1
|
Zhang Z, Zhang SL, Wu C, Li HH, Zha L, Shi J, Liu X, Qin HL, Tang W. Sulfur-fluoride exchange (SuFEx)-enabled lead discovery of AChE inhibitors by fragment linking strategies. Eur J Med Chem 2023; 257:115502. [PMID: 37224761 DOI: 10.1016/j.ejmech.2023.115502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
SuFEx click chemistry has been a method for the rapid synthesis of functional molecules with desirable properties. Here, we demonstrated a workflow that allows for in situ synthesis of sulfonamide inhibitors based on SuFEx reaction for high-throughput testing of their cholinesterase activity. According to fragment-based drug discovery (FBDD), sulfonyl fluorides [R-SO2F] with moderate activity were identified as fragment hits, rapidly diversified into 102 analogs in SuFEx reactions, and the sulfonamides were directly screened to yield drug-like inhibitors with 70-fold higher potency (IC50 = 94 nM). Moreover, the improved molecule J8-A34 can ameliorate cognitive function in Aβ1-42-induced mouse model. Since this SuFEx linkage reaction succeeds on picomole scale for direct screening, this methodology can accelerate the development of robust biological probes and drug candidates.
Collapse
Affiliation(s)
- Ziwen Zhang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, China
| | - Shi-Long Zhang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, China
| | - Chengyao Wu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, China
| | - Huan-Huan Li
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, China
| | - Liang Zha
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, China
| | - Jingbo Shi
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, China
| | - Xinhua Liu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, China.
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China.
| | - Wenjian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
2
|
Liu T, Chen S, Du J, Xing S, Li R, Li Z. Design, synthesis, and biological evaluation of novel (4-(1,2,4-oxadiazol-5-yl)phenyl)-2-aminoacetamide derivatives as multifunctional agents for the treatment of Alzheimer's disease. Eur J Med Chem 2022; 227:113973. [PMID: 34752955 DOI: 10.1016/j.ejmech.2021.113973] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
On the basis of our previous work, a novel series of (4-(1,2,4-oxadiazol-5-yl)phenyl)-2-aminoacetamide derivatives were synthesized and evaluated as multifunctional ligands for the treatment of Alzheimer's disease (AD). Biological evaluations indicated that the derivatives can be used as anti-AD drugs that have multifunctional properties, inhibit the activity of butyrylcholinesterase (BuChE), inhibit neuroinflammation, have neuroprotective properties, and inhibit the self-aggregation of Aβ. Compound f9 showed good potency in BuChE inhibition (IC50: 1.28 ± 0.18 μM), anti-neuroinflammatory potency (NO, IL-1β, TNF-α; IC50: 0.67 ± 0.14, 1.61 ± 0.21, 4.15 ± 0.44 μM, respectively), and inhibited of Aβ self-aggregation (51.91 ± 3.90%). Preliminary anti-inflammatory mechanism studies indicated that the representative compound f9 blocked the activation of the NF-κB signaling pathway. Moreover, f9 exhibited 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging effect, and an inhibitory effect on the production of intracellular reactive oxygen species (ROS). In the bi-directional transport assay, f9 displayed proper blood-brain barrier (BBB) permeability. In addition, the title compound improved memory and cognitive functions in a mouse model induced by scopolamine. Hence, the compound f9 can be considered as a promising lead compound for further investigation in the treatment of AD.
Collapse
Affiliation(s)
- Tongtong Liu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Shiming Chen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Jiyu Du
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Siqi Xing
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Rong Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| | - Zeng Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
3
|
Wu C, Zhang G, Zhang ZW, Jiang X, Zhang Z, Li H, Qin HL, Tang W. Structure-activity relationship, in vitro and in vivo evaluation of novel dienyl sulphonyl fluorides as selective BuChE inhibitors for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2021; 36:1860-1873. [PMID: 34425715 PMCID: PMC8386747 DOI: 10.1080/14756366.2021.1959571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/26/2021] [Accepted: 07/19/2021] [Indexed: 01/08/2023] Open
Abstract
To discover novel scaffolds as leads against dementia, a series of δ-aryl-1,3-dienesulfonyl fluorides with α-halo, α-aryl and α-alkynyl were assayed for ChE inhibitory activity, in which compound A10 was identified as a selective BuChE inhibitor (IC50 = 0.021 μM for eqBChE, 3.62 μM for hBuChE). SAR of BuChE inhibition showed: (i) o- > m- > p-; -OCH3 > -CH3 > -Cl (-Br) for δ-aryl; (ii) α-Br > α-Cl, α-I. Compound A10 exhibited neuroprotective, BBB penetration, mixed competitive inhibitory effect on BuChE (Ki = 29 nM), and benign neural and hepatic safety. Treatment with A10 could almost entirely recover the Aβ1-42-induced cognitive dysfunction to the normal level, and the assessment of total amount of Aβ1-42 confirmed its anti-amyloidogenic profile. Therefore, the potential BuChE inhibitor A10 is a promising effective lead for the treatment of AD.
Collapse
Affiliation(s)
- Chengyao Wu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Guijuan Zhang
- Management Center of Anhui Continuing Education Network Park, Anhui Open University, Hefei, China
| | - Zai-Wei Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Xia Jiang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Ziwen Zhang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Huanhuan Li
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Wenjian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Stefaniak M, Olszewska B. 1,5-Benzoxazepines as a unique and potent scaffold for activity drugs: A review. Arch Pharm (Weinheim) 2021; 354:e2100224. [PMID: 34368985 DOI: 10.1002/ardp.202100224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 11/09/2022]
Abstract
Benzoxazepines constitute a huge number of organic compounds widely described in the literature. Many of them are distinguished by their biological properties. Among them, our attention was drawn to 1,5-benzoxazepine derivatives due to their interesting pharmacological properties. As is reported in the literature, these compounds are not only good building blocks in organic synthesis but also have interesting biological and pharmacological properties. This article is the first review publication to describe the synthesis methods and unique properties of 1,5-benzoxazepines. Literature reports widely describe the biological properties of 1,5-benzoxazepine, like anticancer, antibacterial, or antifungal activities. 1,5-Benzoxazepine derivatives can also interact with G-protein-coupled receptors and could be incorporated into new potential drugs, among others, in treating neuronal disorders like Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Monika Stefaniak
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, Łódź, Poland
| | - Beata Olszewska
- Department of Synthesis and Technology of Drugs, Medical University of Lodz, Łódź, Poland
| |
Collapse
|
5
|
Wang M, Fang L, Liu T, Chen X, Zheng Y, Zhang Y, Chen S, Li Z. Discovery of 7-O-1, 2, 3-triazole hesperetin derivatives as multi-target-directed ligands against Alzheimer's disease. Chem Biol Interact 2021; 342:109489. [PMID: 33905740 DOI: 10.1016/j.cbi.2021.109489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
The development of multi-target-directed ligands (MTDLs) may improve complex central nervous system diseases such as Alzheimer's disease (AD). Here, a series of 7-O-1, 2, 3-triazole hesperetin derivatives was evaluated for their inhibition of cholinesterase, anti-neuroinflammatory, and neuroprotective activity. Among the hesperetin derivatives, compound a8 (7-O-((1-(3-chlorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)hesperetin) possessed excellent anti-butyrylcholinesterase activity (IC50 = 3.08 ± 0.29 μM) and exhibited good anti-neuroinflammatory activity (IC50 = 2.91 ± 0.47 μM) against NO production through remarkably blocking the NF-κB signaling pathway and inhibiting the phosphorylation of P65. In addition, a8 showed a remarkable neuroprotective effect and lacked neurotoxicity up to 50 μM concentration. Furthermore, possessing significant self-mediated Aβ1-42 aggregation inhibitory activity, chelated biometals and reduced ROS production were found in compound a8. In the bi-directional transport assay, a8 exhibited a blood-brain barrier penetrating ability. In this study, the Morris water maze task showed that compound a8 significantly improved the learning and memory impairment of the scopolamine-induced AD mice model. Results highlighted the potential of compound a8 to be a potential MTDL for the development of anti-AD agents.
Collapse
Affiliation(s)
- Min Wang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Longji Fang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Tongtong Liu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Xuejie Chen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Yan Zheng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Yilong Zhang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Shiming Chen
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Zeng Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
6
|
Zhang H, Wu C, Chen X, Zhang Z, Jiang X, Qin HL, Tang W. Novel pyridine-containing sultones: Structure-activity relationship and biological evaluation as selective AChE inhibitors for the treatment of Alzheimer's disease. ChemMedChem 2021; 16:3189-3200. [PMID: 34036731 DOI: 10.1002/cmdc.202100272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/19/2021] [Indexed: 11/12/2022]
Abstract
Novel pyridine-containing sultones were synthesized and evaluated for their cholinesterase (ChE) inhibitory activity. Most of compounds showed selective acetylcholinesterase (AChE) inhibitory activity. The structure-activity relationship (SAR) showed: (i) the fused pyridine-containing sultones increase AChE inhibition, series B>series A; (ii) for series A, the effect of the 4-substituent on AChE activity, p->m- or o-; (iii) for series B, a halophenyl group increase activity. Compound B4 (4-(4-chlorophenyl)-2,2-dioxide-3,4,5,6-tetrahydro-1,2-oxathiino[5,6-h]quinoline) was identified as a selective AChE inhibitor (IC50 =8.93 μM), and molecular docking studies revealed a good fit into TcAChE via hydrogen interactions between the δ-pyridylsultone scaffold with Asp72, Ser122, Phe288, Phe290 and Trp84. Compound B4 showed reversible and non-competitive (Ki =7.67 μM) AChE inhibition, nontoxicity and neuroprotective activity. In vivo studies confirmed that compound B4 could ameliorate the cognitive performance of scopolamine-treated C57BL/6 J mice, suggesting a significant benefit of AChE inhibition for a disease-modifying treatment of AD.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Pharmacy, Fuyang People's Hospital of AHMU, Anhui Medical University, Fuyang, 236000, China
| | - Chengyao Wu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xing Chen
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Ziwen Zhang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xia Jiang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
7
|
Xu Y, Zhang Z, Shi J, Liu X, Tang W. Recent developments of synthesis and biological activity of sultone scaffolds in medicinal chemistry. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
8
|
Wu M, Zhu X, Zhang Y, Wang M, Liu T, Han J, Li J, Li Z. Biological evaluation of 7-O-amide hesperetin derivatives as multitarget-directed ligands for the treatment of Alzheimer's disease. Chem Biol Interact 2020; 334:109350. [PMID: 33307048 DOI: 10.1016/j.cbi.2020.109350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 02/08/2023]
Abstract
A series of 7-O-amide hesperetin derivatives were subjected to multi-target biological evaluation of anti-Alzheimer's disease. Most of the compounds showed good in vitro inhibitory activity against cholinesterase, of which compound 7c (7-O-(4-(morpholinoethyl)-acetamide) hesperetin) was the most effective anti-eqBuChE derivative (IC50 = 0.28 ± 0.05 μM) and exerted neuroprotective effects. Further biological evaluation found that compounds 4d, 4e and 7c showed strong antioxidant, anti-Aβ self-aggregation and anti-neuroinflammatory activities. Compound 7c could inhibit the expression of iNOS and COX-2 proteins and prevent LPS-induced inflammatory response in BV2 cells. In addition, compound 7c could chelate biometal ions such as Cu2+ and Zn2+. In the vivo study, the MWM test confirmed that compound 7c could improve the cognitive impairment caused by scopolamine. In summary, the above studies have shown that the optimized compound 7c has great development potential as MTDL for the treatment of AD.
Collapse
Affiliation(s)
- Mingfei Wu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Xingxing Zhu
- The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yilong Zhang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Min Wang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Tongtong Liu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Jianfei Han
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| | - Zeng Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
9
|
Wu M, Han J, Liu Z, Zhang Y, Huang C, Li J, Li Z. Identification of novel CDK 9 inhibitors based on virtual screening, molecular dynamics simulation, and biological evaluation. Life Sci 2020; 258:118228. [PMID: 32781071 DOI: 10.1016/j.lfs.2020.118228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 11/24/2022]
Abstract
AIMS Cyclin-dependent kinase 9 (CDK9) is a member of the CDK subfamily and plays a major role in the regulation of transcriptional elongation. It has attracted widespread attention as a therapeutic target for cancer. Here, we aimed to explore novel CDK 9 inhibitors by using a hybrid virtual screening strategy. MAIN METHODS A hybrid virtual screening strategy was constructed with computer-aided drug design (CADD). First, compounds were filtered in accordance with Lipinski's rule of five and adsorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. Second, a 3D-QSAR pharmacophore model was built and used as a 3D query to screen the obtained hit compounds. Third, the hit compounds were subjected to molecular docking studies. Fourth, molecular dynamics (MD) simulations were performed on CDK9 in complex with the final hits to examine the structural stability. Finally, CDK9 kinase biochemical assay was performed to identify the biological activity of the hit compounds. KEY FINDINGS Seven hit compounds were screened out. These hit compounds showed drug-like properties in accordance with Lipinski's rule of five and ADMET. Complexes involving the six hit compounds bound to CDK9 exhibited good structural stability in the MD simulation. Furthermore, these six hit compounds had strong inhibitory activity against CDK9 kinase. In particular, hit 3 showed the most promising activity with the percentage of 71%. SIGNIFICANCE The six hit compounds may be promising novel CDK9 inhibitors, and the hybrid virtual screening strategy designed in this study provides an important reference for the design and synthesis of novel CDK9 inhibitors.
Collapse
Affiliation(s)
- Mingfei Wu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The key laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Jianfei Han
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The key laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Zhicheng Liu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The key laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Yilong Zhang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The key laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The key laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The key laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China.
| | - Zeng Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, The key laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
10
|
The structure-based optimization of δ-sultone-fused pyrazoles as selective BuChE inhibitors. Eur J Med Chem 2020; 201:112273. [DOI: 10.1016/j.ejmech.2020.112273] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 11/23/2022]
|
11
|
Azimi S, Firuzi O, Iraji A, Zonouzi A, Khoshneviszadeh M, Mahdavi M, Edraki N. Synthesis and In Vitro Biological Activity Evaluation of Novel Imidazo [2,1-B][1,3,4] Thiadiazole as Anti-Alzheimer Agents. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180816666181108115510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background: Considering that AD is multifactorial in nature, novel series of imidazo
[2,1-b][1,3,4] thiadiazole derivatives were designed to address the basic factors responsible for the
disease.
<p>
Methods: These compounds were investigated as inhibitors of beta-site APP cleaving enzyme 1,
acetylcholinesterase and butyryl cholinesterase.
<p>
Results: The BACE1 inhibitory results indicated that nitro phenyl substituted derivatives of imidazo
[2,1-b][1,3,4] thiadiazole scaffold (R2 = m-NO2) demonstrated superior BACE1 inhibitory activity
compared to other substituted moieties. In the BuChE assay, compounds 4h and 4l carrying meta
NO2 at R2 of phenyl ring turned out to be potent inhibitors.
<p>
Conclusion: In conclusion, these novel synthesized derivatives seem to be promising anti-Alzheimer
agents.
Collapse
Affiliation(s)
- Sara Azimi
- School of Chemistry, University College of Science, University of Tehran, Tehran, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsaneh Zonouzi
- School of Chemistry, University College of Science, University of Tehran, Tehran, Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Xu Y, Zhang Z, Jiang X, Chen X, Wang Z, Alsulami H, Qin HL, Tang W. Discovery of δ-sultone-fused pyrazoles for treating Alzheimer's disease: Design, synthesis, biological evaluation and SAR studies. Eur J Med Chem 2019; 181:111598. [DOI: 10.1016/j.ejmech.2019.111598] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
|
13
|
Sang Z, Wang K, Zhang P, Shi J, Liu W, Tan Z. Design, synthesis, in-silico and biological evaluation of novel chalcone derivatives as multi-function agents for the treatment of Alzheimer's disease. Eur J Med Chem 2019; 180:238-252. [DOI: 10.1016/j.ejmech.2019.07.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 12/12/2022]
|
14
|
Sarkar D, Sahoo SR. Monohydrochloride Assisted Synthesis of Functionalized Isoxazoles and Pyrazoles from Allenic Ketones: First Synthesis of (Z
)-2-Methyl-7H-benzo[b]pyrazolo[5,1-d][1,5]oxazocines. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Debayan Sarkar
- Organic Synthesis and Molecular Engineering Laboratory; National Institute Of Technology; Department of Chemistry; Rourkela Odisha Pin-769008 India
| | - Sushree Ranjan Sahoo
- Organic Synthesis and Molecular Engineering Laboratory; National Institute Of Technology; Department of Chemistry; Rourkela Odisha Pin-769008 India
| |
Collapse
|
15
|
Jing L, Wu G, Kang D, Zhou Z, Song Y, Liu X, Zhan P. Contemporary medicinal-chemistry strategies for the discovery of selective butyrylcholinesterase inhibitors. Drug Discov Today 2018; 24:629-635. [PMID: 30503804 DOI: 10.1016/j.drudis.2018.11.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/25/2018] [Accepted: 11/15/2018] [Indexed: 01/02/2023]
Abstract
Butyrylcholinesterase (BChE) is considered a promising drug target for the treatment of moderate to severe Alzheimer's disease (AD). Here, we review medicinal-chemistry strategies that are currently available for the discovery of selective BChE inhibitors.
Collapse
Affiliation(s)
- Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong 250012, PR China
| | - Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong 250012, PR China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong 250012, PR China
| | - Zhongxia Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong 250012, PR China
| | - Yuning Song
- Department of Clinical Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong 250012, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Ji'nan, Shandong 250012, PR China.
| |
Collapse
|
16
|
Qiu GL, He SS, Chen SC, Li B, Wu HH, Zhang J, Tang WJ. Design, synthesis and biological evaluation of tricyclic pyrazolo[1,5-c][1,3]benzoxazin-5(5H)-one scaffolds as selective BuChE inhibitors. J Enzyme Inhib Med Chem 2018; 33:1506-1515. [PMID: 30284486 PMCID: PMC6179045 DOI: 10.1080/14756366.2018.1488696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Based on the structural analysis of tricyclic scaffolds as butyrylcholinesterase (BuChE) inhibitors, a series of pyrazolo[1,5-c][1,3]benzoxazin-5(5H)-one derivatives were designed, synthesized and evaluated for their acetylcholinesterase (AChE) and BuChE inhibitory activity. Compounds with 5-carbonyl and 7- or/and 9-halogen substitutions showed potential BuChE inhibitory activity, among which compounds 6a, 6c and 6g showed the best BuChE inhibition (IC50 = 1.06, 1.63 and 1.63 µM, respectively). The structure–activity relationship showed that the 5-carbonyl and halogen substituents significantly influenced BuChE activity. Compounds 6a and 6g were found nontoxic, lipophilic and exhibited remarkable neuroprotective activity and mixed-type inhibition against BuChE (Ki = 7.46 and 3.09 µM, respectively). Docking studies revealed that compound 6a can be accommodated into BuChE via five hydrogen bonds, one Pi–Sigma interaction and three Pi–Alkyl interactions.
Collapse
Affiliation(s)
- Guo-Liang Qiu
- a School of Pharmacy , Anhui Medical University , Hefei , PR China
| | - Shao-Sheng He
- a School of Pharmacy , Anhui Medical University , Hefei , PR China.,b Lujiang County People's Hospital , Lujiang , Anhui , PR China
| | - Shi-Chao Chen
- a School of Pharmacy , Anhui Medical University , Hefei , PR China
| | - Bo Li
- a School of Pharmacy , Anhui Medical University , Hefei , PR China
| | - Hui-Hui Wu
- c Anhui Prevention and Treatment Center for Occupational Disease , Hefei , PR China
| | - Jing Zhang
- c Anhui Prevention and Treatment Center for Occupational Disease , Hefei , PR China
| | - Wen-Jian Tang
- a School of Pharmacy , Anhui Medical University , Hefei , PR China
| |
Collapse
|