity against cancer cell lines. Subsequently, a series of analogues were synthesised by modification of the key structural functionalities of this high yield natural product and assessed for their anticancer potential against various cancer cell lines. Among the tested derivatives, the compounds 6e and 6i are significantly reduced the cell viability at 5.38 and 5.02 µM against DU145 prostate cancer cells, respectively. Additionally, both the compounds arrested the cell cycle at S phase and induced the late apoptosis in DU145 cells. Together, the results demonstrated that the compounds 6e and 6i could be a promising lead for the development of anticancer agents against DU145 and well worth further investigation aiming to generate potential anticancer agents.
Collapse
Affiliation(s)
- Swarna Kumari Gaja
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Siva Bandi
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Pavan Kumar Pavuluri
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Shainy Sambyal
- Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Vinod Kumar Jaina
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - H M Sampath Kumar
- Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Sai Balaji Andugulapati
- Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Ramalingam V
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - K Suresh Babu
- Centre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
16
|
Zhang S, Yu Z, Sun L, Ren H, Zheng X, Liang S, Qi X. An overview of the nutritional value, health properties, and future challenges of Chinese bayberry. PeerJ 2022; 10:e13070. [PMID: 35265403 PMCID: PMC8900607 DOI: 10.7717/peerj.13070] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/15/2022] [Indexed: 01/12/2023] Open
Abstract
Chinese bayberry (CB) is among the most popular and valuable fruits in China owing to its attractive color and unique sweet/sour taste. Recent studies have highlighted the nutritional value and health-related benefits of CB. CB has special biological characteristics of evergreen, special aroma, dioecious, nodulation, nitrogen fixation. Moreover, the fruits, leaves, and bark of CB plants harbor a number of bioactive compounds including proanthocyanidins, flavonoids, vitamin C, phenolic acids, and anthocyanins that have been linked to the anti-cancer, anti-oxidant, anti-inflammatory, anti-obesity, anti-diabetic, and neuroprotective properties and to the treatment of cardiovascular and cerebrovascular diseases. The CB fruits have been used to produce a range of products: beverages, foods, and washing supplies. Future CB-related product development is thus expected to further leverage the health-promoting potential of this valuable ecological resource. The present review provides an overview of the botanical characteristics, processing, nutritional value, health-related properties, and applications of CB in order to provide a foundation for further research and development.
Collapse
Affiliation(s)
- Shuwen Zhang
- Zhejiang Academy of Agricultural Sciences, Institute of Horticulture, Hangzhou, Jianggan, China
| | - Zheping Yu
- Zhejiang Academy of Agricultural Sciences, Institute of Horticulture, Hangzhou, Jianggan, China
| | - Li Sun
- Zhejiang Academy of Agricultural Sciences, Institute of Horticulture, Hangzhou, Jianggan, China
| | - Haiying Ren
- Zhejiang Academy of Agricultural Sciences, Institute of Horticulture, Hangzhou, Jianggan, China
| | - Xiliang Zheng
- Zhejiang Academy of Agricultural Sciences, Institute of Horticulture, Hangzhou, Jianggan, China
| | - Senmiao Liang
- Zhejiang Academy of Agricultural Sciences, Institute of Horticulture, Hangzhou, Jianggan, China
| | - Xingjiang Qi
- Zhejiang Academy of Agricultural Sciences, Institute of Horticulture, Hangzhou, Jianggan, China
| |
Collapse
|
17
|
Khan H, Alam W, Alsharif KF, Aschner M, Pervez S, Saso L. Alkaloids and Colon Cancer: Molecular Mechanisms and Therapeutic Implications for Cell Cycle Arrest. Molecules 2022; 27:molecules27030920. [PMID: 35164185 PMCID: PMC8838632 DOI: 10.3390/molecules27030920] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 12/18/2022] Open
Abstract
Cancer is the second most fatal disease worldwide, with colon cancer being the third most prevalent and fatal form of cancer in several Western countries. The risk of acquisition of resistance to chemotherapy remains a significant hurdle in the management of various types of cancer, especially colon cancer. Therefore, it is essential to develop alternative treatment modalities. Naturally occurring alkaloids have been shown to regulate various mechanistic pathways linked to cell proliferation, cell cycle, and metastasis. This review aims to shed light on the potential of alkaloids as anti-colon-cancer chemotherapy agents that can modulate or arrest the cell cycle. Preclinical investigated alkaloids have shown anti-colon cancer activities and inhibition of cancer cell proliferation via cell cycle arrest at different stages, suggesting that alkaloids may have the potential to act as anticancer molecules.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
- Correspondence: or
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099,Taif 21944, Saudi Arabia;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Samreen Pervez
- Department of Pharmacy, Qurtuba University of Science and Information Technology, Peshawar 29050, Pakistan;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
18
|
Zhang L, Quan W, Liu RM, Tian YP, Pan BW, Liu XL. Diastereoselective construction of a library of structural bispiro[butyrolactone/valerolactone-pyrrolidine-indanedione] hybrids via 1,3-dipolar cycloaddition reactions. NEW J CHEM 2022. [DOI: 10.1039/d2nj01571d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a highly efficient strategy that allows the diversity synthesis of a library of structural bispiro[butyrolactone-pyrrolidine-indanedione] hybrids is achieved effectively by means of 1,3-dipolar cycloadditions of α,β-unsaturated butyrolactones/valerolactones as dipolarophiles...
Collapse
|
19
|
Zhang L, Liu RM, Wang WN, Liu XL, Dai YF, Yu ZB, Peng LJ. 3-Vinyl oxindole-chromone synthon as a skeletal reconstruction reactant for the synthesis of 2-hydroxy benzoyl pyridones. NEW J CHEM 2022. [DOI: 10.1039/d1nj06112g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The first example of 3-vinyl oxindole-chromones in the ring opening and recyclization reaction.
Collapse
Affiliation(s)
- Lei Zhang
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China
| | - Ren-Ming Liu
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China
| | - Wei-Na Wang
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China
| | - Xiong-Li Liu
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China
| | - Yi-Feng Dai
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China
| | - Zhang-Biao Yu
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China
| | - Li-Jun Peng
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
20
|
Wang W, Zhang W, Hu Y. Identification of keygenes, miRNAs and miRNA-mRNA regulatory pathways for chemotherapy resistance in ovarian cancer. PeerJ 2021; 9:e12353. [PMID: 34820170 PMCID: PMC8582303 DOI: 10.7717/peerj.12353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/29/2021] [Indexed: 11/20/2022] Open
Abstract
Background Chemotherapy resistance, especially platinum resistance, is the main cause of poor prognosis of ovarian cancer. It is of great urgency to find molecular markers and mechanism related to platinum resistance in ovarian cancer. Methods One mRNA dataset (GSE28739) and one miRNA dataset (GSE25202) were acquired from Gene Expression Omnibus (GEO) database. The GEO2R tool was used to screen out differentially expressed genes (DEGs) and differentially expressed miRNAs (DE-miRNAs) between platinum-resistant and platinum-sensitive ovarian cancer patients. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for DEGs were performed using the DAVID to present the most visibly enriched pathways. Protein–protein interaction (PPI) of these DEGs was constructed based on the information of the STRING database. Hub genes related to platinum resistance were visualized by Cytoscape software. Then, we chose seven interested hub genes to further validate using qRT-PCR in A2780 ovarian cancer cell lines. And, at last, the TF-miRNA-target genes regulatory network was predicted and constructed using miRNet software. Results A total of 63 upregulated DEGs, 124 downregulated DEGs, four upregulated miRNAs and six downregulated miRNAs were identified. From the PPI network, the top 10 hub genes were identified, which were associated with platinum resistance. Our further qRT-PCR showed that seven hub genes (BUB1, KIF2C, NUP43, NDC80, NUF2, CCNB2 and CENPN) were differentially expressed in platinum-resistant ovarian cancer cells. Furthermore, the upstream transcription factors (TF) for upregulated DE-miRNAs were SMAD4, NFKB1, SMAD3, TP53 and HNF4A. Three overlapping downstream target genes (KIF2C, STAT3 and BUB1) were identified by miRNet, which was regulated by hsa-miR-494. Conclusions The TF-miRNA–mRNA regulatory pairs, that is TF (SMAD4, NFKB1 and SMAD3)-miR-494-target genes (KIF2C, STAT3 and BUB1), were established. In conclusion, the present study is of great significance to find the key genes of platinum resistance in ovarian cancer. Further study is needed to identify the mechanism of these genes in ovarian cancer.
Collapse
Affiliation(s)
- Wenwen Wang
- Tianjin Medical University, Tianjin, China.,Department of Obstetrics and Gynecology, Beijing Tongren Hospital affiliated Capital Medical University, Beijing, China
| | - Wenwen Zhang
- Department of Gynecological Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China.,Department of Gynecological Oncology, Obstetrics and Gynecology Hospital affiliated Nankai University, Tianjin, China
| | - Yuanjing Hu
- Department of Gynecological Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China.,Department of Gynecological Oncology, Obstetrics and Gynecology Hospital affiliated Nankai University, Tianjin, China
| |
Collapse
|
21
|
Sousa C, Duarte D, Silva-Lima B, Videira M. Repurposing Natural Dietary Flavonoids in the Modulation of Cancer Tumorigenesis: Decrypting the Molecular Targets of Naringenin, Hesperetin and Myricetin. Nutr Cancer 2021; 74:1188-1202. [PMID: 34739306 DOI: 10.1080/01635581.2021.1955285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In the past few years flavonoids have been gaining more attention regarding their (still un) exploited anticancer properties. Flavonoids are natural compounds present in fruits, vegetables, and seeds, meaning that they are already present in the daily life of every person, with a described broad-spectrum of pharmacological activities, including anticancer, anti-inflammatory and antioxidant. In the present review we discuss the anticancer activity of three important flavonoids - myricetin (MYR) (flavanol group), hesperetin (HESP) and naringenin (NAR) (flavanone group). Although some mechanisms underlying their activities remain still unclear, they can act as potential inhibitors of key tumorigenic signaling pathways, such as PI3K/Akt/mTOR, p38 MAPK and NF-κB. Simultaneously, they can reset the levels of pro-apoptotic proteins that belong to the Bcl-2 and caspase family and decrease the intracellular levels of ROS and pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-6. Together with their synergetic effect they have the potential to become key elements in the prevention and/or treatment of several types of cancer, with the major improvement to the patient life quality, due to their non-existent toxicity.
Collapse
Affiliation(s)
- Carolina Sousa
- Pharmacological and Regulatory Sciences Group (PharmRegSci), Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| | - Denise Duarte
- Pharmacological and Regulatory Sciences Group (PharmRegSci), Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| | - Beatriz Silva-Lima
- Pharmacological and Regulatory Sciences Group (PharmRegSci), Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| | - Mafalda Videira
- Pharmacological and Regulatory Sciences Group (PharmRegSci), Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
22
|
Pawlak A, Henklewska M, Hernández-Suárez B, Siepka M, Gładkowski W, Wawrzeńczyk C, Motykiewicz-Pers K, Obmińska-Mrukowicz B. Methoxy-Substituted γ-Oxa-ε-Lactones Derived from Flavanones-Comparison of Their Anti-Tumor Activity In Vitro. Molecules 2021; 26:molecules26206295. [PMID: 34684875 PMCID: PMC8538229 DOI: 10.3390/molecules26206295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/10/2021] [Accepted: 10/15/2021] [Indexed: 12/09/2022] Open
Abstract
Background: The study investigated four flavanone-derived γ-oxa-ε-lactones: a parent unsubstituted compound and its three derivatives with the methoxy group in positions 2′, 4′ and 8. Our objective was to find out if the introduction of the methoxy group into the aromatic ring affects in vitro anti-tumor potency of the investigated lactones. Methods: Cytotoxic and pro-apoptotic effects were assessed with cytometric tests with propidium iodide, annexin V, and Western blot techniques. We also investigated potential synergistic potency of the tested lactones and glucocorticoids in canine lymphoma/leukemia cell lines. Results: The tested flavanone-derived lactones showed anti-cancer activity in vitro. Depending on its location, the methoxy group either increased or decreased cytotoxicity of the derivatives as compared with the parent compound. The most potent lactone was the one with the methoxy group at position 4′ of the B ring (compound 3), and the weakest activity was observed when the group was located at C-8 in the A ring. A combination of the lactones with glucocorticoids confirmed their synergy in anti-tumor activity in vitro. Conclusions: Methoxy-substituted flavanone-derived lactones effectively kill canine lymphoma/leukemia cells in vitro and, thanks to their synergistic action with glucocorticoids, may potentially be applied in the treatment of hematopoietic cancers.
Collapse
Affiliation(s)
- Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (M.H.); (B.H.-S.); (K.M.-P.); (B.O.-M.)
- Correspondence:
| | - Marta Henklewska
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (M.H.); (B.H.-S.); (K.M.-P.); (B.O.-M.)
| | - Beatriz Hernández-Suárez
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (M.H.); (B.H.-S.); (K.M.-P.); (B.O.-M.)
| | - Monika Siepka
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.S.); (W.G.); (C.W.)
| | - Witold Gładkowski
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.S.); (W.G.); (C.W.)
| | - Czesław Wawrzeńczyk
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (M.S.); (W.G.); (C.W.)
| | - Karolina Motykiewicz-Pers
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (M.H.); (B.H.-S.); (K.M.-P.); (B.O.-M.)
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (M.H.); (B.H.-S.); (K.M.-P.); (B.O.-M.)
| |
Collapse
|
23
|
Xing M, Cao Y, Ren C, Liu Y, Li J, Grierson D, Martin C, Sun C, Chen K, Xu C, Li X. Elucidation of myricetin biosynthesis in Morella rubra of the Myricaceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:411-425. [PMID: 34331782 DOI: 10.1111/tpj.15449] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/17/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Flavonols are health-promoting bioactive compounds important for plant defense and human nutrition. Quercetin (Q) and kaempferol (K) biosynthesis have been studied extensively while little is known about myricetin (M) biosynthesis. The roles of flavonol synthases (FLSs) and flavonoid 3',5'-hydroxylase (F3'5'H) in M biosynthesis in Morella rubra, a member of the Myricaceae rich in M-based flavonols, were investigated. The level of MrFLS transcripts alone did not correlate well with the accumulation of M-based flavonols. However, combined transcript data for MrFLS1 and MrF3'5'H showed a good correlation with the accumulation of M-based flavonols in different tissues of M. rubra. Recombinant MrFLS1 and MrFLS2 proteins showed strong activity with dihydroquercetin (DHQ), dihydrokaempferol (DHK), and dihydromyricetin (DHM) as substrates, while recombinant MrF3'5'H protein preferred converting K to M, amongst a range of substrates. Tobacco (Nicotiana tabacum) overexpressing 35S::MrFLSs produced elevated levels of K-based and Q-based flavonols without affecting M-based flavonol levels, while tobacco overexpressing 35S::MrF3'5'H accumulated significantly higher levels of M-based flavonols. We conclude that M accumulation in M. rubra is affected by gene expression and enzyme specificity of FLS and F3'5'H as well as substrate availability. In the metabolic grid of flavonol biosynthesis, the strong activity of MrF3'5'H with K as substrate additionally promotes metabolic flux towards M in M. rubra.
Collapse
Affiliation(s)
- Mengyun Xing
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Yunlin Cao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Chuanhong Ren
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Yilong Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Jiajia Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Cathie Martin
- Department of Metabolic Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Chongde Sun
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Kunsong Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
24
|
Li Z, Lu Y, Tian YP, Han XX, Liu XW, Zhou Y, Liu XL. Diastereoselective construction of structurally diverse trifluoromethyl bispiro-[oxindole-pyrrolidine-chromanone]s through [3+2] cycloaddition reactions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Wang J, Li H, Wang L, Zhang J, Li M, Qiao L, Zhang J, Liu L, Zhang C, Gao J, Li W. Transcriptomic Analyses Reveal B-Cell Translocation Gene 2 as a Potential Therapeutic Target in Ovarian Cancer. Front Oncol 2021; 11:681250. [PMID: 34485119 PMCID: PMC8415965 DOI: 10.3389/fonc.2021.681250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is the most common and aggressive type of tumor of the female reproductive system. Two factors account for this detrimental clinical presentation: (i) the lack of early detection methods and (ii) the inherently aggressive nature of this malignancy. Currently, transcriptomic analyses have become important tools to identify new targets in different cancer types. In this study, by measuring expression levels in ovarian cancer samples and stem cell samples, we identified 24 tumor suppressor genes consistently associated with poor prognosis. Combined results further revealed a potential therapeutic candidate, BTG2, which belongs to the antiproliferative gene family. Our results showed that BTG2 expression regulated ovarian cancer cell proliferation via G1/S phase cell cycle arrest by regulating Cyclin D1, CDK4, p-AKT, and p-ERK expression. BTG2 also inhibited cell migration by modulating MMP-2 and MMP-9 expression. Furthermore, xenograft models confirmed a growth inhibitory effect of BTG2 in ovarian cancer in vivo. BTG2 was significantly associated with ovarian cancer FIGO stage and grade in the clinic. Our findings indicated that BTG2 exerts a suppressive impact on ovarian cancer and could be a potential biomarker.
Collapse
Affiliation(s)
- Jia Wang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Haonan Li
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Liang Wang
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Jing Zhang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Man Li
- Department of Hematological Malignancies Translational Science and the Gehr Family Center for Leukemia Research, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, United States
| | - Liang Qiao
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Jun Zhang
- Department of Pathology, Dalian Medical University, Dalian, China
| | - Likun Liu
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Cuili Zhang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jingchun Gao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Weiling Li
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.,Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Dalian, China
| |
Collapse
|
26
|
Zhang M, He XW, Xiong Y, Zuo X, Zhou W, Liu XL. Asymmetric construction of six vicinal stereogenic centers on hexahydroxanthones via organocatalytic one-pot reactions. Chem Commun (Camb) 2021; 57:6764-6767. [PMID: 34132270 DOI: 10.1039/d1cc02570h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Inspired by the chemistry and biology of hexahydroxanthones, herein we report an organocatalytic Michael-Michael-Aldol-decarboxylation reaction that provides efficient access to biologically interesting fully substituted hexahydroxanthones bearing six contiguous stereogenic centers from readily accessible materials in acceptable yields (up to 63%) and excellent stereoselectivities (up to 10 : 1 dr and >99% ee). In other words, the reaction efficiently produces three chemical bonds and up to six vicinal stereogenic centers in a one-pot operation. In particular, to our knowledge, this is an asymmetric organocatalytic strategy enabling the first construction of six vicinal stereogenic centers on non-spirocyclic hexahydroxanthone frameworks.
Collapse
Affiliation(s)
- Min Zhang
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - Xue-Wen He
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - Ya Xiong
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - Xiong Zuo
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - Wei Zhou
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - Xiong-Li Liu
- National & Local Joint Engineering Research Center for the Exploition of Homology Resources of Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| |
Collapse
|
27
|
Liu XL, Guo DG, Li Z, Han XX, Zhang L, Zhang M. Decarboxylative, Diastereoselective and exo-Selective 1,3-Dipolar Cycloaddition for Diversity-Oriented Construction of Structural Spiro[Butyrolactone–Pyrrolidine–Chromanone] Hybrids. Synlett 2021. [DOI: 10.1055/a-1535-8891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractInspired by the chemistry and biology of butyrolactones, pyrrolidines, and chromanones, we successfully developed a simple domino 1,3-dipolar cycloaddition of homoserine-lactone-derived azomethine ylides for the construction of biologically important spiro[butyrolactone–pyrrolidine–chromanone] hybrids in the presence of Et3N as a catalyst under mild conditions. The reaction is based on the application of carboxylic-acid-activated chromones as dienophiles, followed by a decarboxylation process. This reaction displayed good substrate tolerance and gave the desired products in moderate to good yields with high diastereoselectivities (up to 85% yield and >20:1 diastereomeric ratio) via an exo-transition state. This is the first example of an introduction of a chromanone moiety into a spiro[butyrolactone-pyrrolidine] framework, which might be valuable in medicinal chemistry.
Collapse
Affiliation(s)
- Xiong-Li Liu
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Medicine and Food, Guizhou University
| | - Dong-Gui Guo
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology
| | - Zheng Li
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Medicine and Food, Guizhou University
| | - Xiao-Xue Han
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Medicine and Food, Guizhou University
| | - Lei Zhang
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Medicine and Food, Guizhou University
| | - Min Zhang
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Medicine and Food, Guizhou University
| |
Collapse
|
28
|
Apoptotic mechanisms of myricitrin isolated from Madhuca longifolia leaves in HL-60 leukemia cells. Mol Biol Rep 2021; 48:5327-5334. [PMID: 34156605 DOI: 10.1007/s11033-021-06500-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Myricitrin, a naturally occurring flavonoid in Madhuca longifolia, possesses several medicinal properties. Even though our earlier work revealed its role against the proliferation of acute myelogenous leukemia cells (HL-60), its molecular mechanisms have not yet been revealed. The current study aims to explore the molecular mechanisms of myricitrin (isolated from an ethnomedicinal drug Madhuca longifolia) to induce apoptosis in HL-60 cells. Treatment with IC-50 dose of myricitrin (353 µM) caused cellular shrinkage and cell wall damage in HL-60 cells compared to untreated control cells. Myricitrin treatment reduced the mitochondrial membrane potential (22.95%), increased DNA fragmentation (90.4%), inhibited the cell survival proteins (RAS, B-RAF, & BCL-2) and also induced pro-apoptotic proteins (p38, pro-caspase-3, pro-caspase-9 and caspase-3) in the HL-60 cells. The present study provides scientific evidence for the apoptosis caused by myricitrin in HL-60 leukemia cells. Hence, the phytochemical myricitrin could be considered as a potential candidate to develop an anticancer drug after checking its efficacy through suitable pre-clinical and clinical studies.
Collapse
|
29
|
Zhang L, Lu Z, Zhao X. Targeting Bcl-2 for cancer therapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188569. [PMID: 34015412 DOI: 10.1016/j.bbcan.2021.188569] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/27/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022]
Abstract
Apoptosis deficiency is one of the most important features observed in neoplastic diseases. The Bcl-2 family is composed of a subset of proteins that act as decisive apoptosis regulators. Research and clinical studies have both demonstrated that the hyperactivation of Bcl-2-related anti-apoptotic effects correlates with cancer occurrence, progression and prognosis, also having a role in facilitating the radio- and chemoresistance of various malignancies. Therefore, targeting Bcl-2 inactivation has provided some compelling therapeutic advantages by enhancing apoptotic sensitivity or reversing drug resistance. Therefore, this pharmacological route turned into one of the most promising routes for cancer treatment. This review discusses some of the well-defined and emerging roles of Bcl-2 as well as its potential clinical value in cancer therapeutics.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| |
Collapse
|
30
|
Xiong Y, Han XX, Lu Y, Wang HJ, Zhang M, Liu XW. Highly diastereoselective synthesis of trifluoromethyl containing spiro[pyrrolidin-3,2′-oxindoles] from N-2,2,2-trifluoroethylsubstituted isatin imines and β,γ-unsaturated α-keto esters. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Limam I, Ben Aissa-Fennira F, Essid R, Chahbi A, Kefi S, Mkadmini K, Elkahoui S, Abdelkarim M. Hydromethanolic root and aerial part extracts from Echium arenarium Guss suppress proliferation and induce apoptosis of multiple myeloma cells through mitochondrial pathway. ENVIRONMENTAL TOXICOLOGY 2021; 36:874-886. [PMID: 33393729 DOI: 10.1002/tox.23090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Echium arenarium Guss is a Mediterranean plant traditionally used in healing skin wound and it was reported exhibiting potent antioxidant, antibacterial, and antiparasitic activities. However, antitumoral activities of this plant have not yet been explored. Here we investigated for the first time, root (EARE) and aerial part (EAAPE) extracts of E. arenarium Guss to examine cytotoxicity and apoptosis activation pathway on U266 human multiple myeloma (MM) cell line. We demonstrated that EARE and EAAPE decreased U266 cell viability in a dose dependent manner. Based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, EARE was significantly two times more efficient (IC50 value 41 μg/ml) than EAAPE (IC50 value 82 μg/ml) considering 48 h of treatment. Furthermore, after 24 h of exposure to 100 μg/ml of EARE or EAAPE, cell cycle showed remarkable increase in sub-G1 population and a decrease of U266 cells proportion in G1 phase. In addition, EARE increased cell percentage in S phase. Moreover, analysis revealed that EAAPE or EARE induced apoptosis of U266 cells after 24 h of treatment. Interestingly, depolarization of mitochondrial membrane potential and activation of caspase 3/7 were demonstrated in treated U266 cells. Phytochemical analysis of E. arenarium extracts showed that EARE exhibited the highest content of total phenolic content. Interestingly, six phenolic compounds were identified. Myricitrin was the major compound in EARE, followed by luteolin 7-O-glucoside, resorcinol, polydatin, Trans-hydroxycinnamic acid, and hyperoside. These findings proved that an intrinsic mitochondria-mediated apoptosis pathway probably mediated the apoptotic effects of E. arenarium Guss extracts on U266 cells, and this will suggest several action plans to treat MM.
Collapse
Affiliation(s)
- Inès Limam
- Laboratory of oncohematology, Faculty of medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Fatma Ben Aissa-Fennira
- Laboratory of oncohematology, Faculty of medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Rim Essid
- Laboratory of Bioactive Substances, Center of Biotechnology, Ecopark of Borj Cedria, Hammam-Lif, Tunisia
| | - Ahlem Chahbi
- Laboratory of oncohematology, Faculty of medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| | - Sarra Kefi
- Laboratory of Bioactive Substances, Center of Biotechnology, Ecopark of Borj Cedria, Hammam-Lif, Tunisia
| | - Khaoula Mkadmini
- Medicinal and Aromatic Plants Laboratory, Biotechnology Center of Borj Cedria, Hammam-Lif, Tunisia
| | - Salem Elkahoui
- Laboratory of Bioactive Substances, Center of Biotechnology, Ecopark of Borj Cedria, Hammam-Lif, Tunisia
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Mohamed Abdelkarim
- Laboratory of oncohematology, Faculty of medicine of Tunis, Tunis El Manar University, Tunis, Tunisia
| |
Collapse
|
32
|
Lin X, Gajendran B, Varier KM, Liu W, Song J, Rao Q, Wang C, Qiu J, Ni W, Qin X, Wen M, Liu H, Li Y. Paris Saponin VII Induces Apoptosis and Cell Cycle Arrest in Erythroleukemia Cells by a Mitochondrial Membrane Signaling Pathway. Anticancer Agents Med Chem 2021; 21:498-507. [PMID: 32538736 DOI: 10.2174/1871520620666200615134039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/19/2020] [Accepted: 05/10/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE Leukemia is considered a top-listed ailment, according to WHO, which contributes to the death of a major population of the world every year. Paris Saponin VII (PS), a saponin which was isolated from the roots of Trillium kamtschaticum, from our group, was reported to provide hemostatic, cytotoxic and antimicrobial activities. However, its molecular mechanism underlying the anti-proliferative effects remains unclear. Thus, this study hypothesized to assess that mechanism in PS treated HEL cells. METHODS The MTT assay was used to analyze the PS inhibited cell viability in the HEL cells. We further found that PS could induce S phase cell cycle arrest through flow cytometry as well as the western blot analysis of intrinsic and extrinsic apoptotic molecules. RESULTS The MTT assay showed the IC50 concentration of PS as 0.667μM. The study revealed that PS treatment inhibits cell proliferation dose-dependently. It further caused mitochondrial membrane potential changes by PS treatment. Mechanistic protein expression revealed a dose-dependent upsurge for Bid and Bim molecules, while Bcl2 and PARP expression levels were significantly (P<0.05) down-regulated in PS treated HEL cells resulting in caspase -3 release and increased the Bim levels upon 24h of incubation. CONCLUSION These findings indicate that PS possesses an excellent anti-leukemic activity via the regulation of the mitochondrial pathway, leading to S phase cell cycle arrest and caspase-dependent apoptosis, suggesting it as a potential alternative chemotherapeutic agent for leukemia patients.
Collapse
Affiliation(s)
- Xin Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou Province- 550014, China
| | - Babu Gajendran
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou Province- 550014, China
| | - Krishnapriya M Varier
- Department of Medical Biochemistry, Dr. ALM PGIBMS, University of Madras, Taramani Campus, Chennai, Tamilnadu-600113, India
| | - Wuling Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou Province- 550014, China
| | - Jingrui Song
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou Province- 550014, China
| | - Qing Rao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou Province- 550014, China
| | - Chunlin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou Province- 550014, China
| | - Jianfei Qiu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou Province- 550014, China
| | - Wei Ni
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - XuJie Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Min Wen
- College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Haiyang Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yanmei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou Province- 550014, China
| |
Collapse
|
33
|
Yang F, Zhao Z, Cai S, Ling L, Hong L, Tao L, Wang Q. Detailed Molecular Mechanism and Potential Drugs for COL1A1 in Carboplatin-Resistant Ovarian Cancer. Front Oncol 2021; 10:576565. [PMID: 33680916 PMCID: PMC7928381 DOI: 10.3389/fonc.2020.576565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/21/2020] [Indexed: 01/05/2023] Open
Abstract
Carboplatin resistance in ovarian cancer (OV) is a major medical problem. Thus, there is an urgent need to find novel therapeutic targets to improve the prognosis of patients with carboplatin-resistant OV. Accumulating evidence indicates that the gene COL1A1 (collagen type I alpha 1 chain) has an important role in chemoresistance and could be a therapeutic target. However, there have been no reports about the role of COL1A1 in carboplatin-resistant OV. This study aimed to establish the detailed molecular mechanism of COL1A1 and predict potential drugs for its treatment. We found that COL1A1 had a pivotal role in carboplatin resistance in OV by weighted gene correlation network analysis and survival analysis. Moreover, we constructed a competing endogenous RNA network (LINC00052/SMCR5-miR-98-COL1A1) based on multi-omics data and experiments to explore the upstream regulatory mechanisms of COL1A1. Two key pathways involving COL1A1 in carboplatin resistance were identified by co-expression analysis and pathway enrichment: the "ECM-receptor interaction" and "focal adhesion" Kyoto Encyclopedia of Genes and Genomes pathways. Furthermore, combining these results with those of cell viability assays, we proposed that ZINC000085537017 and quercetin were potential drugs for COL1A1 based on virtual screening and the TCMSP database, respectively. These results might help to improve the outcome of OV in the future.
Collapse
Affiliation(s)
- Feng Yang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ziyu Zhao
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Shaoyi Cai
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Li Ling
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,School of Pharmacy, Sun Yat-Sen University, Guangzhou, China
| | - Leying Hong
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Liang Tao
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Qin Wang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
34
|
Raina R, Pramodh S, Rais N, Haque S, Shafarin J, Bajbouj K, Hamad M, Hussain A. Luteolin inhibits proliferation, triggers apoptosis and modulates Akt/mTOR and MAP kinase pathways in HeLa cells. Oncol Lett 2021; 21:192. [PMID: 33574931 PMCID: PMC7816384 DOI: 10.3892/ol.2021.12452] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Flavonoids, a subclass of polyphenols, have been shown to be effective against several types of cancer, by decreasing proliferation and inducing apoptosis. Therefore, the aim of the present study was to assess the anti-carcinogenic potential of luteolin on HeLa human cervical cancer cells, through the use of a cell viability assay, DNA fragmentation assay, mitochondrial membrane potential assay, cell cycle analysis using Annexin/PI staining and flow cytometry, gene expression analysis and a protein profiling array. Luteolin treatment exhibited cytotoxicity towards HeLa cells in a dose- and time-dependent manner, and its anti-proliferative properties were confirmed by accumulation of luteolin-treated cells in sub-G1 phases. Cytotoxicity induced by luteolin treatment resulted in apoptosis, which was mediated through depolarization of the mitochondrial membrane potential and DNA fragmentation. Furthermore, luteolin treatment increased the expression of various proapoptotic genes, including APAF1, BAX, BAD, BID, BOK, BAK1, TRADD, FADD, FAS, and Caspases 3 and 9, whereas the expression of anti-apoptotic genes, including NAIP, MCL-1 and BCL-2, was decreased. Cell cycle regulatory genes, including CCND1, 2 and 3, CCNE2, CDKN1A, CDKN2B, CDK4 and CDK2, were decreased following treatment. Expression of TRAILR2/DR5, TRAILR1/DR4, Fas/TNFRSF6/CD95 and TNFR1/TNFRSF1A, as well as pro-apoptotic proteins, including BAD, BAX and Cytochrome C were consistently increased, and the expression of antiapoptotic proteins, HIF1α, BCL-X, MCL1 and BCL2, were found to be decreased following treatment. Expression of AKT1 and 2, ELK1, PIK3C2A, PIK3C2B, MAPK14, MAP3K5, MAPK3 and MAPK1 was significantly decreased at the transcriptional level. Expression of GSK3b (p-ser9), PRAS 40 (p-Ther246), BAD (p-ser112), PTEN (p-ser380), AKT (p-ser473), ERK2 (p-Y185/Y187), RISK2 (p-ser386), P70S6k (p-Thr421/ser424), PDK1(p-ser241), ERK1 (p-T202/Y204) and MTOR (p-ser2448) was downregulated and expression of P53 (p-ser241) and P27(p-Thr198) was upregulated by luteolin in a dose-dependent manner, indicating its anti-proliferative and apoptosis enabling properties, and this may have been mediated via inhibition of the AKT and the MAPK pathways.
Collapse
Affiliation(s)
- Ritu Raina
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Sreepoorna Pramodh
- Department of Life and Environmental Sciences, College of Natural and Health Science, Zayed University, Dubai, United Arab Emirates
| | - Naushad Rais
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Jasmin Shafarin
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| |
Collapse
|
35
|
Zhou W, Li Z, Tian YP, Han XX, Liu XL. Chromone–indanedione reactant: a bifunctional 3C synthon for diastereoselective construction of skeleton-diversified bispiro-[chromanocyclopentane-oxindole-indanedione]. NEW J CHEM 2021. [DOI: 10.1039/d1nj02257a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new type of bifunctional 3C synthon, a chromone–indanedione precursor, was employed for diastereoselective Michael/Michael cycloaddition with methyleneindolinones to generate a series of potentially bioactive bispiro-[chromanocyclopentane-oxindole-indanedione] frameworks with skeletal diversity in a single operation.
Collapse
Affiliation(s)
- Wei Zhou
- College of Pharmaceutical Sciences
- Guizhou University of Traditional Chinese Medicine
- Guiyang
- P. R. China
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Medicine and Food
| | - Zheng Li
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Medicine and Food
- Guizhou University
- Guiyang
- P. R. China
| | - You-Ping Tian
- College of Pharmaceutical Sciences
- Guizhou University of Traditional Chinese Medicine
- Guiyang
- P. R. China
| | - Xiao-Xue Han
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Medicine and Food
- Guizhou University
- Guiyang
- P. R. China
| | - Xiong-Li Liu
- College of Pharmaceutical Sciences
- Guizhou University of Traditional Chinese Medicine
- Guiyang
- P. R. China
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Medicine and Food
| |
Collapse
|
36
|
Huang T, Wu X, Yan S, Liu T, Yin X. Synthesis and in vitro evaluation of novel spiroketopyrazoles as acetyl-CoA carboxylase inhibitors and potential antitumor agents. Eur J Med Chem 2020; 212:113036. [PMID: 33276990 DOI: 10.1016/j.ejmech.2020.113036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/06/2020] [Accepted: 11/14/2020] [Indexed: 12/19/2022]
Abstract
Acetyl-CoA carboxylase (ACC) is a rate-limiting enzyme in de novo fatty acid synthesis, which plays a critical role in the growth and survival of cancer cells. In this study, a series of spiroketopyrazole derivatives bearing quinoline moieties were synthesized, and in vitro anticancer activities of these compounds as ACC inhibitors were evaluated. The biological evaluation showed that compound 7j exhibited the strongest enzyme inhibitory activity (IC50 = 1.29 nM), while compound 7m displayed the most potent anti-proliferative activity against A549, HepG2, and MDA-MB-231 cells with corresponding IC50 values of 0.55, 0.38, and 1.65 μM, respectively. The preliminary pharmacological studies confirmed that compound 7m reduced the intracellular malonyl-CoA and TG levels in a dose-dependent manner. Moreover, it could down-regulate cyclin D1 and CDK4 to disturb the cell cycle and up-regulate Bax, caspase-3, and PARP along with the suppression of Bcl-2 to induce apoptosis. Notably, the combination of 7m with doxorubicin synergistically decreased the HepG2 cell viability. These results indicated that compound 7m as a single agent, or in combination with other antitumor drugs, might be a promising therapeutic agent for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Tonghui Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China; Xuzhou Medical University Science Park, 221000, Xuzhou, Jiangsu, People's Republic of China.
| | - Xin Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Shirong Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Tianya Liu
- Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, 221002, Xuzhou, Jiangsu, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
| |
Collapse
|
37
|
Chen SQ, Wang C, Song YQ, Tao S, Yu FY, Lou HY, Hu FQ, Yuan H. Quercetin Covalently Linked Lipid Nanoparticles: Multifaceted Killing Effect on Tumor Cells. ACS OMEGA 2020; 5:30274-30281. [PMID: 33251462 PMCID: PMC7689951 DOI: 10.1021/acsomega.0c04795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
The encapsulation of hydrophobic drugs is a problem that many researchers are working on. The goal of this study is to achieve the delivery of hydrophobic drugs by means of prodrugs and nanoformulations for a stronger tumor cell-killing effect and explore related killing mechanisms. Lipophilic quercetin (Qu) was covalently linked to glyceryl caprylate-caprate (Gcc) via disulfide bonds-containing 3,3'-dithiodipropionic acid (DTPA) to synthesize novel lipid Qu-SS-Gcc. Qu-SS-Gcc lipid nanoparticles (Qu-SS-Gcc LNPs) were fabricated using the solvent diffusion technique. The intracellular release of Qu by cleavage of nanocarriers was determined by liquid chromatography and compared with the uptake of free Qu. Detection methods, such as fluorescent quantitation, flow cytometry, and western blot were applied to explore the action mechanism induced by Qu. It was revealed that Qu-SS-Gcc LNPs could be cleaved by the high concentrations of reduction molecules in MCF-7/ADR (human multidrug-resistant breast cancer) cells, followed by the release of Qu. The intracellular Qu content produced by dissociation of Qu-SS-Gcc LNPs was higher than that produced by internalization of free Qu. The resulting release of Qu exerted superior cell-killing effects on MCF-7/ADR cells, such as P-gp inhibition by binding to P-gp binding sites, blocking the cell cycle in the G2 phase, and causing cell apoptosis and autophagy. Moreover, it was revealed autophagy triggered by a low concentration of Qu-SS-Gcc LNPs was beneficial to cell survival, while at a higher concentration, it acted as a cell killer. Qu-SS-Gcc LNPs can realize massive accumulation of Qu in tumor cells and exert a multifaceted killing effect on tumor cells, which is a reference for the delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Shao-qing Chen
- College
of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Cheng Wang
- College
of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Yan-qing Song
- College
of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Shan Tao
- College
of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Fang-ying Yu
- College
of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Hai-ya Lou
- Sir
Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3, Qingchun East Road, Hangzhou 310016, China
| | - Fu-qiang Hu
- College
of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Hong Yuan
- College
of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| |
Collapse
|
38
|
Zhang Y, Xin C, Cheng C, Wang Z. Antitumor activity of nanoemulsion based on essential oil of Pinus koraiensis pinecones in MGC-803 tumor-bearing nude mice. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
39
|
Xie Y, Wang Y, Xiang W, Wang Q, Cao Y. Molecular Mechanisms of the Action of Myricetin in Cancer. Mini Rev Med Chem 2020; 20:123-133. [PMID: 31648635 DOI: 10.2174/1389557519666191018112756] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/31/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023]
Abstract
Natural compounds, such as paclitaxel and camptothecin, have great effects on the treatment of tumors. Such natural chemicals often achieve anti-tumor effects through a variety of mechanisms. Therefore, it is of great significance to conduct further studies on the anticancer mechanism of natural anticancer agents to lay a solid foundation for the development of new drugs. Myricetin, originally isolated from Myrica nagi, is a natural pigment of flavonoids that can inhibit the growth of cancer cells (such as liver cancer, rectal cancer, skin cancer and lung cancer, etc.). It can regulate many intracellular activities (such as anti-inflammatory and blood lipids regulation) and can even be bacteriostatic. The purpose of this paper is to outline the molecular pathways of the anticancer effects of myricetin, including the effect on cancer cell death, proliferation, angiogenesis, metastasis and cell signaling pathway.
Collapse
Affiliation(s)
- Yutao Xie
- Department of Pharmacy, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Yunlong Wang
- Department of Pharmacy, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Wei Xiang
- Department of Pharmacy, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Qiaoying Wang
- Department of Cardiothoracic Surgery, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| | - Yajun Cao
- Department of Pharmacy, Nanchong Center Hospital, The Second Clinical Medical College, North Sichuan Medical College (University), Nanchong, 637000, Sichuan, China
| |
Collapse
|
40
|
Li Z, Feng TT, Zhou Y, Tian YP, Zhou W, Liu XL. [1,5]-Proton transfer as a key strategy: Rapid access to natural product-inspired library of 3-pyrazolyl isoflavones. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
An G, Park S, Lee M, Lim W, Song G. Antiproliferative Effect of 4-Methylumbelliferone in Epithelial Ovarian Cancer Cells Is Mediated by Disruption of Intracellular Homeostasis and Regulation of PI3K/AKT and MAPK Signaling. Pharmaceutics 2020; 12:pharmaceutics12070640. [PMID: 32645961 PMCID: PMC7408106 DOI: 10.3390/pharmaceutics12070640] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 11/27/2022] Open
Abstract
Ovarian cancer has a high mortality rate and high resistance to chemotherapy. Thus, many studies are currently assessing the ability of natural products to induce ovarian cancer cell death. A coumarin derivative, 4-methylumbelliferone (4-MU), has been reported to have anti-cancer effects on various cancers, but its effects on ovarian cancer are not fully understood. In this study, we identified the intracellular mechanism underlying the effects of 4-MU on epithelial ovarian cancer cells. Decreased ovarian cancer cell proliferation and an accumulation of cells in the G2/M phase were observed following 4-MU treatment. Moreover, 4-MU interfered with calcium homeostasis; induced endoplasmic reticulum stress in both cell lines; inhibited AKT and S6 phosphorylation; and increased ERK1/2, P38, and JNK phosphorylation. Furthermore, 4-MU and pharmacological inhibitors showed synergic effects in suppressing cell proliferation. Collectively, our current data indicate that antitumor effects of 4-MU could be appropriate for use as a therapeutic agent against epithelial ovarian cancer cells.
Collapse
Affiliation(s)
- Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (G.A.); (S.P.)
| | - Sunwoo Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (G.A.); (S.P.)
| | - Minkyoung Lee
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Korea;
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul 02707, Korea;
- Correspondence: (W.L.); (G.S.); Tel.: +82-2-910-4773 (W.L.); +82-2-3290-3012 (G.S.)
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea; (G.A.); (S.P.)
- Correspondence: (W.L.); (G.S.); Tel.: +82-2-910-4773 (W.L.); +82-2-3290-3012 (G.S.)
| |
Collapse
|
42
|
Rashidi Z, Khosravizadeh Z, Talebi A, Khodamoradi K, Ebrahimi R, Amidi F. Overview of biological effects of Quercetin on ovary. Phytother Res 2020; 35:33-49. [PMID: 32557927 DOI: 10.1002/ptr.6750] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/14/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022]
Abstract
Over the last few decades, using natural products has been increased to treat different diseases. Today, great attention has been pointed toward the usage of natural products such as flavonoids, especially Quercetin (QUR), in the treatment of diseases. QUR as a natural antioxidant has been traditionally used to prevent or treat a variety of diseases such as cancer, cardiovascular disease, polycystic ovary syndrome (PCOS), obesity, chronic inflammation, and reproductive system dysfunction. Several studies demonstrated that QUR acts as an anti-inflammatory, anti-apoptotic, antioxidant, and anticancer agent. With this in view, in this study, we intended to describe an overview of the biological effects of QUR on the ovary. QUR improves the quality of oocytes and embryos. It affects the proliferation and apoptosis and decreases the oxidative stress in granulosa cells (GCs). Furthermore, QUR can be used as a complementary and alternative therapy in ovarian cancer and it has beneficial effects in the treatment of PCOS patients. It seems that QUR as a supplementary factor has different activities for the treatment of different disorders and it also has bidirectional activities. However, further investigations are needed for understanding the efficacy of QUR in the treatment and improvement of gynecological patients.
Collapse
Affiliation(s)
- Zahra Rashidi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Khosravizadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Talebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.,Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Kajal Khodamoradi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.,Department of Infertility, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Ji X, Yang C, Xie J, Yin X, Hu Q. Effect of Saponin from Tupistra chinensis Baker on proliferation and apoptosis of ovarian cancer cells by Wnt/β-Catenin pathway. IUBMB Life 2020; 72:1780-1786. [PMID: 32502299 DOI: 10.1002/iub.2308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 11/07/2022]
Abstract
The present study aimed to investigate the molecular mechanism and the effect of Saponin from Tupistra chinensis Baker (STCB) on the proliferation and apoptosis of ovarian cancer cells. To investigate the inhibitory effect of STCB on the proliferation of ovarian cancer cells, SKOV3 cells were cultured and the methyl thiazolyl tetrazolium assay was used. Flow cytometry was also used to analyze the cell cycle distribution and apoptotic rate. Ki-67, cyclin D1, cleaved caspase-3, cleaved caspase-9, β-catenin, and c-Myc protein expressions were detected by western blot. Ovarian cancer cells were treated with STCB and Wnt pathway activator lithium chloride (LiCl). These methods were also used to determine the proliferation, cell cycle distribution, and apoptosis of ovarian cancer cells. In STCB-treated group, the proliferation inhibition and apoptosis rate, the proportion of G0-G1 phase, and the expression level of cleaved caspase-3 and 9 of ovarian cancer cells were significantly increased. Similarly, the expression of Ki-67, cyclin D1, β-catenin, and c-Myc were significantly decreased (p < .05). The results also showed that in STCB-LiCl-treated group, while the proliferation inhibition rate of ovarian cancer cells, the proportion of G0-G1 cells, the expression level of cleaved caspase-3 and 9, and the apoptosis rate (p < .05) were significantly decreased, the expression level of Ki-67, cyclin D1, β-catenin, and c-Myc was significantly increased. STCB induced G0-G1 phase arrest, inhibited cell proliferation, and promoted apoptosis of ovarian cancer cells by inhibiting Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Xiaoli Ji
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chengcheng Yang
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Xie
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolan Yin
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quan Hu
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
44
|
Flavonoids in Ageratum conyzoides L. Exert Potent Antitumor Effects on Human Cervical Adenocarcinoma HeLa Cells In Vitro and In Vivo. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2696350. [PMID: 32461974 PMCID: PMC7218960 DOI: 10.1155/2020/2696350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022]
Abstract
The Ageratum conyzoides L. (A. conyzoides) is commonly used as a traditional medicine, and its antitumor effects have also been studied. However, the functional roles of flavonoids in A. conyzoides in antitumor activities have not been clarified. The present study is aimed at investigating the biological effects of flavonoids in A. conyzoides on human cervical adenocarcinoma. Firstly, we detected that flavonoids in A. conyzoides significantly inhibited the proliferation, invasion, migration, and clonality of human cervical adenocarcinoma HeLa cells in vitro. Furthermore, we found that flavonoids in A. conyzoides induced significant S phase arrest and apoptosis and obviously decreased the intracellular reactive oxygen species (ROS) level in HeLa cells. Finally, we found that flavonoids in A. conyzoides significantly inhibited the HeLa xenograft tumor growth and epithelial-mesenchymal transition (EMT) in vivo. In conclusion, our results demonstrated the obvious antitumor effects of flavonoids in A. conyzoides on HeLa cells, suggesting that flavonoids in A. conyzoides could be provided as a novel therapeutic compound for human cervical adenocarcinoma.
Collapse
|
45
|
Chen Y, Jiang W, Liu X, Du Y, Liu L, Ordovas JM, Lai CQ, Shen L. Curcumin supplementation improves heat-stress-induced cardiac injury of mice: physiological and molecular mechanisms. J Nutr Biochem 2020; 78:108331. [DOI: 10.1016/j.jnutbio.2019.108331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/13/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022]
|
46
|
Huang H, Chen AY, Ye X, Guan R, Rankin GO, Chen YC. Galangin, a Flavonoid from Lesser Galangal, Induced Apoptosis via p53-Dependent Pathway in Ovarian Cancer Cells. Molecules 2020; 25:molecules25071579. [PMID: 32235536 PMCID: PMC7180956 DOI: 10.3390/molecules25071579] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
Among women worldwide, ovarian cancer is one of the most dangerous cancers. Patients undergoing platinum-based chemotherapy might get adverse side effects and develop resistance to drugs. In recent years, natural compounds have aroused growing attention in cancer treatment. Galangin inhibited the growth of two cell lines, A2780/CP70 and OVCAR-3, more strongly than the growth of a normal ovarian cell line, IOSE 364. The IC50 values of galangin on proliferation of A2780/CP70, OVCAR-3 and IOSE 364 cells were 42.3, 34.5, and 131.3 μM, respectively. Flow cytometry analysis indicated that galangin preferentially induced apoptosis in both ovarian cancer cells with respect to normal ovarian cells. Galangin treatment increased the level of cleaved caspase-3 and -7 via the p53-dependent intrinsic apoptotic pathway by up-regulating Bax protein and via the p53-dependent extrinsic apoptotic pathway by up-regulating DR5 protein. By down-regulating the level of p53 with 20 μM pifithrin-α (PFT-α), the apoptotic rates of OVCAR-3 cells induced by galangin treatment (40 μM) were significantly decreased from 18.2% to 10.2%, indicating that p53 is a key regulatory protein in galangin-induced apoptosis in ovarian cancer cells. Although galangin up-regulated the expression of p21, it had little effect on the cell cycle of the two ovarian cancer cell lines. Furthermore, the levels of phosphorylated Akt and phosphorylated p70S6K were decreased through galangin treatment, suggesting that the Akt/p70S6K pathways might be involved in the apoptosis. Our results suggested that galangin is selective against cancer cells and can be used for the treatment of platinum-resistant ovarian cancers in humans.
Collapse
Affiliation(s)
- Haizhi Huang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China;
- College of Science, Technology & Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
| | - Allen Y. Chen
- Department of Pharmacy Informatics, Seattle Children’s Hospital, Seattle, WA 98101, USA;
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China;
| | - Rongfa Guan
- College of Food Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Gary O. Rankin
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA;
| | - Yi Charlie Chen
- College of Science, Technology & Mathematics, Alderson Broaddus University, Philippi, WV 26416, USA
- Correspondence: ; Tel.: +1-304-457-6277; Fax: +1-304-457-6239
| |
Collapse
|
47
|
Wang HJ, Zhou YY, Liu XL, Zhang WH, Chen S, Liu XW, Zhou Y. Regioselective synthesis and evaluation of 2-amino 3-cyano chromene-chrysin hybrids as potential anticancer agents. Bioorg Med Chem Lett 2020; 30:127087. [PMID: 32160978 DOI: 10.1016/j.bmcl.2020.127087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
Abstract
The first example of Ca(OH)2-activated p-regioselective synthesis of chrysin-fused chromene was reported through a cascade Michael/cyclization of chrysin and arylidenemalononitrile. The newly synthesized structurally diverse 2-amino 3-cyano chromene-chrysin hybrids 3 were evaluated for their in vitro anticancer activity, and some of the compounds showed stronger anti-proliferative activity against K562, PC-3, A549 and NCI-H1299 than parent compound chrysin, and demonstrated equipotent potency compared with the reference drug of cisplatin. In particular, compound 3h had the highest cytotoxicity towards K562 cells (IC50 = 6.41 µM). Furthermore, compound 3h induced apoptosis of K562 cells in a concentration-dependent manner, as well as induced the apoptosis possibly through promoting the formation of apoptotic DNA of cancer cell via the intrinsic apoptotic pathway. Thus, our results provide in vitro evidence that compound 3h may be a potential candidate for the development of new anti-tumour drugs.
Collapse
Affiliation(s)
- Hui-Juan Wang
- Guizhou Medicine Edible Plant Resources Research and Development Center, Guizhou University, Guiyang 550025, China
| | - Yan-You Zhou
- Guizhou Medicine Edible Plant Resources Research and Development Center, Guizhou University, Guiyang 550025, China
| | - Xiong-Li Liu
- Guizhou Medicine Edible Plant Resources Research and Development Center, Guizhou University, Guiyang 550025, China.
| | - Wen-Hui Zhang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Shuang Chen
- Guizhou Medicine Edible Plant Resources Research and Development Center, Guizhou University, Guiyang 550025, China
| | - Xiong-Wei Liu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
48
|
Taha KF, Khalil M, Abubakr MS, Shawky E. Identifying cancer-related molecular targets of Nandina domestica Thunb. by network pharmacology-based analysis in combination with chemical profiling and molecular docking studies. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112413. [PMID: 31760157 DOI: 10.1016/j.jep.2019.112413] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/12/2019] [Accepted: 11/17/2019] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruits of Nandina domestica Thunb. have served as folk medicines in Chinese and Japanese tradition for treatment of several tumors including pharynx tumor and tooth abscess for many years, yet its exact mechanism of action is not yet known. AIM OF THE STUDY The study targets the identification of the main constituents of the fruits extracts and investigation of their mode of action in cancer therapy via pharmacology-based analysis and molecular docking. MATERIALS AND METHODS The different extracts of N. domestica Thunb. were analyzed via UPLC-MS/MS for identification of their active constituents. STITCH, DAVID, KEGG and STRING database were utilized for construction of compound-target and compound-target-pathway networks using Cytoscape 3.2.1. Molecular docking analysis of the top hit compounds was performed against the identified top hit molecular targets in the constructed networks. In vitro-testing of Nandina domestica Thunb. against colorectal cancer cell lines was carried out and correlated to the chemical profile of the extract to identify important biomarkers. The ADME properties of the active compounds were also evaluated. RESULTS 22 compounds were identified by UPLC-MS/MS analysis and were forwarded to network pharmacology-based analysis. Results showed the enrichment of 5 compounds and 4 molecular targets in the network namely; AKT1, CASP3, MAPK1 and TP53. The pathway analysis of the identified targets revealed that 15 cancer-related pathways were enriched including colorectal cancer, endometrial cancer and small-cell lung cancer. In-vitro testing of the extracts against colo-rectal cancer cell lines revealed the fractions enriched in the identified hit compounds were indeed the most active as revealed from the HCA-heat-map. ADME results showed that all compounds were drug-like candidates showing acceptable values according to Lipinski's rule. CONCLUSIONS Network pharmacology analysis revealed that the compounds isoquercitrin, quercitrin, berberine, chlorogenic acid and caffeic acid showed strong synergistic interactions with the cancer-related targets and pathways. It could be concluded that N. domestica Thunb. constituents affect both apoptosis and Akt-signaling pathways during the stages of early and intermediate adenoma through interaction with the targets CASP3 and MAPK1 (ErC2) while during the stages of late adenoma and carcinoma, the compounds acts through the p53 and ErbB signaling pathways.
Collapse
Affiliation(s)
- Kamilia F Taha
- Applied Research Center of Medicinal Plants, National Organization of Drug Control and Research, Cairo, Egypt
| | - Marwa Khalil
- Applied Research Center of Medicinal Plants, National Organization of Drug Control and Research, Cairo, Egypt
| | - Marwa S Abubakr
- Department of Pharmacognosy, Faculty of Pharmacy (Girls) Al-Azhar University, Cairo, Egypt
| | - Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt.
| |
Collapse
|
49
|
Vekaria M, Tirgar P. Promising Anticancer Potential of Herbal Compounds against Breast Cancer: A Systemic Review. ASIAN JOURNAL OF PHARMACEUTICAL RESEARCH AND HEALTH CARE 2020. [DOI: 10.18311/ajprhc/2021/26698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Park S, Song G, Lim W. Myricetin inhibits endometriosis growth through cyclin E1 down-regulation in vitro and in vivo. J Nutr Biochem 2019; 78:108328. [PMID: 31952013 DOI: 10.1016/j.jnutbio.2019.108328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/15/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022]
Abstract
Endometriosis is a benign gynecological condition prevalent among reproductive-aged women. Although active research and studies have been carried out to discover new drugs, surgery and hormone therapy are still the gold standard for endometriosis treatment. Nowadays, various flavonoids are considered long-term supplements for different diseases. Myricetin, a flavonol, has antiproliferative, anti- or pro-oxidant, and anticancer effects in gynecological diseases. Here, we reveal for the first time, to our knowledge, the antigrowth effects of myricetin in endometriosis. Myricetin inhibited cell proliferation and cell cycle progression of human VK2/E6E7 and End1/E6E7 cells and induced apoptosis, with the loss of mitochondrial membrane potential and accumulation of reactive oxygen species and calcium ions. Additionally, myricetin decreased the activation of AKT and ERK1/2 proteins, whereas it induced p38 activation in both cell lines. Moreover, myricetin decreased lesion size in the endometriosis mouse model via Ccne1 inhibition. Thus, myricetin has antiproliferative effects on endometriosis through cell cycle regulation.
Collapse
Affiliation(s)
- Sunwoo Park
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|