1
|
Xu K, Zhang M, Zou X, Wang M. Tetramethylpyrazine Confers Protection Against Oxidative Stress and NLRP3-Dependent Pyroptosis in Rats with Endometriosis. Organogenesis 2025; 21:2460261. [PMID: 39967390 PMCID: PMC11845083 DOI: 10.1080/15476278.2025.2460261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/31/2024] [Accepted: 01/25/2025] [Indexed: 02/20/2025] Open
Abstract
Tetramethylpyrazine (TMP) has been confirmed to suppress inflammation in endometriosis (EMs). Herein, this study investigated whether and how TMP affected NLRP3 inflammasomes and oxidative stress in EMs. After establishment of an EMs rat model, rats were treated with different concentrations of TMP. The size of endometriotic lesions and the latency and frequency of torsion in rats were recorded, followed by the measurement of relevant indicators (TNF-α, IL-6, IL-2, IL-10, MDA, SOD, GSH, CAT, ROS, NLRP3, ASC, GSDMD, caspase-1, Nrf2, and HO-1). The study experimentally determined that TMP treatment markedly decreased the size of endometriotic lesions and improved torsion in rats with EMs. The levels of inflammatory proteins, oxidative stress markers, NLRP3 inflammasome, and pyroptotic proteins were elevated in rats with EMs, all of which were reversed upon TMP treatment. Additionally, the activities of SOD, GSH, and CAT were lowered in rats with EMs, which were partly abrogated by TMP treatment. Furthermore, the downregulation of Nrf2 and HO-1 was counteracted by TMP treatment. To sum up, TMP represses excessive oxidative stress, NLRP3 inflammasome activation, and pyroptosis in rats with EMs. Additionally, TMP may activate the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Ke Xu
- Department of Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Mingzhe Zhang
- Department of Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiaofeng Zou
- Department of Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Mingyang Wang
- Department of Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
2
|
Jiang X, Li S, Wang N, Li J. Ligustrazine as a multitarget scaffold in drug design and discovery. Bioorg Med Chem 2025; 121:118110. [PMID: 39955802 DOI: 10.1016/j.bmc.2025.118110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/10/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
Ligustrazine has gained significant attention for its unique structural role in natural medicinal chemistry and its potential in drug discovery and development. The ligustrazine structure has been recognized as a clinical drug for treating cardiovascular and cerebrovascular diseases, especially in the design of neuroprotective agents. Recently, ligustrazine-based anti-tumor agents have also been reported. This knowledge can undoubtedly be applied to design multi-target-directed ligands, a highly relevant strategy for the complex pathological conditions of multifactorial diseases. In this review, we first discuss the biological properties and clinical applications of ligustrazine, then focus on the rational design of ligustrazine-based multifunctional ligands.
Collapse
Affiliation(s)
- Xueyang Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012 China
| | - Siyi Li
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012 China
| | - Ning Wang
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012 China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei 230012 China.
| | - Jiaming Li
- Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012 China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China.
| |
Collapse
|
3
|
许 威, 邓 昭, 王 辛, 姜 昊. [Network Pharmacology Study of Compound Ligustrazine in Gastric Cancer Therapy]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1114-1122. [PMID: 39507986 PMCID: PMC11536253 DOI: 10.12182/20240960503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Indexed: 11/08/2024]
Abstract
Objective To explore the potential role and mechanism of compound tetramethylpyrazine in gastric cancer therapy by using network pharmacology analysis combined with gene function annotation and clinical data analysis. Methods SwissTargetPrediction database was used to screen the potential drug action sites of compound tetramethylpyrazine, and the OMIM and Genecard databases were used in combination to obtain gastric cancer-related targets. Intersection analysis was performed to identify potential therapeutic targets. Subsequently, the method of ClusterProfiler was used to perform functional annotation of the downstream targets of intersection. In addition, The Cancer Genome Atlas (TCGA) database was used to obtain the original data of gastric cancer patients, and the immune infiltration analysis, miRNA analysis, transcriptional regulation analysis of key genes, gene set enrichment analysis (GSEA), gene set variation analysis (GSVA), nomogram model construction, and genome-wide association studies (GWAS) were performed. Results Through network pharmacological screening, we found 14 potential therapeutic targets through which tetramethylpyrazine acted on gastric cancer. Functional annotation showed that these targets were mainly involved in the pathways for hormone metabolism, drug metabolism, and signal transduction. Based on log rank test, the expression of the key genes, ELANE and MPO, showed significant difference in the comparison of gastric cancer survival curves (P<0.05), and were closely associated with immune cell infiltration. In addition, GSEA and GSVA results suggested that ELANE and MPO might influence the development of gastric cancer through multiple signaling pathways. Conclusion In this study, by using multiple analysis methods in an integrated way, we found that ligustrazine may have therapeutic effects on gastric cancer by regulating the potential targets of ELANE and MPO, as well as the relevant signaling pathways.
Collapse
Affiliation(s)
- 威 许
- 四川大学华西医院 消化肝病科 衰老与肿瘤研究室 疾病分子网络前沿科学中心 国家老年疾病临床医学研究中心 呼吸和共病全国重点实验室(成都 610041)Department of Gastroenterology and Hepatology, Laboratory for Aging and Cancer Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics ,State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 昭敏 邓
- 四川大学华西医院 消化肝病科 衰老与肿瘤研究室 疾病分子网络前沿科学中心 国家老年疾病临床医学研究中心 呼吸和共病全国重点实验室(成都 610041)Department of Gastroenterology and Hepatology, Laboratory for Aging and Cancer Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics ,State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 辛 王
- 四川大学华西医院 消化肝病科 衰老与肿瘤研究室 疾病分子网络前沿科学中心 国家老年疾病临床医学研究中心 呼吸和共病全国重点实验室(成都 610041)Department of Gastroenterology and Hepatology, Laboratory for Aging and Cancer Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics ,State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 昊 姜
- 四川大学华西医院 消化肝病科 衰老与肿瘤研究室 疾病分子网络前沿科学中心 国家老年疾病临床医学研究中心 呼吸和共病全国重点实验室(成都 610041)Department of Gastroenterology and Hepatology, Laboratory for Aging and Cancer Research, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics ,State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Yang C, Deng X, Tang Y, Tang H, Xia C. Natural products reverse cisplatin resistance in the hypoxic tumor microenvironment. Cancer Lett 2024; 598:217116. [PMID: 39002694 DOI: 10.1016/j.canlet.2024.217116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Cisplatin is one of the most commonly used drugs for cancer treatment. Despite much progress in improving patient outcomes, many patients are resistant to cisplatin-based treatments, leading to limited treatment efficacy and increased treatment failure. The fact that solid tumors suffer from hypoxia and an inadequate blood supply in the tumor microenvironment has been widely accepted for decades. Numerous studies have shown that a hypoxic microenvironment significantly reduces the sensitivity of tumor cells to cisplatin. Therefore, understanding how hypoxia empowers tumor cells with cisplatin resistance is essential. In the fight against tumors, developing innovative strategies for overcoming drug resistance has attracted widespread interest. Natural products have historically made major contributions to anticancer drug research due to their obvious efficacy and abundant candidate resources. Intriguingly, natural products show the potential to reverse chemoresistance, which provides new insights into cisplatin resistance in the hypoxic tumor microenvironment. In this review, we describe the role of cisplatin in tumor therapy and the mechanisms by which tumor cells generate cisplatin resistance. Subsequently, we call attention to the linkage between the hypoxic microenvironment and cisplatin resistance. Furthermore, we summarize known and potential natural products that target the hypoxic tumor microenvironment to overcome cisplatin resistance. Finally, we discuss the current challenges that limit the clinical application of natural products. Understanding the link between hypoxia and cisplatin resistance is the key to unlocking the full potential of natural products, which will serve as new therapeutic strategies capable of overcoming resistance.
Collapse
Affiliation(s)
- Chuansheng Yang
- Department of Breast, Thyroid and Head-Neck Surgery, Yuebei People's Hospital of Shantou University, Shaoguan, 512099, China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yunyun Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Chenglai Xia
- Foshan Maternity and Child Health Care Hospital, Foshan, 528000, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 515150, China.
| |
Collapse
|
5
|
Li Z, Yang Y, Gao F. Monomeric compounds from natural products for the treatment of pulmonary fibrosis: a review. Inflammopharmacology 2024; 32:2203-2217. [PMID: 38724690 DOI: 10.1007/s10787-024-01485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/23/2024] [Indexed: 08/06/2024]
Abstract
Pulmonary fibrosis (PF) is the end stage of lung injury and chronic lung diseases that results in diminished lung function, respiratory failure, and ultimately mortality. Despite extensive research, the pathogenesis of this disease remains elusive, and effective therapeutic options are currently limited, posing a significant clinical challenge. In addition, research on traditional Chinese medicine and naturopathic medicine is hampered by several complications due to complex composition and lack of reference compounds. Natural product monomers, possessing diverse biological activities and excellent safety profiles, have emerged as potential candidates for preventing and treating PF. The effective anti-PF ingredients identified can be generally divided into flavonoids, saponins, polysaccharides, and alkaloids. Specifically, these monomeric compounds can attenuate inflammatory response, oxidative stress, and other physiopathological processes of the lung through many signaling pathways. They also improve pulmonary factors. Additionally, they ameliorate epithelial-mesenchymal transition (EMT) and fibroblast-myofibroblast transdifferentiation (FMT) by regulating multiple signal amplifiers in the lungs, thereby mitigating PF. This review highlights the significant role of monomer compounds derived from natural products in reducing inflammation, oxidative stress, and inhibiting EMT process. The article provides comprehensive information and serves as a solid foundation for further exploration of new strategies to harness the potential of botanicals in the treatment of PF.
Collapse
Affiliation(s)
- Zhuqing Li
- University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China
| | - Yanyong Yang
- Basic Medical Center for Pulmonary Disease, Naval Medical University, 800, Xiangyin Road, Shanghai, 200433, China.
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, Shanghai, 200433, People's Republic of China.
| | - Fu Gao
- University of Shanghai for Science and Technology, 516, Jungong Road, Shanghai, 200093, China.
- Basic Medical Center for Pulmonary Disease, Naval Medical University, 800, Xiangyin Road, Shanghai, 200433, China.
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, 800, Xiangyin Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
6
|
Chen XF, Li SS, Bai YJ, Zhao ZF, Bai YJ, Gong G, He XR, Zheng XH. Design and synthesis of ligustrazine derivatives as potential anti-Alzheimer's agents. Nat Prod Res 2024; 38:2825-2835. [PMID: 37505222 DOI: 10.1080/14786419.2023.2241155] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
A novel series of ligustrazine derivatives was designed, synthesized, and evaluated as acetylcholinesterase (AChE) and butylcholinesterase (BuChE) inhibitors for the treatment of Alzheimer's disease (AD). In vitro studies displayed that some of the synthesized compounds revealed promising AChE and BuChE inhibitory effects. Particularly, compounds E12 and E27, indicated highly AChE inhibitory activity with IC50 values of 1.85 μM and 0.98 μM, respectively and showed noteworthy protective effects against on glutamate-induced SH-SY5Y cells damage at 1 μM and 10 μM concentrations. Furthermore, molecular simulation docking elucidates compounds E12 and E27 interacting with residues in the binding site of AChE (PDB code: 4EY7) and BuChE (PDB code: 1P0I), emphasizing the protein residues that participate in the main interactions with the two targets. Taken together, these results revealed that compounds E12 and E27 might be potential lead compounds for further structure optimization in the drug-discovery process against AD.
Collapse
Affiliation(s)
- Xu-Fei Chen
- Department of Anesthesiology, General Hospital of the Western Theater Command of the Chinese People's Liberation Army, Chengdu, China
- Key Laboratory of Western Resource Biology and Modern Biotechnology, Northwest University, Xi'an, China
| | - Shan-Shan Li
- Basic Medical College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yu-Jun Bai
- Key Laboratory of Western Resource Biology and Modern Biotechnology, Northwest University, Xi'an, China
| | - Ze-Feng Zhao
- Key Laboratory of Western Resource Biology and Modern Biotechnology, Northwest University, Xi'an, China
| | - Ya-Jun Bai
- Key Laboratory of Western Resource Biology and Modern Biotechnology, Northwest University, Xi'an, China
| | - Gu Gong
- Department of Anesthesiology, General Hospital of the Western Theater Command of the Chinese People's Liberation Army, Chengdu, China
| | - Xi-Rui He
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, China
| | - Xiao-Hui Zheng
- Key Laboratory of Western Resource Biology and Modern Biotechnology, Northwest University, Xi'an, China
| |
Collapse
|
7
|
Liu X, Quan W. Progress on the Synthesis Pathways and Pharmacological Effects of Naturally Occurring Pyrazines. Molecules 2024; 29:3597. [PMID: 39125002 PMCID: PMC11314619 DOI: 10.3390/molecules29153597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
As one of the most essential types of heterocyclic compounds, pyrazines have a characteristic smell and taste and have a wide range of commercial applications, especially in the food industry. With the development of the food industry, the demand for pyrazines has increased. Therefore, understanding the properties, functions, and synthetic pathways of pyrazines is one of the fundamental methods to produce, control, and apply pyrazines in food or medical systems. In this review, we provide an overview of the synthesis pathways and physiological or pharmacological functions of naturally occurring pyrazines. In particular, we focus on the biosynthesis and pharmacological effects of 2,3,5,6-Tetramethylpyrazine (TTMP), 2,5-Dimethylpyrazine (2,5-DMP), and 2,3,5-trimethylpyrazine (TMP). Furthermore, areas where further research on pyrazines is needed are discussed in this work.
Collapse
Affiliation(s)
| | - Wenli Quan
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, China;
| |
Collapse
|
8
|
Faizan M, Kumar R, Mazumder A, Salahuddin, Kukreti N, Kumar A, Chaitanya MVNL. The medicinal chemistry of piperazines: A review. Chem Biol Drug Des 2024; 103:e14537. [PMID: 38888058 DOI: 10.1111/cbdd.14537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 06/20/2024]
Abstract
The versatile basic structure of piperazine allows for the development and production of newer bioactive molecules that can be used to treat a wide range of diseases. Piperazine derivatives are unique and can easily be modified for the desired pharmacological activity. The two opposing nitrogen atoms in a six-membered piperazine ring offer a large polar surface area, relative structural rigidity, and more acceptors and donors of hydrogen bonds. These properties frequently result in greater water solubility, oral bioavailability, and ADME characteristics, as well as improved target affinity and specificity. Various synthetic protocols have been reported for piperazine and its derivatives. In this review, we focused on recently published synthetic protocols for the synthesis of the piperazine and its derivatives. The structure-activity relationship concerning different biological activities of various piperazine-containing drugs has also been highlighted to provide a good understanding to researchers for future research on piperazines.
Collapse
Affiliation(s)
- Md Faizan
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Rajnish Kumar
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Salahuddin
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| | - Arvind Kumar
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, India
| | - M V N L Chaitanya
- School of Pharmaceutical Science, Lovely Professional University, Phagwara, India
| |
Collapse
|
9
|
Xie Y, Gong L, Tao Y, Zhang B, Zhang L, Yang S, Yang D, Lu Y, Du G. New Cocrystals of Ligustrazine: Enhancing Hygroscopicity and Stability. Molecules 2024; 29:2208. [PMID: 38792070 PMCID: PMC11123683 DOI: 10.3390/molecules29102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Ligustrazine (TMP) is the main active ingredient extracted from Rhizoma Chuanxiong, which is used in the treatment of cardiovascular and cerebrovascular diseases, with the drawback of being unstable and readily sublimated. Cocrystal technology is an effective method to improve the stability of TMP. Three benzoic acid compounds including P-aminobenzoic acid (PABA), 3-Aminobenzoic acid (MABA), and 3,5-Dinitrobenzoic acid (DNBA) were chosen for co-crystallization with TMP. Three novel cocrystals were obtained, including TMP-PABA (1:2), TMP-MABA (1.5:1), and TMP-DNBA (0.5:1). Hygroscopicity was characterized by the dynamic vapor sorption (DVS) method. Three cocrystals significantly improved the hygroscopicity stability, and the mass change in TMP decreased from 25% to 1.64% (TMP-PABA), 0.12% (TMP-MABA), and 0.03% (TMP-DNBA) at 90% relative humidity. The melting points of the three cocrystals were all higher than TMP, among which the TMP-DNBA cocrystal had the highest melting point and showed the best stability in reducing hygroscopicity. Crystal structure analysis shows that the mesh-like structure formed by the O-H⋯N hydrogen bond in the TMP-DNBA cocrystal was the reason for improving the stability of TMP.
Collapse
Affiliation(s)
- Yifei Xie
- Beijing City Key Laboratory of Drug Target and Screening Research, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (Y.X.); (G.D.)
| | - Lixiang Gong
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (L.G.); (Y.T.); (B.Z.); (L.Z.)
| | - Yue Tao
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (L.G.); (Y.T.); (B.Z.); (L.Z.)
| | - Baoxi Zhang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (L.G.); (Y.T.); (B.Z.); (L.Z.)
| | - Li Zhang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (L.G.); (Y.T.); (B.Z.); (L.Z.)
| | - Shiying Yang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (L.G.); (Y.T.); (B.Z.); (L.Z.)
| | - Dezhi Yang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (L.G.); (Y.T.); (B.Z.); (L.Z.)
| | - Yang Lu
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (L.G.); (Y.T.); (B.Z.); (L.Z.)
| | - Guanhua Du
- Beijing City Key Laboratory of Drug Target and Screening Research, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China; (Y.X.); (G.D.)
| |
Collapse
|
10
|
Feng F, Xu DQ, Yue SJ, Chen YY, Tang YP. Neuroprotection by tetramethylpyrazine and its synthesized analogues for central nervous system diseases: a review. Mol Biol Rep 2024; 51:159. [PMID: 38252346 DOI: 10.1007/s11033-023-09068-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/24/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Due to the global increase in aging populations and changes in modern lifestyles, the prevalence of neurodegenerative diseases, cerebrovascular disorders, neuropsychiatrcic conditions, and related ailments is rising, placing an increasing burden on the global public health system. MATERIALS AND METHODS All studies on tetramethylpyrazine (TMP) and its derivatives were obtained from reputable sources such as PubMed, Elsevier, Library Genesis, and Google Scholar. Comprehensive data on TMP and its derivatives was meticulously compiled. RESULTS This comprehensive analysis explains the neuroprotective effects demonstrated by TMP and its derivatives in diseases of the central nervous system. These compounds exert their influence on various targets and signaling pathways, playing crucial roles in the development of various central nervous system diseases. Their multifaceted mechanisms include inhibiting oxidative damage, inflammation, cell apoptosis, calcium overload, glutamate excitotoxicity, and acetylcholinesterase activity. CONCLUSION This review provides a brief summary of the most recent advancements in research on TMP and its derivatives in the context of central nervous system diseases. It involves synthesizing analogs of TMP and evaluating their effectiveness in models of central nervous system diseases. The ultimate goal is to facilitate the practical application of TMP and its derivatives in the future treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Fan Feng
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China.
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an, China.
| |
Collapse
|
11
|
Liu Z, Cai J, Jiang G, Wang M, Wu C, Su K, Hu W, Huang Y, Yu C, Huang X, Cao G, Wang H. Novel Platinum(IV) complexes intervene oxaliplatin resistance in colon cancer via inducing ferroptosis and apoptosis. Eur J Med Chem 2024; 263:115968. [PMID: 37995563 DOI: 10.1016/j.ejmech.2023.115968] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Platinum-based chemotherapeutics are widely used for cancer treatment but are frequently limited because of dosage-dependent side effects and drug resistance. To attenuate these drawbacks, a series of novel platinum(IV) prodrugs (15a-18c) were synthesized and evaluated for anti-cancer activity. Among them, 17a demonstrated superior anti-proliferative activity compared with oxaliplatin (OXA) in the cisplatin-resistant lung cancer cell line A549/CDDP and OXA-resistant colon cancer cell line HCT-116/OXA but showed a lower cytotoxic effect toward human normal cell lines HUVEC and L02. Mechanistic investigations suggested that 17a efficiently enhanced intracellular platinum accumulation, induced DNA damage, disturbed the homeostasis of intracellular reactive oxygen molecules and mitochondrial membrane potential, and thereby activated the mitochondrion-dependent apoptosis pathway. Moreover, 17a significantly induced ferroptosis in HCT-116/OXA via triggering the accumulation of lipid peroxides, disrupting iron homeostasis, and inhibiting solute carrier family 7 member 11 and glutathione peroxidase 4 axial pathway transduction by inhibiting the expression of the phosphorylated signal transducer and activator of transcription 3 and nuclear factor erythroid 2-related factor 2. Moreover, 17a exerted remarkable in vivo antitumor efficacy in the HCT-116/OXA xenograft models but showed attenuated toxicity. These results indicated that these novel platinum(IV) complexes provided an alternative strategy to develop novel platinum-based antineoplastic agents for cancer treatment.
Collapse
Affiliation(s)
- Zhikun Liu
- Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Jinyuan Cai
- Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Guiyang Jiang
- Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Meng Wang
- Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China
| | - Chuang Wu
- Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Kangning Su
- Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Weiwei Hu
- Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Yaxian Huang
- Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Chunhao Yu
- Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Xiaochao Huang
- Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China.
| | - Guoxiu Cao
- Green Chemistry and Process Enhancement Technology, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
12
|
Dong Y, Wang F, Wen J, Mao Y, Zhang S, Long T, Yang Z, Li L, Zhang J, Dong L, Liu G, Xu J. Synthesis and bioevaluation of Scutellarein-Tertramethylpyrazine hybrid molecules for the treatment of ischemic stroke. Bioorg Chem 2024; 142:106978. [PMID: 37984102 DOI: 10.1016/j.bioorg.2023.106978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Ischemic stroke caused by insufficient blood supply to the brain may produce a sequence of cascade reactions, leading to oxidative stress and ultimately inducing nerve cell damage. Therefore, hybrid molecules with multiple therapeutic effects have irreplaceable advantages for the treatment of ischemic stroke. Based on the previous works, two types of Scutellarein and Tertramethylpyrazine hybrid molecules were designed and synthesized according to the PepT 1-based design. After systematic research, all synthesized hybrid molecules exhibited more excellent neuroprotective effect and antiplatelet activity compared to the original drugs. Among them, the selected compound 1e with superior neuroprotective and antiplatelet effects could significantly enhance the permeability on the Caco-2 monolayer membrane and inhibit the Gly-Sar uptake on Caco-2 cells. Meanwhile, the result of intestinal perfusion has also confirmed that the absorption of the selected compound 1e is indeed increased. Further, the selected compound 1e significantly reduce the cerebral infarction volume of middle cerebral artery occlusion/reperfusion rats. Especially, the cerebral infarction volume of the high-dose 1e group reduced to one fourth of the model group. Meanwhile, results of hematoxylin-eosin staining also indicated that the damage in the hippocampus CA1 region was significantly alleviated after treatment with the compound 1e. Accordingly, molecular hybridization strategy is one of the simple and feasible ways to improve the therapeutic effect of single targeted drug.
Collapse
Affiliation(s)
- Yongxi Dong
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District 550025, Guizhou, China.
| | - Fang Wang
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District 550025, Guizhou, China
| | - Jinlan Wen
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District 550025, Guizhou, China
| | - Yongqing Mao
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District 550025, Guizhou, China
| | - Shanhui Zhang
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District 550025, Guizhou, China
| | - Tiemei Long
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District 550025, Guizhou, China
| | - Zhangxiang Yang
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District 550025, Guizhou, China
| | - Lei Li
- Guizhou provincial Center for Disease Control and Prevention, Guiyang 550004, Guizhou, China
| | - Jiquan Zhang
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District 550025, Guizhou, China
| | - Li Dong
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District 550025, Guizhou, China
| | - Gang Liu
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases & School of Basic Medicine, Guizhou Medical University, Guian New District 550025, Guizhou, China.
| | - Jianwei Xu
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province & School of Pharmacy, Guizhou Medical University, Guian New District 550025, Guizhou, China; Tissue Engineering and Stem Cell Research Center of Guizhou Medical University & School of Basic Medicine, Guizhou Medical University, Guian New District 550025, Guizhou, China.
| |
Collapse
|
13
|
Wei W, Jing L, Tian Y, Więckowska A, Kang D, Meng B, Panek D, Godyń J, Góral I, Song Y, Liu X, Zhan P. Multifunctional agents against Alzheimer's disease based on oxidative stress: Polysubstituted pyrazine derivatives synthesized by multicomponent reactions. Bioorg Med Chem 2023; 96:117535. [PMID: 37956505 DOI: 10.1016/j.bmc.2023.117535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
As Alzheimer's disease (AD) is a neurodegenerative disease with a complex pathogenesis, the exploration of multi-target drugs may be an effective strategy for AD treatment. Multifunctional small molecular agents can be obtained by connecting two or more active drugs or privileged pharmacophores by multicomponent reactions (MCRs). In this paper, two series of polysubstituted pyrazine derivatives with multifunctional moieties were designed as anti-AD agents and synthesized by Passerini-3CR and Ugi-4CR. Since the oxidative stress plays an important role in the pathological process of AD, the antioxidant activities of the newly synthesized compounds were first evaluated. Subsequently, selected active compounds were further screened in a series of AD-related bioassays, including Aβ1-42 self-aggregation and deaggregation, BACE-1 inhibition, metal chelation, and protection of SH-SY5Y cells from H2O2-induced oxidative damage. Compound A3B3C1 represented the best one with multifunctional potencies. Mechanism study showed that A3B3C1 acted on Nrf2/ARE signaling pathway, thus increasing the expression of related antioxidant proteins NQO1 and HO-1 to normal cell level. Furthermore, A3B3C1 showed good in vitro human plasma and liver microsome stability, indicating a potential for further development as multifunctional anti-AD agent.
Collapse
Affiliation(s)
- Wenxiu Wei
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Ye Tian
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China; Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China.
| | - Anna Więckowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Bairu Meng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Dawid Panek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Justyna Godyń
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Izabella Góral
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Yuning Song
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China.
| |
Collapse
|
14
|
Miranda-Vera C, Hernández ÁP, García-García P, Díez D, García PA, Castro MÁ. Podophyllotoxin: Recent Advances in the Development of Hybridization Strategies to Enhance Its Antitumoral Profile. Pharmaceutics 2023; 15:2728. [PMID: 38140069 PMCID: PMC10747284 DOI: 10.3390/pharmaceutics15122728] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Podophyllotoxin is a naturally occurring cyclolignan isolated from rhizomes of Podophyllum sp. In the clinic, it is used mainly as an antiviral; however, its antitumor activity is even more interesting. While podophyllotoxin possesses severe side effects that limit its development as an anticancer agent, nevertheless, it has become a good lead compound for the synthesis of derivatives with fewer side effects and better selectivity. Several examples, such as etoposide, highlight the potential of this natural product for chemomodulation in the search for new antitumor agents. This review focuses on the recent chemical modifications (2017-mid-2023) of the podophyllotoxin skeleton performed mainly at the C-ring (but also at the lactone D-ring and at the trimethoxyphenyl E-ring) together with their biological properties. Special emphasis is placed on hybrids or conjugates with other natural products (either primary or secondary metabolites) and other molecules (heterocycles, benzoheterocycles, synthetic drugs, and other moieties) that contribute to improved podophyllotoxin bioactivity. In fact, hybridization has been a good strategy to design podophyllotoxin derivatives with enhanced bioactivity. The way in which the two components are joined (directly or through spacers) was also considered for the organization of this review. This comprehensive perspective is presented with the aim of guiding the medicinal chemistry community in the design of new podophyllotoxin-based drugs with improved anticancer properties.
Collapse
Affiliation(s)
- Carolina Miranda-Vera
- Laboratorio de Química Farmacéutica, Departamento de Ciencias Farmacéuticas, CIETUS, IBSAL, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (C.M.-V.); (Á.P.H.); (P.G.-G.); (P.A.G.)
| | - Ángela Patricia Hernández
- Laboratorio de Química Farmacéutica, Departamento de Ciencias Farmacéuticas, CIETUS, IBSAL, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (C.M.-V.); (Á.P.H.); (P.G.-G.); (P.A.G.)
| | - Pilar García-García
- Laboratorio de Química Farmacéutica, Departamento de Ciencias Farmacéuticas, CIETUS, IBSAL, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (C.M.-V.); (Á.P.H.); (P.G.-G.); (P.A.G.)
| | - David Díez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain;
| | - Pablo Anselmo García
- Laboratorio de Química Farmacéutica, Departamento de Ciencias Farmacéuticas, CIETUS, IBSAL, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (C.M.-V.); (Á.P.H.); (P.G.-G.); (P.A.G.)
| | - María Ángeles Castro
- Laboratorio de Química Farmacéutica, Departamento de Ciencias Farmacéuticas, CIETUS, IBSAL, Facultad de Farmacia, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain; (C.M.-V.); (Á.P.H.); (P.G.-G.); (P.A.G.)
| |
Collapse
|
15
|
Yu S, Zheng J, Zhang Y, Meng D, Wang Y, Xu X, Liang N, Shabiti S, Zhang X, Wang Z, Yang Z, Mi P, Zheng X, Li W, Chen H. The mechanisms of multidrug resistance of breast cancer and research progress on related reversal agents. Bioorg Med Chem 2023; 95:117486. [PMID: 37847948 DOI: 10.1016/j.bmc.2023.117486] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023]
Abstract
Chemotherapy is the mainstay in the treatment of breast cancer. However, many drugs that are commonly used in clinical practice have a high incidence of side effects and multidrug resistance (MDR), which is mainly caused by overexpression of drug transporters and related enzymes in breast cancer cells. In recent years, researchers have been working hard to find newer and safer drugs to overcome MDR in breast cancer. In this review, we provide the molecule mechanism of MDR in breast cancer, categorize potential lead compounds that inhibit single or multiple drug transporter proteins, as well as related enzymes. Additionally, we have summarized the structure-activity relationship (SAR) based on potential breast cancer MDR modulators with lower side effects. The development of novel approaches to suppress MDR is also addressed. These lead compounds hold great promise for exploring effective chemotherapy agents to overcome MDR, providing opportunities for curing breast cancer in the future.
Collapse
Affiliation(s)
- Shiwen Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Jinling Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Yan Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Dandan Meng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Yujue Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Xiaoyu Xu
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Na Liang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Shayibai Shabiti
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Xu Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zixi Wang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zehua Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Pengbing Mi
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China
| | - Xing Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China; Department of Pharmacy, Hunan Vocational College of Science and Technology, Third Zhongyi Shan Road, Changsha, Hunan Province 425101, PR China.
| | - Wenjun Li
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nano formulations, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Hongfei Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, China Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research [Hunan Provincial Science and Technology Department document (Approval number: 2019-56)], School of Pharmaceutical Science, Hengyang Medical School, University of South China, No.28 Changshengxi Road, Hengyang 421001, PR China.
| |
Collapse
|
16
|
Bai Y, Liang C, Zhou J, Liu Y, Wang F, Gao J, Wu J, Hu D. Development of novel celastrol-ligustrazine hybrids as potent peroxiredoxin 1 inhibitors against lung cancer. Eur J Med Chem 2023; 259:115656. [PMID: 37499289 DOI: 10.1016/j.ejmech.2023.115656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
The disruption of oxidation-reduction equilibrium through inhibiting reactive oxygen species (ROS) clearance or enhancing ROS production has emerged as a novel and promising strategy for cancer therapy. Herein, a series of celastrol-ligustrazine hybrids were designed and synthesized as effective ROS promoters, and their biological activities were further evaluated. Among them, compound 7e stood out as the most potent peroxiredoxin 1 (PRDX1) inhibitor (IC50 = 0.164 μM), which was significant super to the recognized PRDX1 inhibitor Conoidin A (IC50 = 14.80 μM) and the control compound celastrol (IC50 = 1.622 μM). Furthermore, 7e dramatically promoted intracellular ROS accumulation, and inhibited the proliferation, invasion and migration of cancer cells besides inducing apoptosis in vitro. Additionally, 7e suppressed the key signaling pathways (AKT and ERK) and promoted the expression of apoptosis-related proteins (cleaved caspase-3/8 and cleaved PARP) in A549 cells, which resulted in the prevention of tumor progression. Most importantly, compound 7e (TGI = 77.47%) showed more considerable in vivo antitumor efficacy and less toxicity than celastrol (TGI = 71.00%). Overall, this work indicates 7e as the most potential PRDX1 inhibitor and may be a promising candidate for the therapy of lung cancer.
Collapse
Affiliation(s)
- Ying Bai
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, 232001, China
| | - Chao Liang
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, 232001, China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, 232001, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, 232001, China
| | - Fengxuan Wang
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Jian Gao
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, 232001, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institute, Huainan, 232001, China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232001, China
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, 232001, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institute, Huainan, 232001, China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, 232001, China.
| |
Collapse
|
17
|
Bildziukevich U, Šlouf M, Rárová L, Šaman D, Wimmer Z. Nano-assembly of cytotoxic amides of moronic and morolic acid. SOFT MATTER 2023; 19:7625-7634. [PMID: 37772344 DOI: 10.1039/d3sm01035j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Moronic acid and morolic acid, less frequently studied plant triterpenoids, were subjected to derivation with several structural modifiers, namely, piperazine-, pyrazine-, 1H-indole- and L-methionine-based compounds. Derivation was targeted to design and prepare novel compounds capable of nano-assembling and/or displaying cytotoxicity. Formation of nanostructures has been proven for several novel target compounds that formed different types of nanostructures, either in chloroform or in water. Isometric nanoparticles with broad size distributions (12 and 25), distorted single sheets (23) or very large thin warped films (13) were formed in chloroform solutions. Sheet-like nanostructures (12 and 23), and sphere-like nanostructures (hydrogen bonding connected nanoparticles; 3, 5, 13, 21 and 25) were formed in water suspensions. Cytotoxicity was also investigated and compared with that of the parent triterpenoids, showing enhanced effect of 18 that was the most successful derivative of the prepared series with sufficient balance between its cytotoxicity in CEM (IC50 = 11.7 ± 2.4 μM), HeLa (IC50 = 9.0 ± 0.7 μM) and G-361 (IC50 = 10.6 ± 5.5 μM) cancer cell lines, and toxicity in BJ (IC50 = 43.3 ± 1.5 μM). The calculated selectivity index values for 18 are SI = 3.9 (CEM), 4.8 (HeLa) and 4.4 (G-361). Additional compounds displaying cytotoxicity were 5, 7, 9 and 15, all of them showed comparable cytotoxicity with 18, in the investigated cancer cell lines; however, they were more toxic in BJ than 18.
Collapse
Affiliation(s)
- Uladzimir Bildziukevich
- Institute of Experimental Botany of the Czech Academy of Sciences, Isotope Laboratory, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovský sq. 2, CZ-16206 Prague 6, Czech Republic
| | - Lucie Rárová
- Palacký University, Faculty of Science, Department of Experimental Biology, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - David Šaman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, CZ-16610 Prague, Czech Republic
| | - Zdeněk Wimmer
- Institute of Experimental Botany of the Czech Academy of Sciences, Isotope Laboratory, Vídeňská 1083, CZ-14220 Prague, Czech Republic.
- University of Chemistry and Technology in Prague, Department of Chemistry of Natural Compounds, Technická 5, CZ-16628 Prague, Czech Republic.
| |
Collapse
|
18
|
Guo M, Zhang E, Wang G, Ding R, Xu X, Fan P, Zheng Y, Xu D. Synthesis and in-vitro study of a novel ligustrazine diselenide as a potential chemotherapy drug for lung adenocarcinoma. Biomed Pharmacother 2023; 165:114699. [PMID: 37385210 DOI: 10.1016/j.biopha.2023.114699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 07/01/2023] Open
Abstract
A novel ligustrazine diselenide, 1,2-bis ((3,5,6-trimethylpyrazin-2-yl) methyl) diselenide (Se2), for potential treatment on adenocarcinoma of lung cancer was successfully synthesized and fully characterized by various analytical approaches. Cytotoxic, antiproliferative and apoptosis-triggering mechanism of Se2 compound have been investigated through human lung adenocarcinoma (LUAD) cell line A549. The study found that Se2 significantly inhibit the proliferation of A549 cells in a dose-dependent manner. Flow cytometry showed that Se2 induced cell arrest and apoptosis in S and G2/M phase, and the apoptotic effect of Se2 were associated with the increase of caspase 3 and PARP-1 level approved by western blot assay. Further mechanism study results suggested that Se2 suppressed the migration,invasion and colony formation of A549 cells, significantly inhibited the PI3K/Akt/m-TOR signaling pathway. The study indicated that Se2 is a bioactive substance that can induce apoptosis of A549 cells in-vitro, and it is a potent candidate drug for LUAD.
Collapse
Affiliation(s)
- Mudan Guo
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - En Zhang
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Guiling Wang
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Rui Ding
- Chengdu Yukang Science and Technology Co. Ltd, Chengdu 610000, China
| | - Xiuying Xu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Pengjue Fan
- Chongqing Zhengbo Biotech Ltd., Chongqing 400714, China
| | - Yimin Zheng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Doudou Xu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing 400045, China; Chongqing Institute for Food and Drug Control, Chongqing 401121, China.
| |
Collapse
|
19
|
Wang HY, Chen Y, Zhu SM. Regulatory effect of tetramethylpyrazine on cell proliferation, migration, invasion, and glycolysis in gastric cancer cells. Shijie Huaren Xiaohua Zazhi 2023; 31:485-491. [DOI: 10.11569/wcjd.v31.i12.485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Tetramethylpyrazine (TMP) has been reported to have antitumor effects, but its effect on gastric cancer and the underlying mechanism are not fully understood.
AIM To investigate the regulatory effect and potential mechanism of TMP on the proliferation, migration, invasion, and glycolysis of gastric cancer cells.
METHODS Gastric cancer cells cultured in vitro were randomly divided into four groups: Control group (Ctrl), low-dose TMP group (TMP-L, 10 μM), medium-dose TMP group (TMP-M, 20 μM), and high-dose TMP group (TMP-H, 40 μM). After treatment, cell viability was detected by CCK-8 assay, and cell proliferation, migration, and invasion were detected by colony formation assay and transwell assay. Glucose metabolism was determined by measurements of glucose uptake, lactate production, oxygen consumption rate (OCR), and extracellular acidification rate (ECAR). The activity of hexokinase (HK) and lactate dehydrogenase (LDH) was determined. The expression of glycolysis-related proteins and activation of the protein kinase B (AKT)/glucose trans-porter-1 (GLUT1) axis were assessed by Western blot assay.
RESULTS TMP reduced the viability of gastric cancer cells in a dose-dependent manner (P < 0.05). Compared to the Ctrl group, medium- and high-dose TMP inhibited cell proliferation, migration, and invasion (P < 0.05). After treatment with TMP, glucose uptake, lactate production, OCR, and ECAR were decreased significantly (P < 0.05), and the activity of HK and LDH was reduced significantly in the TMP-H group (P < 0.05). Western blot analysis showed that the expression of p-AKT/AKT, GLUT1, HK2, and LDHA in gastric cancer cells treated with TMP was downregulated (P < 0.05).
CONCLUSION TMP reduces glycolysis and inhibits cell proliferation and migration in gartric cancer cells.
Collapse
Affiliation(s)
- Han-Ying Wang
- Department of Tumor Chemoradiotherapy, Lishui People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Yong Chen
- Department of Tumor Chemoradiotherapy, Lishui People's Hospital, Lishui 323000, Zhejiang Province, China
| | - Shuang-Mei Zhu
- Department of Tumor Chemoradiotherapy, Lishui People's Hospital, Lishui 323000, Zhejiang Province, China
| |
Collapse
|
20
|
Li HX, Tian JH, Li HY, Wan X, Zou Y. Synthesis and Evaluation of Novel Nitric Oxide-Donating Ligustrazine Derivatives as Potent Antiplatelet Aggregation Agents. Molecules 2023; 28:molecules28083355. [PMID: 37110589 PMCID: PMC10144142 DOI: 10.3390/molecules28083355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Antiplatelet aggregation agents have demonstrated clinical benefits in the treatment of ischemic stroke. In our study, a series of novel nitric oxide (NO)-donating ligustrazine derivatives were designed and synthesized as antiplatelet aggregation agents. They were evaluated for the inhibitory effect on 5'-diphosphate (ADP)-induced and arachidonic acid (AA)-induced platelet aggregation in vitro. The results showed that compound 15d displayed the best activity in both ADP-induced and AA-induced assays, and compound 14a also showed quite better activity than ligustrazine. The preliminary structure-activity relationships of these novel NO-donating ligustrazine derivatives were discussed. Moreover, these compounds were docked with the thromboxane A2 receptor to study the structure-activity relationships. These results suggested that the novel NO-donating ligustrazine derivatives 14a and 15d deserve further study as potent antiplatelet aggregation agents.
Collapse
Affiliation(s)
- Han-Xu Li
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupationl Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jian-Hui Tian
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupationl Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Hua-Yu Li
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupationl Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xin Wan
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupationl Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yu Zou
- Institute of Pharmaceutical Process, Hubei Province Key Laboratory of Occupationl Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
21
|
Yang Z, Luo G, Ying Y, Li H, Wan Y, Xu G, Li M, Xian Y, Feng Y, Fang Y. Novel 2,6-disubstituted benzofuran-3-one analogues improve cerebral ischemia/reperfusion injury via neuroprotective and antioxidative effects. Bioorg Chem 2023; 132:106346. [PMID: 36638655 DOI: 10.1016/j.bioorg.2023.106346] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
There are no highly effective and safe medicines for clinical treatment of ischemic stroke, although the natural product 3-n-butylphthalide (NBP) has been approved in China for mild and moderate ischemic stroke. To discover more potent anti-cerebral ischemic agents and overcome the low stability by phthalide derivatives, benzofuran-3-one was selected as a core moiety and two types of nitric oxide (NO)-donating groups were incorporated into the structure. In this work, a series of 2,6-disubstituted benzofuran-3-one derivatives were designed and synthesised as NBP analogues, and tested as neuroprotective and antioxidative agents. Compounds 5 (without an NO donor) and 16 (with an NO donor) displayed more potent neuroprotective effects than the established clinical drugs Edaravone and NBP. More importantly, 5 and 16 also exhibited good antioxidative activity without cytotoxicity in rat primary neuronal and PC12 cells. Most active compounds showed good blood-brain barrier permeability in a parallel artificial membrane permeability assay. Furthermore, compound 5 reduced the ischemic infarct area significantly in rats subjected to ischemia/reperfusion injury, downregulated ionised calcium-binding adaptor molecule 1 and glial fibrillary acidic protein in inflammatory cells, and upregulated nerve growth factor.
Collapse
Affiliation(s)
- Zunhua Yang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Gengzhuo Luo
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yuqing Ying
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huilan Li
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| | - Yang Wan
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Guoliang Xu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Mingdong Li
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yang Xian
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Yulin Feng
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Yuanying Fang
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation, Jiangxi University of Chinese Medicine, Nanchang 330006, China.
| |
Collapse
|
22
|
Li H, Dong A, Li N, Ma Y, Zhang S, Deng Y, Chen S, Zhang M. Mechanistic Study of Schisandra chinensis Fruit Mixture Based on Network Pharmacology, Molecular Docking and Experimental Validation to Improve the Inflammatory Response of DKD Through AGEs/RAGE Signaling Pathway. Drug Des Devel Ther 2023; 17:613-632. [PMID: 36875720 PMCID: PMC9983444 DOI: 10.2147/dddt.s395512] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Background Diabetic kidney disease (DKD) is a major cause of end-stage renal disease (ESRD), and inflammation is the main causative mechanism. Schisandra chinensis fruit Mixture (SM) is an herbal formulation that has been used for a long time to treat DKD. However, its pharmacological and molecular mechanisms have not been clearly elucidated. The aim of this study was to investigate the potential mechanisms of SM for the treatment of DKD through network pharmacology, molecular docking and experimental validation. Methods The chemical components in SM were comprehensively identified and collected using liquid chromatography-tandem mass spectrometry (LC-MS) and database mining. The mechanisms were investigated using a network pharmacology, including obtaining SM-DKD intersection targets, completing protein-protein interactions (PPI) by Cytoscape to obtain key potential targets, and then revealing potential mechanisms of SM for DKD by GO and KEGG pathway enrichment analysis. The important pathways and phenotypes screened by the network analysis were validated experimentally in vivo. Finally, the core active ingredients were screened by molecular docking. Results A total of 53 active ingredients of SM were retrieved by database and LC-MS, and 143 common targets of DKD and SM were identified; KEGG and PPI showed that SM most likely exerted anti-DKD effects by regulating the expression of AGEs/RAGE signaling pathway-related inflammatory factors. In addition, our experimental validation results showed that SM improved renal function and pathological changes in DKD rats, down-regulated AGEs/RAGE signaling pathway, and further down-regulated the expression of TNF-α, IL-1β, IL-6, and up-regulated IL-10. Molecular docking confirmed the tight binding properties between (+)-aristolone, a core component of SM, and key targets. Conclusion This study reveals that SM improves the inflammatory response of DKD through AGEs/RAGE signaling pathway, thus providing a novel idea for the clinical treatment of DKD.
Collapse
Affiliation(s)
- Hongdian Li
- Department of Nephrology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Ao Dong
- Department of Nephrology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Na Li
- Department of Nephrology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yu Ma
- Department of Nephrology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Sai Zhang
- Department of Nephrology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yuanyuan Deng
- Department of Nephrology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shu Chen
- Department of Nephrology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Mianzhi Zhang
- Department of Nephrology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing, People's Republic of China.,Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, People's Republic of China
| |
Collapse
|
23
|
Sun X, Shen B, Yu H, Wu W, Sheng R, Fang Y, Guo R. Therapeutic potential of demethylzeylasteral, a triterpenoid of the genus Tripterygium wilfordii. Fitoterapia 2022; 163:105333. [DOI: 10.1016/j.fitote.2022.105333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022]
|
24
|
Li Z, Meng X, Ma G, Liu W, Li W, Cai Q, Wang S, Huang G, Zhang Y. Increasing brain glucose metabolism by ligustrazine piperazine ameliorates cognitive deficits through PPARγ-dependent enhancement of mitophagy in APP/PS1 mice. Alzheimers Res Ther 2022; 14:150. [PMID: 36217155 PMCID: PMC9552451 DOI: 10.1186/s13195-022-01092-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/29/2022] [Indexed: 11/10/2022]
Abstract
PPARγ agonists have been proven to be neuroprotective in vitro and in vivo models of Alzheimer's disease (AD). In the present study, we identified ligustrazine piperazine derivative (LPD) as a novel PPARγ agonist, which was detected by a dual-luciferase reporter assay system. LPD treatment dose-dependently reduced Aβ40 and Aβ42 levels in PC12 cells stably transfected with APP695swe and PSEN1dE9. Intragastric administration of LPD for 3 months dose-dependently reversed cognitive deficits in APP/PS1 mice. LPD treatment substantially decreased hippocampal Aβ plaques in APP/PS1 mice and decreased the levels of Aβ40 and Aβ42 in vivo and in vitro. Moreover, LPD treatment induced mitophagy in vivo and in vitro and increased brain 18F-FDG uptake in APP/PS1 mice. LPD treatment significantly increased OCR, ATP production, maximal respiration, spare respiratory capacity, and basal respiration in APP/PS1 cells. Mechanistically, LPD treatment upregulated PPARγ, PINK1, and the phosphorylation of Parkin (Ser65) and increased the LC3-II/LC3-I ratio but decreased SQSTM1/p62 in vivo and in vitro. Importantly, all these protective effects mediated by LPD were abolished by cotreatment with the selective PPARγ antagonist GW9662. In summary, LPD could increase brain glucose metabolism and ameliorate cognitive deficits through PPARγ-dependent enhancement of mitophagy in APP/PS1 mice.
Collapse
Affiliation(s)
- Zongyang Li
- grid.452847.80000 0004 6068 028XDepartment of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Institute of Translational Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, No. 3002 Sungang Westroad, Futian District, Shenzhen, 518035 China
| | - Xiangbao Meng
- grid.452847.80000 0004 6068 028XDepartment of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Institute of Translational Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, No. 3002 Sungang Westroad, Futian District, Shenzhen, 518035 China ,grid.258164.c0000 0004 1790 3548College of Pharmacy, Jinan University, No. 855 Xingye Avenue East, Panyu District, Guangzhou, 511486 China
| | - Guoxu Ma
- grid.506261.60000 0001 0706 7839Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193 China
| | - Wenlan Liu
- grid.452847.80000 0004 6068 028XDepartment of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Institute of Translational Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, No. 3002 Sungang Westroad, Futian District, Shenzhen, 518035 China
| | - Weiping Li
- grid.452847.80000 0004 6068 028XDepartment of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Institute of Translational Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, No. 3002 Sungang Westroad, Futian District, Shenzhen, 518035 China
| | - Qian Cai
- grid.258164.c0000 0004 1790 3548College of Pharmacy, Jinan University, No. 855 Xingye Avenue East, Panyu District, Guangzhou, 511486 China
| | - Sicen Wang
- grid.43169.390000 0001 0599 1243School of Medicine, Xi’an Jiaotong University, No.76, Yanta Westroad, Xi’an, 710061 China
| | - Guodong Huang
- grid.452847.80000 0004 6068 028XDepartment of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Institute of Translational Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, No. 3002 Sungang Westroad, Futian District, Shenzhen, 518035 China
| | - Yuan Zhang
- grid.452847.80000 0004 6068 028XDepartment of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Institute of Translational Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, No. 3002 Sungang Westroad, Futian District, Shenzhen, 518035 China
| |
Collapse
|
25
|
Liu Y, Yang G, Cui W, Zhang Y, Liang X. Regulatory mechanisms of tetramethylpyrazine on central nervous system diseases: A review. Front Pharmacol 2022; 13:948600. [PMID: 36133805 PMCID: PMC9483103 DOI: 10.3389/fphar.2022.948600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Central nervous system (CNS) diseases can lead to motor, sensory, speech, cognitive dysfunction, and sometimes even death. These diseases are recognized to cause a substantial socio-economic impact on a global scale. Tetramethylpyrazine (TMP) is one of the main active ingredients extracted from the Chinese herbal medicine Ligusticum striatum DC. (Chuan Xiong). Many in vivo and in vitro studies have demonstrated that TMP has a certain role in the treatment of CNS diseases through inhibiting calcium ion overload and glutamate excitotoxicity, anti-oxidative/nitrification stress, mitigating inflammatory response, anti-apoptosis, protecting the integrity of the blood-brain barrier (BBB) and facilitating synaptic plasticity. In this review, we summarize the roles and mechanisms of action of TMP on ischemic cerebrovascular disease, spinal cord injury, Parkinson’s disease, Alzheimer’s disease, cognitive impairments, migraine, and depression. Our review will provide new insights into the clinical applications of TMP and the development of novel therapeutics.
Collapse
Affiliation(s)
- Yue Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guang Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenqiang Cui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunling Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yunling Zhang, ; Xiao Liang,
| | - Xiao Liang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yunling Zhang, ; Xiao Liang,
| |
Collapse
|
26
|
Wang LS, Yen PT, Weng SF, Hsu JH, Yeh JL. Clinical Patterns of Traditional Chinese Medicine for Ischemic Heart Disease Treatment: A Population-Based Cohort Study. Medicina (B Aires) 2022; 58:medicina58070879. [PMID: 35888597 PMCID: PMC9320598 DOI: 10.3390/medicina58070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background and objectives: Traditional Chinese medicines (TCMs) are widely prescribed to relieve ischemic heart disease (IHD); however, no cohort studies have been conducted on the use of TCMs for patients with IHD. The aim of the study was to analyze TCM prescription patterns for patients with IHD. Materials and Methods: The retrospective population-based study employed a randomly sampled cohort of 4317 subjects who visited TCM clinics. Data were obtained from the National Health Insurance Research Database (NHIRD) of Taiwan for the period covering 2000 to 2017. Data analysis focused on the top ten most commonly prescribed formulae and single TCMs. We also examined the most common two- and three-drug combinations of TCM in single prescriptions. Demographic characteristics included age and sex distributions. Analysis was performed on 22,441 prescriptions. Results: The majority of TCM patients were male (53.6%) and over 50 years of age (65.1%). Zhi-Gan-Cao-Tang (24.76%) was the most frequently prescribed formulae, and Danshen (28.89%) was the most frequently prescribed single TCM for the treatment of IHD. The most common two- and three-drug TCM combinations were Xue-Fu-Zhu-Yu-Tang and Danshen” (7.51%) and “Zhi-Gan-Cao-Tang, Yang-Xin-Tang, and Gua-Lou-Xie-Bai-Ban-Xia-Tang” (2.79%). Conclusions: Our results suggest that most of the frequently prescribed TCMs for IHD were Qi toning agents that deal with cardiovascular disease through the promotion of blood circulation. The widespread use of these drugs warrants large-scale, randomized clinical trials to investigate their effectiveness and safety.
Collapse
Affiliation(s)
- Lung-Shuo Wang
- Department of Chinese Medicine, Sin-Lau Hospital, Tainan 70142, Taiwan; (L.-S.W.); (P.-T.Y.)
- The School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| | - Pei-Tzu Yen
- Department of Chinese Medicine, Sin-Lau Hospital, Tainan 70142, Taiwan; (L.-S.W.); (P.-T.Y.)
| | - Shih-Feng Weng
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Jong-Hau Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: (J.-H.H.); (J.-L.Y.)
| | - Jwu-Lai Yeh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (J.-H.H.); (J.-L.Y.)
| |
Collapse
|
27
|
Tetramethylpyrazine: A review on its mechanisms and functions. Biomed Pharmacother 2022; 150:113005. [PMID: 35483189 DOI: 10.1016/j.biopha.2022.113005] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Ligusticum chuanxiong Hort (known as Chuanxiong in China, CX) is one of the most widely used and long-standing medicinal herbs in China. Tetramethylpyrazine (TMP) is an alkaloid and one of the active components of CX. Over the past few decades, TMP has been proven to possess several pharmacological properties. It has been used to treat a variety of diseases with excellent therapeutic effects. Here, the pharmacological characteristics and molecular mechanism of TMP in recent years are reviewed, with an emphasis on the signal-regulation mechanism of TMP. This review shows that TMP has many physiological functions, including anti-oxidant, anti-inflammatory, and anti-apoptosis properties; autophagy regulation; vasodilation; angiogenesis regulation; mitochondrial damage suppression; endothelial protection; reduction of proliferation and migration of vascular smooth muscle cells; and neuroprotection. At present, TMP is used in treating cardiovascular, nervous, and digestive system conditions, cancer, and other conditions and has achieved good curative effects. The therapeutic mechanism of TMP involves multiple targets, multiple pathways, and bidirectional regulation. TMP is, thus, a promising drug with great research potential.
Collapse
|
28
|
Jiang R, Xu J, Zhang Y, Liu J, Wang Y, Chen M, Chen X, Yin M. Ligustrazine alleviates psoriasis-like inflammation through inhibiting TRAF6/c-JUN/NFκB signaling pathway in keratinocyte. Biomed Pharmacother 2022; 150:113010. [PMID: 35468584 DOI: 10.1016/j.biopha.2022.113010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/02/2022] Open
Abstract
Ligusticum chuanxiong Hort (Ligusticum; Apiaceae) (accepted name, Ligusticum striatum DC, on "The Plant List" for the latest version) is a Chinese herbal medicine (CHM) which mainly distributed in Sichuan Basin, China. Chuanxiong is the dried rhizome of Ligusticum chuanxiong Hort. Ligustrazine, also known as tetramethylpyrazine (TMP), is a main active fraction of chuanxiong. The aim of this study was to clarify the underlying mechanisms by which TMP protect against psoriasis-like inflammation in keratinocytes. Here, we demonstrated that TMP alleviated the severity and PASI scores of IMQ-induced psoriasis-like skin lesion in vivo. For the histopathology level, TMP inhibited the over-proliferation of keratinocytes in the epidermis and the substantial immune cells influx in dermis. For the mechanism of the ability of TMP on regulating inflammation, we confirmed that TMP regulate the TRAF6/c-JUN/NFκB signaling pathway through analyzing the proteomics profiling and verifying the expression of TRAF6, pho-c-Jun, pho-NFκB, so that the downstream psoriasis-relevant genes transcribed by c-JUN or NFκB were down-regulated. Furthermore, we predicted TRAF6 as the potential binding point of TMP. Accordingly, our study demonstrated that TMP regulated psoriasis-like inflammation through inhibiting TRAF6/c-JUN/NFκB signaling pathway in keratinocytes, which potentially provides evidence of the mechanism of TMP in the treatment and prevention of psoriasis.
Collapse
Affiliation(s)
- Rundong Jiang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China; Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiaqi Xu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yuezhong Zhang
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiachen Liu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yutong Wang
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mingliang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Mingzhu Yin
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
29
|
Zhao X, He Y, Zhang Y, Wan H, Wan H, Yang J. Inhibition of Oxidative Stress: An Important Molecular Mechanism of Chinese Herbal Medicine (Astragalus membranaceus, Carthamus tinctorius L., Radix Salvia Miltiorrhizae, etc.) in the Treatment of Ischemic Stroke by Regulating the Antioxidant System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1425369. [PMID: 35651725 PMCID: PMC9151006 DOI: 10.1155/2022/1425369] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/11/2022] [Indexed: 01/07/2023]
Abstract
Ischemic stroke is a severe cerebrovascular disease with high mortality and morbidity. Traditional Chinese medicine (TCM) has been utilized for thousands of years in China and is becoming increasingly popular all over the world, especially for the treatments of ischemic stroke. More and more evidences have implicated that oxidative stress has been closely related with ischemic stroke. This review will concentrate on the evidence of the action mechanism of Chinese herbal medicine and its active ingredient in preventing ischemic stroke by modulating redox signaling and oxidative stress pathways and providing references for clinical treatment and scientific research applications.
Collapse
Affiliation(s)
- Xixi Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yangyang Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haofang Wan
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiehong Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
30
|
Ye H, He Y, Zheng C, Wang F, Yang M, Lin J, Xu R, Zhang D. Type 2 Diabetes Complicated With Heart Failure: Research on Therapeutic Mechanism and Potential Drug Development Based on Insulin Signaling Pathway. Front Pharmacol 2022; 13:816588. [PMID: 35308248 PMCID: PMC8927800 DOI: 10.3389/fphar.2022.816588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 01/16/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and heart failure (HF) are diseases characterized by high morbidity and mortality. They often occur simultaneously and increase the risk of each other. T2DM complicated with HF, as one of the most dangerous disease combinations in modern medicine, is more common in middle-aged and elderly people, making the treatment more difficult. At present, the combination of blood glucose control and anti-heart failure is a common therapy for patients with T2DM complicated with HF, but their effect is not ideal, and many hypoglycemic drugs have the risk of heart failure. Abnormal insulin signaling pathway, as a common pathogenic mechanism in T2DM and HF, could lead to pathological features such as insulin resistance (IR), myocardial energy metabolism disorders, and vascular endothelial disorders. The therapy based on the insulin signaling pathway may become a specific therapeutic target for T2DM patients with HF. Here, we reviewed the mechanisms and potential drugs of insulin signaling pathway in the treatment of T2DM complicated with HF, with a view to opening up a new perspective for the treatment of T2DM patients with HF and the research and development of new drugs.
Collapse
Affiliation(s)
- Hui Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanan He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Wang
- State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ming Yang
- State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
31
|
Elucidating the Novel Mechanism of Ligustrazine in Preventing Postoperative Peritoneal Adhesion Formation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9226022. [PMID: 35308169 PMCID: PMC8930249 DOI: 10.1155/2022/9226022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/12/2021] [Accepted: 01/13/2022] [Indexed: 11/18/2022]
Abstract
Postoperative peritoneal adhesion (PPA) is a major clinical complication after open surgery or laparoscopic procedure. Ligustrazine is the active ingredient extracted from the natural herb Ligusticum chuanxiong Hort, which has promising antiadhesion properties. This study is aimed at revealing the underlying mechanisms of ligustrazine in preventing PPA at molecular and cellular levels. Both rat primary peritoneal mesothelial cells (PMCs) and human PMCs were used for analysis in vitro. Several molecular biological techniques were applied to uncover the potential mechanisms of ligustrazine in preventing PPA. And molecular docking and site-directed mutagenesis assay were used to predict the binding sites of ligustrazine with PPARγ. The bioinformatics analysis was further applied to identify the key pathway in the pathogenesis of PPA. Besides, PPA rodent models were prepared and developed to evaluate the novel ligustrazine nanoparticles in vivo. Ligustrazine could significantly suppress hypoxia-induced PMC functions, such as restricting the production of profibrotic cytokines, inhibiting the expression of migration and adhesion-associated molecules, repressing the expression of cytoskeleton proteins, restricting hypoxia-induced PMCs to obtain myofibroblast-like phenotypes, and reversing ECM remodeling and EMT phenotype transitions by activating PPARγ. The antagonist GW9662 of PPARγ could restore the inhibitory effects of ligustrazine on hypoxia-induced PMC functions. The inhibitor KC7F2 of HIF-1α could repress hypoxia-induced PMC functions, and ligustrazine could downregulate the expression of HIF-1α, which could be reversed by GW9662. And the expression of HIF-1α inhibited by ligustrazine was dramatically reversed after transfection with si-SMRT. The results showed that the benefit of ligustrazine on PMC functions is contributed to the activation of PPARγ on the transrepression of HIF-1α in an SMRT-dependent manner. Molecular docking and site-directed mutagenesis tests uncovered that ligustrazine bound directly to PPARγ, and Val 339/Ile 341 residue was critical for the binding of PPARγ to ligustrazine. Besides, we discovered a novel nanoparticle agent with sustained release behavior, drug delivery efficiency, and good tissue penetration in PPA rodent models. Our study unravels a novel mechanism of ligustrazine in preventing PPA. The findings indicated that ligustrazine is a potential strategy for PPA formation and ligustrazine nanoparticles are promising agents for preclinical application.
Collapse
|
32
|
Li J, Gong X. Tetramethylpyrazine: An Active Ingredient of Chinese Herbal Medicine With Therapeutic Potential in Acute Kidney Injury and Renal Fibrosis. Front Pharmacol 2022; 13:820071. [PMID: 35145414 PMCID: PMC8821904 DOI: 10.3389/fphar.2022.820071] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/10/2022] [Indexed: 12/23/2022] Open
Abstract
As an increasing public health concern worldwide, acute kidney injury (AKI) is characterized by rapid deterioration of kidney function. Although continuous renal replacement therapy (CRRT) could be used to treat severe AKI, effective drug treatment methods for AKI are largely lacking. Tetramethylpyrazine (TMP) is an active ingredient of Chinese herb Ligusticum wallichii (Chuan Xiong) with antioxidant and anti-inflammatory functions. In recent years, more and more clinical and experimental studies suggest that TMP might effectively prevent AKI. The present article reviews the potential mechanisms of TMP against AKI. Through search and review, a total of 23 studies were finally included. Our results indicate that the undergoing mechanisms of TMP preventing AKI are mainly related to reducing oxidative stress injury, inhibiting inflammation, preventing apoptosis of intrinsic renal cells, and regulating autophagy. Meanwhile, given that AKI and chronic kidney disease (CKD) are very tightly linked by each other, and AKI is also an important inducement of CKD, we thus summarized the potential of TMP impeding the progression of CKD through anti-renal fibrosis.
Collapse
|
33
|
Qian J, Xu Z, Zhu P, Meng C, Liu Y, Shan W, He A, Gu Y, Ran F, Zhang Y, Ling Y. A Derivative of Piperlongumine and Ligustrazine as a Potential Thioredoxin Reductase Inhibitor in Drug-Resistant Hepatocellular Carcinoma. JOURNAL OF NATURAL PRODUCTS 2021; 84:3161-3168. [PMID: 34806369 DOI: 10.1021/acs.jnatprod.1c00618] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The natural products piperlongumine (1) and ligustrazine (2) have been reported to exert antiproliferative effects against various types of cancer cells by up-regulating the level of reactive oxidative species (ROS). However, the moderate activities of 1 and 2 limit their application. To improve their potential antitumor activity, novel piperlongumine/ligustrazine derivatives were designed and prepared, and their potential pharmacological effects were determined in vitro and in vivo. Among the derivatives obtained, 11 exerted more prominent inhibitory activities against proliferation of drug-sensitive/-resistant cancer cells with lower IC50 values than 1. Particularly, the IC50 value of 11 against drug-resistant Bel-7402/5-FU cells was 0.9 μM, which was about 9-fold better than that of 1 (IC50 value of 8.4 μM). Mechanistic studies showed that 11 demonstrated thioredoxin reductase (TrxR) inhibitory activity, increase of ROS levels, decrease of mitochondrial transmembrane potential levels, and occurrence of DNA damage and autophagy, in a dose-dependent manner, via regulation of DNA damage protein H2AX and autophagy-associated proteins LC3, beclin-1, and p62 in drug-resistant Bel-7402/5-FU cells. Finally, compound 11 at 5 mg/kg displayed potent antitumor activity in vivo with tumor suppression of 76% (w/w). Taken together, compound 11 may represent a promising candidate drug for the chemotherapy of drug-resistant hepatocellular carcinoma and warrant more intensive study.
Collapse
Affiliation(s)
- Jianqiang Qian
- Medical College, Nantong University, Nantong 226001, People's Republic of China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| | - Zhongyuan Xu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| | - Peng Zhu
- Medical College, Nantong University, Nantong 226001, People's Republic of China
| | - Chi Meng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| | - Yun Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| | - Wenpei Shan
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| | - Ang He
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| | - Yipeng Gu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| | - Fansheng Ran
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| | - Yanan Zhang
- Medical College, Nantong University, Nantong 226001, People's Republic of China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| | - Yong Ling
- Medical College, Nantong University, Nantong 226001, People's Republic of China
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Targets, Nantong University, Nantong 226001, People's Republic of China
| |
Collapse
|
34
|
Yang S, Wu S, Dai W, Pang L, Xie Y, Ren T, Zhang X, Bi S, Zheng Y, Wang J, Sun Y, Zheng Z, Kong J. Tetramethylpyrazine: A Review of Its Antitumor Potential and Mechanisms. Front Pharmacol 2021; 12:764331. [PMID: 34975475 PMCID: PMC8716857 DOI: 10.3389/fphar.2021.764331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer remains a major public health threat. The mitigation of the associated morbidity and mortality remains a major research focus. From a molecular biological perspective, cancer is defined as uncontrolled cell division and abnormal cell growth caused by various gene mutations. Therefore, there remains an urgent need to develop safe and effective antitumor drugs. The antitumor effect of plant extracts, which are characterized by relatively low toxicity and adverse effect, has attracted significant attention. For example, increasing attention has been paid to the antitumor effects of tetramethylpyrazine (TMP), the active component of the Chinese medicine Chuanqiong, which can affect tumor cell proliferation, apoptosis, invasion, metastasis, and angiogenesis, as well as reverse chemotherapeutic resistance in neoplasms, thereby triggering antitumor effects. Moreover, TMP can be used in combination with chemotherapeutic agents to enhance their effects and reduce the side effect associated with chemotherapy. Herein, we review the antitumor effects of TMP to provide a theoretical basis and foundation for the further exploration of its underlying antitumor mechanisms and promoting its clinical application.
Collapse
Affiliation(s)
- Shaojie Yang
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuodong Wu
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wanlin Dai
- Innovation Institute of China Medical University, Shenyang, China
| | - Liwei Pang
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yaofeng Xie
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tengqi Ren
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaolin Zhang
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shiyuan Bi
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuting Zheng
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingnan Wang
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Sun
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhuyuan Zheng
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing Kong
- Biliary Surgery (2nd General) Unit, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Jing Kong,
| |
Collapse
|
35
|
Dat TTH, Oanh PTT, Cuong LCV, Anh LT, Minh LTH, Ha H, Lam LT, Cuong PV, Anh HLT. Pharmacological Properties, Volatile Organic Compounds, and Genome Sequences of Bacterial Endophytes from the Mangrove Plant Rhizophora apiculata Blume. Antibiotics (Basel) 2021; 10:antibiotics10121491. [PMID: 34943703 PMCID: PMC8698355 DOI: 10.3390/antibiotics10121491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022] Open
Abstract
Mangrove plant endophytic bacteria are prolific sources of bioactive secondary metabolites. In the present study, twenty-three endophytic bacteria were isolated from the fresh roots of the mangrove plant Rhizophora apiculata. The identification of isolates by 16S rRNA gene sequences revealed that the isolated endophytic bacteria belonged to nine genera, including Streptomyces, Bacillus, Pseudovibrio, Microbacterium, Brevibacterium, Microbulbifer, Micrococcus, Rossellomorea, and Paracoccus. The ethyl acetate extracts of the endophytic bacteria’s pharmacological properties were evaluated in vitro, including antimicrobial, antioxidant, α-amylase and α-glucosidase inhibitory, xanthine oxidase inhibitory, and cytotoxic activities. Gas chromatography–mass spectrometry (GC-MS) analyses of three high bioactive strains Bacillus sp. RAR_GA_16, Rossellomorea vietnamensis RAR_WA_32, and Bacillus sp. RAR_M1_44 identified major volatile organic compounds (VOCs) in their ethyl acetate extracts. Genome analyses identified biosynthesis gene clusters (BGCs) of secondary metabolites of the bacterial endophytes. The obtained results reveal that the endophytic bacteria from R. apiculata may be a potential source of pharmacological secondary metabolites, and further investigations of the high bioactive strains—such as fermentation and isolation of pure bioactive compounds, and heterologous expression of novel BGCs in appropriate expression hosts—may allow exploring and exploiting the promising bioactive compounds for future drug development.
Collapse
Affiliation(s)
- Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City 49117, Vietnam; (P.T.T.O.); (L.C.V.C.); (L.T.A.)
- Correspondence: (T.T.H.D.); (P.V.C.); (H.L.T.A.); Tel.: +84-949-492-778 (T.T.H.D.); +84-913-219-187 (P.V.C.); +84-948-151-838 (H.L.T.A.)
| | - Phung Thi Thuy Oanh
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City 49117, Vietnam; (P.T.T.O.); (L.C.V.C.); (L.T.A.)
| | - Le Canh Viet Cuong
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City 49117, Vietnam; (P.T.T.O.); (L.C.V.C.); (L.T.A.)
| | - Le Tuan Anh
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City 49117, Vietnam; (P.T.T.O.); (L.C.V.C.); (L.T.A.)
| | - Le Thi Hong Minh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam;
| | - Hoang Ha
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam; (H.H.); (L.T.L.)
| | - Le Tung Lam
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam; (H.H.); (L.T.L.)
| | - Pham Viet Cuong
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City 49117, Vietnam; (P.T.T.O.); (L.C.V.C.); (L.T.A.)
- Correspondence: (T.T.H.D.); (P.V.C.); (H.L.T.A.); Tel.: +84-949-492-778 (T.T.H.D.); +84-913-219-187 (P.V.C.); +84-948-151-838 (H.L.T.A.)
| | - Hoang Le Tuan Anh
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 10072, Vietnam
- Correspondence: (T.T.H.D.); (P.V.C.); (H.L.T.A.); Tel.: +84-949-492-778 (T.T.H.D.); +84-913-219-187 (P.V.C.); +84-948-151-838 (H.L.T.A.)
| |
Collapse
|
36
|
Luo Y, Wu W, Zha D, Zhou W, Wang C, Huang J, Chen S, Yu L, Li Y, Huang Q, Zhang J, Zhang C. Synthesis and biological evaluation of novel ligustrazine-chalcone derivatives as potential anti-triple negative breast cancer agents. Bioorg Med Chem Lett 2021; 47:128230. [PMID: 34186178 DOI: 10.1016/j.bmcl.2021.128230] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 01/04/2023]
Abstract
A series of novel ligustrazine-chalcone hybrids were synthesized and evaluated for their in vitro and in vivo antitumor activities. The results showed that most of these compounds exhibited significant in vitro cytotoxicity against MDA-MB-231, MCF-7, A549 and HepG2 cell lines with IC50 values as low as sub-micromole. Among them, compounds 6c and 6f possessed better comprehensive characteristics for the antiproliferation effects on both MDA-MB-231 (IC50: 6c, 1.60 ± 0.21 μM; 6f, 1.67 ± 1.25 μM) and MCF-7 (IC50: 6c, 1.41 ± 0.23 μM; 6f, 1.54 ± 0.30 μM). They also exhibited the potent colony-formation inhibitory abilities on above two cell lines in both concentration and time dependent manners, as well as the significantly suppression capabilities against the migration of such cell lines in a concentration dependent manner by wound-healing assay. Of note, compound 6c could significantly induce the apoptosis of MDA-MB-231 cells in a concentration dependent manner and inhibited the transformation of the growth cycle of MDA-MB-231 cells and blocked the cell growth cycle in G0/G1 phase. Moreover, the in vivo antiproliferation assay of compound 6c on TNBC model indicated such compound had a remarkable potency against tumor growth with a widely safety window. Further immunohistochemistry analysis illustrated that compound 6c was provided with a potent capacity to significantly reduce the Ki-67 positive rate in a dose dependent manner. All the results suggested that these hybrids presented both in vitro and in vivo proliferation inhibition potency against breast cancer and further development with good therapeutic potential should be of great interest.
Collapse
Affiliation(s)
- Yingqi Luo
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences, Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou Medical University, Guangzhou 511436, China; The State Key Laboratory of Respiratory Disease & NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, China
| | - Wenhao Wu
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences, Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou Medical University, Guangzhou 511436, China; The State Key Laboratory of Respiratory Disease & NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, China
| | - Dailong Zha
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences, Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou Medical University, Guangzhou 511436, China
| | - Wenmin Zhou
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences, Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou Medical University, Guangzhou 511436, China
| | - Chengxu Wang
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences, Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou Medical University, Guangzhou 511436, China
| | - Jianan Huang
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences, Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou Medical University, Guangzhou 511436, China
| | - Shaobin Chen
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences, Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou Medical University, Guangzhou 511436, China
| | - Lihong Yu
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences, Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou Medical University, Guangzhou 511436, China; The State Key Laboratory of Respiratory Disease & NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuanzhi Li
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences, Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou Medical University, Guangzhou 511436, China
| | - Qinghui Huang
- The First Affiliated Hospital, Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangdong 510180, China.
| | - Jianye Zhang
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences, Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou Medical University, Guangzhou 511436, China; The State Key Laboratory of Respiratory Disease & NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, China.
| | - Chao Zhang
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences, Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou Medical University, Guangzhou 511436, China; The State Key Laboratory of Respiratory Disease & NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
37
|
Klochkov S, Neganova M. Unique indolizidine alkaloid securinine is a promising scaffold for the development of neuroprotective and antitumor drugs. RSC Adv 2021; 11:19185-19195. [PMID: 35478659 PMCID: PMC9033663 DOI: 10.1039/d1ra02558a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/08/2021] [Indexed: 01/12/2023] Open
Abstract
Alkaloids, secondary plant metabolites, are used in traditional medicine in many countries to treat various pathological conditions. Securinine, a unique indolizidine alkaloid combining four cycles, "6-azobicyclo[3.2.1]octane" as a key structure fused with α,β-unsaturated-γ-lactone and piperidine ring, has a broad spectrum of actions including anti-inflammatory, antibacterial, neuroprotective and antitumor, and has been previously used in medical practice. It has several reactive centers, which are double bonds at positions 12-13 and 14-15, and this is a challenging scaffold for the synthesis of biologically active compounds. In this review, works on the production of modified securinine derivatives and their biological activity are addressed. Both monovalent and bivalent derivatives that are most promising in our opinion, and have potential for further research, are considered.
Collapse
Affiliation(s)
- Sergey Klochkov
- Institute of Physiologically Active Compounds Russian Academy of Sciences Chernogolovka Russia +7(496)-524-2650 +7(496)-524-2650
| | - Margarita Neganova
- Institute of Physiologically Active Compounds Russian Academy of Sciences Chernogolovka Russia +7(496)-524-2650 +7(496)-524-2650
| |
Collapse
|
38
|
Shi H, Luo Y, Li Y, Zhang F, Liu N. Tetramethylpyrazine supplementation improves performance, digestion, blood and immune state of broilers exposure to oxidative stress. J Anim Physiol Anim Nutr (Berl) 2021; 106:132-138. [PMID: 33964044 DOI: 10.1111/jpn.13566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
This study aimed to investigate the effect of dietary tetramethylpyrazine (TMP) on the growth performance, nutrient digestion, blood parameters and immunity of broilers under oxidative stress. Five treatments included negative control, positive control with lipopolysaccharide induction and TMP addition at 50, 100 and 150 mg/kg of diet using 600 male Arbor Acres broiler chicks. Results showed that during 1-14 days of age, body weight gain and feed efficiency in the positive control were worsened (p < .05) compared with the negative control, while with incremental TMP doses from 0 to 150 mg/kg there were linear and quadratic increases (p < .001) in body weight gain and a linear decrease in feed/gain (p = .001). During 12-14 days of age, with incremental TMP doses, crude protein digestibility was linearly increased (p = .001), and gross energy utilization was linearly and quadratically changed (p < .001). At 14 days of age, the TMP beneficially regulated digestive enzymes, blood parameters and immunoglobulins, showing linear and quadratic responses (p ≤ .008) on trypsin, lipase, glutamic pyruvic transaminase, glucose, lipoproteins, albumin, immunoglobulins (M, Y), interleukin 6 and interferon α, and only linear changes (p ≤ .030) on amylase, glutamic oxaloacetic transaminase, immunoglobulin A and interleukin 2. Most parameters in TMP groups reached to the levels of negative control and the effects of TMP at 100 or 150 mg/kg were more pronounced on body weight gain, crude protein digestibility, trypsin and glutamic pyruvic transaminase. It is concluded that TMP can be used as a feed additive capable of improving growth, blood parameter and immunity of broiler chicks under oxidative stress.
Collapse
Affiliation(s)
- Hanyi Shi
- Department of Animal Science, Henan University of Science and Technology, Luoyang, China.,Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Yiran Luo
- Department of Animal Science, Henan University of Science and Technology, Luoyang, China
| | - Yufa Li
- Bureau of Agriculture and Rural Affairs, Mianchi, China
| | - Feike Zhang
- Luoyang Xintai Agro-pastoral Technology Co., Ltd, Luoyang, China
| | - Ning Liu
- Department of Animal Science, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
39
|
Li G, Tan X, Zhang B, Guan L, Zhang Y, Yin L, Gao M, Zhu S, Xu L. Hengshun Aromatic Vinegar Improves Glycolipid Metabolism in Type 2 Diabetes Mellitus via Regulating PGC-1α/PGC-1β Pathway. Front Pharmacol 2021; 12:641829. [PMID: 33981226 PMCID: PMC8109051 DOI: 10.3389/fphar.2021.641829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
Hengshun aromatic vinegar (HSAV), produced by typical solid-state or liquid-state fermentation techniques, is consumed worldwide as a food condiment. HSAV shows multiple bioactivities, but its activity in type 2 diabetes mellitus (T2DM) and possible mechanisms have not been reported. In this study, the effects of HSAV against T2DM were evaluated in insulin-induced HepG2 cells and high-fat diet (HFD) and streptozotocin (STZ) induced T2DM rats. Then, the mechanisms of HSAV against T2DM were explored by Real-time PCR, Western blot, immunofluorescence assays, siRNA transfection and gene overexpression experiments. Results indicated that HSAV significantly improved glucose consumption and reduced triglycerides (TG) contents in metabolic disordered HepG2 cells. Meanwhile, HSAV obviously alleviated general status, liver and kidney functions of T2DM rats, and decreased hyperglycemia and hyperlipidemia, improved insulin resistance, and reduced lipid accumulation in liver. Mechanism studies indicated that HSAV markedly down-regulated the expression of proliferator-activated receptor γ coactivator-1α (PGC-1α), then regulated peroxisome proliferators-activated receptor α (PPAR-α)/protein kinase B (AKT) signal pathway mediated gluconeogenesis and glycogen synthesis. Meanwhile, HSAV significantly up-regulated proliferator-activated receptor γ coactivator-1β (PGC-1β), and subsequently decreased sterol regulatory element binding protein-1c (SREBP-1c) pathway mediated lipogenesis. In conclusion, HSAV showed potent anti-T2DM activity in ameliorating dysfunction of glycolipid metabolism through regulating PGC-1α/PGC-1β pathway, which has a certain application prospect as an effective diet supplement for T2DM therapy in the future.
Collapse
Affiliation(s)
- Guoquan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Jiangsu Hengshun Vinegar Industry Co., Ltd., Zhenjiang, China
| | - Xuemei Tan
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Bao Zhang
- Jiangsu Hengshun Vinegar Industry Co., Ltd., Zhenjiang, China
| | - Linshu Guan
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yidan Zhang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Meng Gao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Shenghu Zhu
- Jiangsu Hengshun Vinegar Industry Co., Ltd., Zhenjiang, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Dalian, China
| |
Collapse
|
40
|
Xie Q, Li H, Lu D, Yuan J, Ma R, Li J, Ren M, Li Y, Chen H, Wang J, Gong D. Neuroprotective Effect for Cerebral Ischemia by Natural Products: A Review. Front Pharmacol 2021; 12:607412. [PMID: 33967750 PMCID: PMC8102015 DOI: 10.3389/fphar.2021.607412] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Natural products have a significant role in the prevention of disease and boosting of health in humans and animals. Stroke is a disease with high prevalence and incidence, the pathogenesis is a complex cascade reaction. In recent years, it’s reported that a vast number of natural products have demonstrated beneficial effects on stroke worldwide. Natural products have been discovered to modulate activities with multiple targets and signaling pathways to exert neuroprotection via direct or indirect effects on enzymes, such as kinases, regulatory receptors, and proteins. This review provides a comprehensive summary of the established pharmacological effects and multiple target mechanisms of natural products for cerebral ischemic injury in vitro and in vivo preclinical models, and their potential neuro-therapeutic applications. In addition, the biological activity of natural products is closely related to their structure, and the structure-activity relationship of most natural products in neuroprotection is lacking, which should be further explored in future. Overall, we stress on natural products for their role in neuroprotection, and this wide band of pharmacological or biological activities has made them suitable candidates for the treatment of stroke.
Collapse
Affiliation(s)
- Qian Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Danni Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianmei Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinxiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mihong Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Daoyin Gong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
41
|
Huang H, Kong L, Luan S, Qi C, Wu F. Ligustrazine Suppresses Platelet-Derived Growth Factor-BB-Induced Pulmonary Artery Smooth Muscle Cell Proliferation and Inflammation by Regulating the PI3K/AKT Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:437-459. [PMID: 33622214 DOI: 10.1142/s0192415x21500208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a serious pulmonary vascular disease. Excessive proliferation of pulmonary artery smooth muscle cells (PASMCs) plays an important role in the course of this disease. Ligustrazine is an alkaloid monomer extracted from the rhizome of the herb Ligusticum chuanxiong. It is often used to treat cardiovascular diseases, but its effect on PAH has rarely been reported. This study aims to explore the protective effect and mechanism of ligustrazine on PAH. In the in vivo experiment, monocrotaline (MCT) was used to induce PAH in rats, and then ligustrazine (40, 80, 160 mg/kg/day) or sildenafil (25 mg/kg/day) was administered. Four weeks later, hemodynamic changes, right ventricular hypertrophy index, lung morphological characteristics, inflammatory factors, phosphoinositide 3-kinase (PI3K), and AKT expression were evaluated. In addition, primary rat PASMCs were extracted by the tissue adhesion method, a proliferation model was established with platelet-derived growth factor-BB (PDGF-BB), and the cells were treated with ligustrazine to investigate its effects on cell proliferation, inflammation, and cell cycle distribution. The results indicate that ligustrazine can markedly alleviate right ventricular systolic pressure, right ventricular hypertrophy, pulmonary vascular remodeling, and inflammation caused by MCT, and that it decreased PI3K and AKT phosphorylation expression. Moreover, ligustrazine can inhibit the proliferation and inflammation of PASMCs and arrest the progression of G0/G1 to S phase through the PI3K/AKT signaling pathway. Therefore, we conclude that ligustrazine may inhibit the proliferation and inflammation of PASMCs by regulating the activation of the PI3K/AKT signaling pathway, thereby attenuating MCT-induced PAH in rats. Collectively, these findings suggest that ligustrazine may be a promising therapeutic for PAH.
Collapse
Affiliation(s)
- Huiping Huang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, P. R. China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, P. R. China.,School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| | - Lingjin Kong
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, P. R. China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, P. R. China.,School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| | - Shaohua Luan
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, P. R. China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, P. R. China.,School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| | - Chuanzong Qi
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, P. R. China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, P. R. China.,School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| | - Fanrong Wu
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Hefei, P. R. China.,Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, P. R. China.,School of Pharmacy, Anhui Medical University, Hefei, P. R. China
| |
Collapse
|
42
|
Gao L, Wu T, Wang J, Xiao Z, Jia C, Wang W. The Clinical Efficacy of Phytochemical Medicines Containing Tanshinol and Ligustrazine in the Treatment of Stable Angina: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8616413. [PMID: 33623530 PMCID: PMC7875616 DOI: 10.1155/2021/8616413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/22/2020] [Accepted: 01/21/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Phytochemical medicines containing tanshinol and ligustrazine are commonly used in the treatment of stable angina in China, but their clinical effectiveness and risk have not been adequately assessed. In this paper, we conducted a systematic review and meta-analysis to evaluate the clinical efficacy. METHODS Relevant randomized controlled trials (RCTs) of phytochemical medicines containing tanshinol and ligustrazine in the treatment of stable angina were searched in electronic databases. The search date was up to March 31, 2020, and the languages of the RCTs were limited to English and Chinese. RESULTS A total of 28 studies, including 2518 patients, were included in the meta-analysis. It was shown that the adjunctive therapy of phytochemical medicines containing tanshinol and ligustrazine was better than the conventional therapies in the improvement of stable angina according to the clinical efficacy in symptoms (n = 2518, RR = 1.24, 95% CI: 1.20 to 1.29, P < 0.01) and clinical efficacy in electrocardiography (n = 1766, RR = 1.29, 95% CI: 1.19 to 1.40, P < 0.01). CONCLUSION The meta-analysis supported the use of phytochemical medicines containing tanshinol and ligustrazine in the treatment of stable angina. However, quality of the evidence for this finding was low due to a high risk of bias in the included studies. Therefore, well-designed RCTs are still needed to further evaluate the efficacy.
Collapse
Affiliation(s)
- Li Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- St Michael's Hospital, University of Toronto, Toronto, M5B 1W8, Canada
| | - Tong Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Juan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuoran Xiao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chunhua Jia
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
43
|
Man R, Yin H, Zhao J, Yang Q, Yang H, Yu X, Zhang W, Li J. A Newly-Synthesized Chalcone Derivative of Ligustrazine Induces Caspase-Dependent and Apoptosis-Inducing Factor-Dependent Apoptosis in Cochlear Hair Cells. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective: A newly synthesized derivative of ligustrazine chalcone, named as Z11, has shown a variety of promising biological activities. Here we aim to explore the effects of Z11 on the cochlear hair cells (HCs). Methods: Immunostaining and transmission electron microscopy
(TEM) were used to examine the survival of HCs and their morphological changes. Furthermore, apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and the mRNA expression of apoptosis related genes including Caspase-9, Caspase-3, Bcl-2, Bax and
Apaf1 were measured by RT-PCR. In addition, the protein expression of cleaved-Caspas-3 and cleaved-Caspase-9 were analyzed by Western blot respectively, and the protein expressionof AIF and cleaved-Caspase-3 were assessed by immunofluorescence as well. Results: Immunostaining showed
that Z11 was ototoxic to mouse cochlear hair cells and significantly triggered cell death in a concentration-, time- and location-dependent manner. TUNEL assays evidenced that Z11 exerts its cytotoxicity through induction of apoptosis of cochlear hair cells in vitro. Immunofluorescence
and western blot assay showed that Z11 activated the translation of apoptosis-inducing factor (AIF) and Caspase-9/Caspase-3 dependent apoptotic pathway in cochlear hair cells (HCs). Conclusion:These findings suggest that Z11 exhibits its ototoxicity through inducing apoptosis of HCs
via both Caspase-dependent and AIF translocation pathways in mouse cochlear cultures.
Collapse
Affiliation(s)
- Rongjun Man
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR. China
| | - Haiyan Yin
- Department of Histology and Embryology, College of Basic Medicine, Jining Medical University, Jining, Shandong, 272067, PR. China
| | - Jia Zhao
- Department of Otolaryngology-Head and Neck Surgery, Zibo Central Hospital, Zibo, Shandong, 255036, P.R. China
| | - Qianqian Yang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, P.R. China
| | - Huiming Yang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR. China
| | - Xiaoyu Yu
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, P. R. China
| | - Weiwei Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR. China
| | - Jianfeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR. China
| |
Collapse
|
44
|
Chang X, Zhao Z, Zhang W, Liu D, Ma C, Zhang T, Meng Q, Yan P, Zou L, Zhang M. Natural Antioxidants Improve the Vulnerability of Cardiomyocytes and Vascular Endothelial Cells under Stress Conditions: A Focus on Mitochondrial Quality Control. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6620677. [PMID: 33552385 PMCID: PMC7847351 DOI: 10.1155/2021/6620677] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/08/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease has become one of the main causes of human death. In addition, many cardiovascular diseases are accompanied by a series of irreversible damages that lead to organ and vascular complications. In recent years, the potential therapeutic strategy of natural antioxidants in the treatment of cardiovascular diseases through mitochondrial quality control has received extensive attention. Mitochondria are the main site of energy metabolism in eukaryotic cells, including myocardial and vascular endothelial cells. Mitochondrial quality control processes ensure normal activities of mitochondria and cells by maintaining stable mitochondrial quantity and quality, thus protecting myocardial and endothelial cells against stress. Various stresses can affect mitochondrial morphology and function. Natural antioxidants extracted from plants and natural medicines are becoming increasingly common in the clinical treatment of diseases, especially in the treatment of cardiovascular diseases. Natural antioxidants can effectively protect myocardial and endothelial cells from stress-induced injury by regulating mitochondrial quality control, and their safety and effectiveness have been preliminarily verified. This review summarises the damage mechanisms of various stresses in cardiomyocytes and vascular endothelial cells and the mechanisms of natural antioxidants in improving the vulnerability of these cell types to stress by regulating mitochondrial quality control. This review is aimed at paving the way for novel treatments for cardiovascular diseases and the development of natural antioxidant drugs.
Collapse
Affiliation(s)
- Xing Chang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, China
- Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Zhenyu Zhao
- Wangjing Hospital, China Academy of Chinese Medical Sciences, China
| | - Wenjin Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, China
- College of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Dong Liu
- China Academy of Chinese Medical Sciences, Institute of the History of Chinese Medicine and Medical Literature, Beijing, China
| | - Chunxia Ma
- Shandong Analysis and Test Centre, Qilu University of Technology, Jinan, China
| | - Tian Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qingyan Meng
- College of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Peizheng Yan
- College of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Longqiong Zou
- Chongqing Sanxia Yunhai Pharmaceutical Co., Ltd., Chongqing, China
| | - Ming Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, China
| |
Collapse
|
45
|
Li J, Liu H, Yang Z, Yu Q, Zhao L, Wang Y. Synergistic Effects of Cryptotanshinone and Senkyunolide I in Guanxinning Tablet Against Endogenous Thrombus Formation in Zebrafish. Front Pharmacol 2021; 11:622787. [PMID: 33519488 PMCID: PMC7841298 DOI: 10.3389/fphar.2020.622787] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022] Open
Abstract
Thrombosis is a key pathological event in cardiovascular diseases, and is also the most important targeting process for their clinical management. New drug development in thrombosis treatment is still in great demand. According to the traditional Chinese medicine (TCM) theory, thrombosis belongs to the syndrome of blood stasis. Salvia miltiorrhiza Bunge and Ligusticum striatum DC. are two common TCM herbs with long-term documented function in promoting blood circulation and inhibiting thrombosis, especially when used together. Guanxinning Tablet, a modern Chinese drug which contains extracts of the two herbs, also showed strong therapeutic effects in coronary heart disease. However, the pharmacological mechanism is still lacking for the compatibility of the two herbs. Here, through zebrafish-based in vivo fluorescence screening, we demonstrated the synergistic effects between S. miltiorrhiza Bunge and L. striatum DC. in regulating endogenous thrombosis. Moreover, combined with high-resolution mass spectrometry, the main compounds of the botanical drugs were analyzed and screened in our model system. Interestingly, cryptotanshinone and senkyunolide I, two representative compounds, respectively derived from the two herbs, also showed synergistic antithrombotic effects. Further analysis suggested that they may regulate thrombi formation at different levels via multiple signaling pathways, including oxidative stress, platelet activation and coagulation cascade. Taken together, our findings provided solid biological supports toward the drug compatibility theory of TCM, and suggested cryptotanshinone and senkyunolide I as promising drug candidates in thrombosis management.
Collapse
Affiliation(s)
- Jun Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hao Liu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhenzhong Yang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qingqing Yu
- The Department of Medicine, Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou, China
| | - Lu Zhao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin, China
| |
Collapse
|
46
|
2,3,5,6-Tetramethylpyrazine protects retinal photoreceptors against endoplasmic reticulum stress by modulating ATF4-mediated inhibition of PRP aggregation. J Mol Med (Berl) 2021; 99:383-402. [PMID: 33409554 DOI: 10.1007/s00109-020-02017-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 01/17/2023]
Abstract
Endoplasmic reticulum (ER) stress is a common threat to photoreceptors during the pathogenesis of chronic retinopathies and often results in irreversible visual impairment. 2,3,5,6-Tetramethylpyrazine (TMP), which possesses many beneficial pharmacological activities, is a potential drug that could be used to protect photoreceptors. In the present study, we found that the cellular growth rate of 661 W cells cultured under low glucose conditions was lower than that of control cells, while the G2/M phase of the cell cycle was longer. We further found that the mitochondrial membrane potential (ΔΨm) was lower and that ER stress factor expression was increased in 661 W cells cultured under low glucose conditions. TMP reversed these trends. Visual function and cell counts in the outer nuclear layer (ONL) were low and the TUNEL-positive rate in the ONL was high in a C3H mouse model of spontaneous retinal degeneration. Similarly, visual function was decreased, and the TUNEL-positive rate in the ONL was increased in fasted C57/BL6j mice compared with control mice. On the other hand, ER stress factor expression was found to be increased in the retinas of both mouse models, as shown by reverse transcription real-time PCR (RT-qPCR) and western blotting. TMP reversed the physiological and molecular biological variations observed in both mouse models, and ATF4 expression was enhanced again. Further investigation by using western blotting illustrated that the proportion of insoluble prion protein (PRP) versus soluble PRP was reduced both in vitro and in vivo. Taken together, these results suggest that TMP increased the functions of photoreceptors by alleviating ER stress in vitro and in vivo, and the intrinsic mechanism was the ATF4-mediated inhibition of PRP aggregation. TMP may potentially be used clinically as a therapeutic agent to attenuate the functional loss of photoreceptors during the pathogenesis of chronic retinopathies. KEY MESSAGES: • Already known: TMP is a beneficial drug mainly used in clinic to enhance organ functions, and the intrinsic mechanism is still worthy of exploring. • New in the study: We discovered that TMP ameliorated retinal photoreceptors function via ER stress alleviation, which was promoted by ATF4-mediated inhibition of PRP aggregation. • Application prospect: In prospective clinical practices, TMP may potentially be used in the clinic as a therapeutic agent to attenuate the photoreceptors functional reduction in chronic retinopathies.
Collapse
|
47
|
Sharma A, Wakode S, Fayaz F, Khasimbi S, Pottoo FH, Kaur A. An Overview of Piperazine Scaffold as Promising Nucleus for Different Therapeutic Targets. Curr Pharm Des 2020; 26:4373-4385. [DOI: 10.2174/1381612826666200417154810] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/10/2020] [Indexed: 11/22/2022]
Abstract
Piperazine scaffolds are a group of heterocyclic atoms having pharmacological values and showing
significant results in pharmaceutical chemistry. Piperazine has a flexible core structure for the design and synthesis
of new bioactive compounds. These flexible heterogenous compounds exhibit various biological roles, primarily
anticancer, antioxidant, cognition enhancers, antimicrobial, antibacterial, antiviral, antifungal, antiinflammatory,
anti-HIV-1 inhibitors, antidiabetic, antimalarial, antidepressant, antianxiety and anticonvulsant
activities, etc. In the past few years, researchers focused on the therapeutic profile of piperazine synthons for
different biological targets. The present review highlights the development in designing pharmacological activities
of nitrogen-containing piperazine moiety as a therapeutic agent. The extensive popularity of piperazine as a
drug of abuse and their vast heterogeneity research efforts over the last years motivated the new investigators to
further explore this area.
Collapse
Affiliation(s)
- Anjali Sharma
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi-110017, India
| | - Sharad Wakode
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi-110017, India
| | - Faizana Fayaz
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi-110017, India
| | - Shaik Khasimbi
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-3, MB Road, Pushp Vihar, New Delhi-110017, India
| | - Faheem H. Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. BOX 1982, Dammam 31441, Saudi Arabia
| | - Avneet Kaur
- SGT college of Pharmacy, SGT University, Gurugram, Haryana- 122001, India
| |
Collapse
|
48
|
A Novel Co-Crystal of Bexarotene and Ligustrazine Improves Pharmacokinetics and Tissue Distribution of Bexarotene in SD Rats. Pharmaceutics 2020; 12:pharmaceutics12100906. [PMID: 32977470 PMCID: PMC7598278 DOI: 10.3390/pharmaceutics12100906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
Bexarotene (BEX), a specific retinoic acid X receptor (RXR) agonist granted by Food and Drug Administration (FDA) approval for the clinical treatment of T cell lymphoma, has now been found to exert pharmacological effects in the nervous system, with low bioavailability and poor cerebral distribution limiting its application in treatment on neurological disorders. Pharmaceutical co-crystal was a helpful method to improve the bioavailability and tissue distribution of active pharmaceutical ingredients (APIs). Here, 2bexarotene-ligustrazine (2BEX-LIG), a novel co-crystal system of BEX and ligustrazine (LIG) of which with BEX is an API, was constructed with satisfactory stability and enhanced solubility. The pharmacokinetics characteristics of BEX were detected, and the results showed that the absolute bioavailability and the cerebral concentration of BEX in rats administrated with 2BEX-LIG were enhanced from 22.89% to 42.86% and increased by 3.4-fold, respectively, compared with those in rats administrated an equivalent of BEX. Hence, our present study indicated that the novel co-crystal of 2BEX-LIG contributed to improving BEX oral bioavailability and cerebral distribution, thereby providing significant advantages for clinical application of brain tumors and other neurological diseases.
Collapse
|
49
|
Silva RC, Villela LF, Brocksom TJ, de Oliveira KT. Direct C-H photoarylation of diazines using aryldiazonium salts and visible-light. RSC Adv 2020; 10:31115-31122. [PMID: 35520669 PMCID: PMC9056432 DOI: 10.1039/d0ra06876d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022] Open
Abstract
In this study, direct C–H photoarylation of pyrazine with aryldiazonium salts under visible-light irradiation (blue-LEDs) is described, and additional examples including photoarylations of pyrimidine and pyridazine are also covered. The corresponding aryl-diazines were prepared in yields up to 84% only by mixing and irradiating the reaction with no need for an additional photocatalyst. We demonstrate the efficacy of this protocol by the scope with electron-donor, -neutral, and -withdrawing groups attached at the ortho, meta, and para positions of the aryldiazonium salts; the results are better than those reported for ruthenium-complex mediated photoarylations. Additionally, we demonstrate the robustness of this methodology with a 5 mmol scaled-up experiment. Mechanistic studies were carried out giving support to the proposal of a photocatalyzed approach by an electron donor–acceptor (EDA) complex, also highlighting the crucial role that solvents play in the formation of the EDA complex. An electron donor–acceptor (EDA) approach for the direct C–H photoarylation of diazines using aryldiazonium salts and visible-light is described.![]()
Collapse
Affiliation(s)
- Rodrigo C Silva
- Departamento de Química, Universidade Federal de São Carlos São Carlos SP 13565-905 Brazil
| | - Lucas F Villela
- Departamento de Química, Universidade Federal de São Carlos São Carlos SP 13565-905 Brazil
| | - Timothy J Brocksom
- Departamento de Química, Universidade Federal de São Carlos São Carlos SP 13565-905 Brazil
| | - Kleber T de Oliveira
- Departamento de Química, Universidade Federal de São Carlos São Carlos SP 13565-905 Brazil
| |
Collapse
|
50
|
Lu Y, Yang J, Wang X, Ma Z, Li S, Liu Z, Fan X. Research progress in use of traditional Chinese medicine for treatment of spinal cord injury. Biomed Pharmacother 2020; 127:110136. [PMID: 32335299 DOI: 10.1016/j.biopha.2020.110136] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/17/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a serious central nervous system disorder caused by trauma that has gradually become a major challenge in clinical medical research. As an important branch of worldwide medical research, traditional Chinese medicine (TCM) is rapidly moving towards a path of reform and innovation. Therefore, this paper systematically reviews research related to existing TCM treatments for SCI, with the aims of identifying deficits and shortcomings within the field, and proposing feasible alternative prospects. METHODS All data and conclusions in this paper were obtained from articles published by peers in relevant fields. PubMed, SciFinder, Google Scholar, Web of Science, and CNKI databases were searched for relevant articles. Results regarding TCM for SCI were identified and retrieved, then manually classified and selected for inclusion in this review. RESULTS The literature search identified a total of 652 articles regarding TCM for SCI. Twenty-eight treatments (16 active ingredients, nine herbs, and three compound prescriptions) were selected from these articles; the treatments have been used for the prevention and treatment of SCI. In general, these treatments involved antioxidative, anti-inflammatory, neuroprotective, and/or antiapoptotic effects of TCM compounds. CONCLUSIONS This paper showed that TCM treatments can serve as promising auxiliary therapies for functional recovery of patients with SCI. These findings will contribute to the development of diversified treatments for SCI.
Collapse
Affiliation(s)
- Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingjing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xuexi Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Sheng Li
- Lanzhou First People's Hospital, Lanzhou, Gansu 730000, China
| | - Zhaoyang Liu
- Department of Medical Imaging, Shanxi Medical University, Jinzhong, Shanxi 030600, China
| | - Xuegong Fan
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|