1
|
Karipcin F, Öztoprak UT, Dede B, Şahin S, Özmen İ. Synthesis and DFT calculations of metal(II) oxime complexes bearing cysteine as coligand and investigation of their biological evolutions in vitro and in silico. J Biomol Struct Dyn 2025; 43:399-418. [PMID: 37968962 DOI: 10.1080/07391102.2023.2281638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/04/2023] [Indexed: 11/17/2023]
Abstract
New complexes with the formula of [ML(Cys)(H2O)2] were obtained as a result of the reaction between the oxime ligand [HL: 4-(4-bromophenylaminoisonitrosoacetyl)biphenyl], cysteine (Cys), and the metal(II) salts (Mn, Ni, Co, Zn, Cu). The newly synthesized compounds were characterized using conventional techniques such as molar conductance, magnetic measurements, elemental analysis, infrared spectroscopy, and thermal analysis (TGA/DTA). Based on the conductivity measurements in DMF, it was determined that the complexes were non-electrolytes. The TGA/DTA analysis was performed to examine the thermal stability and degradation behavior of all samples, and results demonstrated that metal oxides or sulfides formed as a result of the decompositions. In conjunction with other data obtained, the elemental analysis confirmed the octahedral coordination of the complexes with deprotonated oxime (O, O-donor) and amino acid (N, S-donor) ligands and two coordinated waters. The compounds' optimized geometries, molecular electrostatic potential diagrams, and frontier molecular orbitals were computed at the DFT/B3LYP level using the 6-311 G(d,p) and LANL2DZ basis sets. The antibacterial and DNA cleavage activities of all synthesized compounds were also screened, and molecular docking simulations were performed. According to the results of molecular docking studies conducted with three different proteins, the best interaction was found to be between HL-1HNJ with a binding energy of -9.5 kcal/mol. The stability of the HL-1HNJ complex was also verified by a molecular dynamics simulation performed for 50 ns.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatma Karipcin
- Department of Chemistry, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
| | | | - Bülent Dede
- Department of Chemistry, Süleyman Demirel University, Isparta, Turkey
| | - Selmihan Şahin
- Department of Chemistry, Süleyman Demirel University, Isparta, Turkey
| | - İsmail Özmen
- Department of Chemistry, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
2
|
Qing J, Peng C, Chen H, Li H, Liu X. Small molecule linoleic acid inhibiting whey syneresis via interact with milk proteins in the fermentation of set yogurt fortified with c9,t11-conjugated linoleic acid. Food Chem 2023; 429:136849. [PMID: 37481983 DOI: 10.1016/j.foodchem.2023.136849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/21/2023] [Accepted: 07/08/2023] [Indexed: 07/25/2023]
Abstract
The study aimed to investigate the impact of fermentation conditions on c9,t11-conjugated linoleic acid (CLA) synthesis by Lactobacillus casei, as well as its effects on whey syneresis, water holding capacity (WHC), and texture characteristics of set yogurt. The amount of whey syneresis decreased about 30% with the adding of 0.1% linoleic acid (LA). The interaction between LA and casein (CS), β-lactoglobulin (β-Lg) and bovine serum albumin (BSA) was observed by UV-Vis absorption spectroscopy, 3D fluorescence spectroscopy and CD spectroscopy. It found that LA changed the microenvironment and polarity around amino acids, as well as the conformation of the three milk proteins. Scanning electron microscope (SEM) analysis revealed that the addition of LA resulted in a more uniform and compact microstructure of the set yogurt. It indicates that LA can promote the crosslink of milk proteins, which may be the reason for the reduction of whey syneresis in set yogurt.
Collapse
Affiliation(s)
- Junjun Qing
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Cheng Peng
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Hongbing Chen
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China; International Institute of Food Innovation, Nanchang University, Nanchang, China
| | - Haixing Li
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China; International Institute of Food Innovation, Nanchang University, Nanchang, China
| | - Xiaohua Liu
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China; International Institute of Food Innovation, Nanchang University, Nanchang, China.
| |
Collapse
|
3
|
Zhang Y, Bhasme P, Reddy DS, Liu D, Yu Z, Zhao T, Zheng Y, Kumar A, Yu H, Ma LZ. Dual functions: A coumarin-chalcone conjugate inhibits cyclic-di-GMP and quorum-sensing signaling to reduce biofilm formation and virulence of pathogens. MLIFE 2023; 2:283-294. [PMID: 38817812 PMCID: PMC10989777 DOI: 10.1002/mlf2.12087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 06/01/2024]
Abstract
Antibiotic resistance or tolerance of pathogens is one of the most serious global public health threats. Bacteria in biofilms show extreme tolerance to almost all antibiotic classes. Thus, use of antibiofilm drugs without bacterial-killing effects is one of the strategies to combat antibiotic tolerance. In this study, we discovered a coumarin-chalcone conjugate C9, which can inhibit the biofilm formation of three common pathogens that cause nosocomial infections, namely, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli, with the best antibiofilm activity against P. aeruginosa. Further investigations indicate that C9 decreases the synthesis of the key biofilm matrix exopolysaccharide Psl and bacterial second messenger cyclic-di-GMP. Meanwhile, C9 can interfere with the regulation of the quorum sensing (QS) system to reduce the virulence of P. aeruginosa. C9 treatment enhances the sensitivity of biofilm to several antibiotics and reduces the survival rate of P. aeruginosa under starvation or oxidative stress conditions, indicating its excellent potential for use as an antibiofilm-forming and anti-QS drug.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Pramod Bhasme
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Dinesh S. Reddy
- Centre for Nano and Material SciencesJain UniversityBangaloreKarnatakaIndia
| | - Dejian Liu
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhaoxiao Yu
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Tianhu Zhao
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Yaqian Zheng
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Amit Kumar
- Centre for Nano and Material SciencesJain UniversityBangaloreKarnatakaIndia
| | - Haiying Yu
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Luyan Z. Ma
- State Key Laboratory of Microbial Resources, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
4
|
Kosmalski T, Kupczyk D, Baumgart S, Paprocka R, Studzińska R. A Review of Biologically Active Oxime Ethers. Molecules 2023; 28:5041. [PMID: 37446703 DOI: 10.3390/molecules28135041] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Oxime ethers are a class of compounds containing the >C=N-O-R moiety. The presence of this moiety affects the biological activity of the compounds. In this review, the structures of oxime ethers with specific biological activity have been collected and presented, and bactericidal, fungicidal, antidepressant, anticancer and herbicidal activities, among others, are described. The review includes both those substances that are currently used as drugs (e.g., fluvoxamine, mayzent, ridogrel, oxiconazole), as well as non-drug structures for which various biological activity studies have been conducted. To the best of our knowledge, this is the first review of the biological activity of compounds containing such a moiety. The authors hope that this review will inspire scientists to take a greater interest in this group of compounds, as it constitutes an interesting research area.
Collapse
Affiliation(s)
- Tomasz Kosmalski
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| | - Daria Kupczyk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza Str. 24, 85-092 Bydgoszcz, Poland
| | - Szymon Baumgart
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| | - Renata Paprocka
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
5
|
Mikra C, Mitrakas A, Ghizzani V, Katsani KR, Koffa M, Koukourakis M, Psomas G, Protti S, Fagnoni M, Fylaktakidou KC. Effect of Arylazo Sulfones on DNA: Binding, Cleavage, Photocleavage, Molecular Docking Studies and Interaction with A375 Melanoma and Non-Cancer Cells. Int J Mol Sci 2023; 24:1834. [PMID: 36768159 PMCID: PMC9915714 DOI: 10.3390/ijms24031834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
A set of arylazo sulfones, known to undergo N-S bond cleavage upon light exposure, has been synthesized, and their activity in the dark and upon irradiation towards DNA has been investigated. Their interaction with calf-thymus DNA has been examined, and the significant affinity observed (most probably due to DNA intercalation) was analyzed by means of molecular docking "in silico" calculations that pointed out polar contacts, mainly via the sulfonyl moiety. Incubation with plasmid pBluescript KS II revealed DNA cleavage that has been studied over time and concentration. UV-A irradiation considerably improved DNA damage for most of the compounds, whereas under visible light the effect was slightly lower. Moving to in vitro experiments, irradiation was found to slightly enhance the death of the cells in the majority of the compounds. Naphthylazosulfone 1 showed photo-disruptive effect under UV-A irradiation (IC50 ~13 μΜ) followed by derivatives 14 and 17 (IC50 ~100 μΜ). Those compounds were irradiated in the presence of two non-cancer cell lines and were found equally toxic only upon irradiation and not in the dark. The temporal and spatial control of light, therefore, might provide a chance for these novel scaffolds to be useful for the development of phototoxic pharmaceuticals.
Collapse
Affiliation(s)
- Chrysoula Mikra
- Laboratory of Organic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Achilleas Mitrakas
- Laboratory of Cellular Biology and Cell Cycle, Molecular Biology and Genetics Department, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece
- Department of Radiotherapy and Oncology, Democritus University of Thrace, University General Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - Virginia Ghizzani
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, 27100 Pavia, Italy
| | - Katerina R. Katsani
- Laboratory of Biochemistry and Molecular Virology, Molecular Biology and Genetics Department, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece
| | - Maria Koffa
- Laboratory of Cellular Biology and Cell Cycle, Molecular Biology and Genetics Department, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece
| | - Michael Koukourakis
- Department of Radiotherapy and Oncology, Democritus University of Thrace, University General Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V. Le Taramelli 12, 27100 Pavia, Italy
| | - Konstantina C. Fylaktakidou
- Laboratory of Organic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
6
|
Reddy DS, Sinha A, Kurjogi MM, Shanavaz H, Kumar A. Design, synthesis, molecular docking, and biological evaluation of coumarin-thymidine analogs as potent anti-TB agents. Arch Pharm (Weinheim) 2023; 356:e2200633. [PMID: 36634969 DOI: 10.1002/ardp.202200633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023]
Abstract
With the intent to discover new antituberculosis (TB) compounds, coumarin-thymidine analogs were synthesized using second-order nucleophilic substitution reactions of bromomethyl coumarin with thymidine. The newly synthesized coumarin-thymidine conjugates (1a-l) were characterized using IR, NMR, GC-MS, and CHN elemental analysis. The novel conjugates were found to exhibit potent anti-TB activity against the Mycobacterium tuberculosis H37 Rv strain, with minimum inhibitory concentrations (MIC) of the active compounds ranging between 0.012 and 0.482 µM. Compound 1k was established as the most active candidate with a MIC of 0.012 µM. The toxicity study on HEK cells confirmed the nontoxic nature of compounds 1e, 1h, 1i, 1j, and 1k. Also, the most active compounds (1k, 1j, and 1e) were stable in the pH range from 2.5 to 10, indicating compatibility with the biophysical environment. Based on the pKa studies, compounds 1k, 1j, and 1e are capable of crossing lipid-membrane barriers and acting on target cells. Molecular docking studies on the M. tuberculosis β-oxidation trifunctional enzyme (PDB ID: 7O4V) were conducted to investigate the mechanisms of anti-TB activity. All compounds showed excellent hydrogen binding interactions and exceptional docking scores against M. tuberculosis, which was in accordance with the results. Compounds 1a-l possessed excellent affinity to proteins, with binding energies ranging from -7.4 to -8.7 kcal/mol.
Collapse
Affiliation(s)
- Dinesh S Reddy
- Centre for Nano and Material Sciences, Jain (Deemed-to-be-University), Bangalore, Karnataka, India
| | - Anamika Sinha
- Centre for Nano and Material Sciences, Jain (Deemed-to-be-University), Bangalore, Karnataka, India
| | - Mahantesh M Kurjogi
- Multi-Disciplinary Research Unit, Karnataka Institute of Medical Sciences, Hubli, Karnataka, India
| | - H Shanavaz
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Bangalore, Karnataka, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain (Deemed-to-be-University), Bangalore, Karnataka, India
| |
Collapse
|
7
|
Liu Y, He Z, Ma W, Bao G, Li Y, Yu C, Li J, E R, Xu Z, Wang R, Sun W. Copper(I)-Catalyzed Late-Stage Introduction of Oxime Ethers into Peptides at the Carboxylic Acid Site. Org Lett 2022; 24:9248-9253. [PMID: 36508502 DOI: 10.1021/acs.orglett.2c03813] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have developed a method of introducing biological oxime ether fragments into peptides by CuI-catalyzed late-stage modification and functionalization of peptides, utilizing their acid moiety and varied 2H-azirines. As a result of its mild conditions, high atom economy, moderate yield, and excellent functional-group tolerance, the method can provide access to late-stage peptide modification and functionalization at their acid sites both in the homogeneous phase and on resins in SPPS, providing a new tool kit for peptide functionalization, diversification, and fluorescent labeling.
Collapse
Affiliation(s)
- Yuyang Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| | - Zeyuan He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| | - Wen Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| | - Guangjun Bao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| | - Yiping Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| | - Changjun Yu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| | - Jingyue Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| | - Ruiyao E
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street, Beijing 100050, P. R. China
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, Gansu, P. R. China
| |
Collapse
|
8
|
Akki M, Reddy DS, Katagi KS, Kumar A, Devarajegowda HC, Kumari M S, Babagond V, Joshi SD. Coumarin Hydrazone Oxime Scaffolds as Potent Anti‐tubercular Agents: Synthesis, X‐ray crystal and Molecular Docking Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202203260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mahesh Akki
- Research Centre Department of Chemistry Karnatak University's Karnatak Science College Dharwad 580001 Karnataka India
| | - Dinesh S. Reddy
- Centre for Nano and Material Sciences Jain University Jain Global Campus, Jakkasandra Post Bangalore 562112 Karnataka India
| | - Kariyappa S. Katagi
- Research Centre Department of Chemistry Karnatak University's Karnatak Science College Dharwad 580001 Karnataka India
| | - Amit Kumar
- Centre for Nano and Material Sciences Jain University Jain Global Campus, Jakkasandra Post Bangalore 562112 Karnataka India
| | | | - Sunitha Kumari M
- Department of Physics Yuvaraja's College University of Mysore Mysuru 570005 Karnataka India
| | - Vardhaman Babagond
- Research Centre Department of Chemistry Karnatak University's Karnatak Science College Dharwad 580001 Karnataka India
| | - Shrinivas D. Joshi
- Novel Drug Design and Discovery Laboratory Department of Pharmaceutical Chemistry S.E.T's College of Pharmacy Sangolli Rayanna Nagar Dharwad 580 002 Karnataka India
| |
Collapse
|
9
|
Akki M, Reddy DS, Katagi KS, Kumar A, Devarajegowda HC, M SK, Babagond V, Mane S, Joshi SD. Synthesis of coumarin-thioether conjugates as potential anti-tubercular agents: Their molecular docking and X-ray crystal studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
DNA interaction and BSA binding of O-vanillin-based new Schiff base Co(III) and Ni(II) complexes: Theoretical, experimental, antibacterial and anticancer studies. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Sinha A, Chaudhary R, Reddy DS, Kongot M, Kurjogi MM, Kumar A. ON donor tethered copper (II) and vanadium (V) complexes as efficacious anti-TB and anti-fungal agents with spectroscopic approached HSA interactions. Heliyon 2022; 8:e10125. [PMID: 36033266 PMCID: PMC9403362 DOI: 10.1016/j.heliyon.2022.e10125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial drug resistance poses a significant threat worldwide, hence triggering an urgent situation for developing feasible drugs. 3D-transition metal coordination complexes being multifaceted, offer tremendous potency as drug candidates. However, there are fewer reports on non-toxic and safe transition metal complexes; therefore, we hereby attempted to develop novel copper and vanadium-based therapeutic agents. We have synthesised six metal complexes viz., [VVO2(Quibal-INH)] (1), [CuII(Quibal-INH)2] (2), [VVO(Quibal-INH) (cat)] (3), [CuII(Quibal-INH) (cat)] (4), [VVO(Quibal-INH) (bha)] (5) and [CuII(Quibal-INH) (bha)] (6). Quibal-INH (L) is an ON bidentate donor ligand synthesized from Schiff base reaction between 4-(2-(7-chloroquinolin-3-yl)vinyl)benzaldehyde (Quibal) and Isoniazid (INH). The synthesized compounds were characterized using analytical techniques involving ATR-IR, UV-Vis, EPR, 1H NMR, 13C NMR, and 51V NMR. Ligand (L) and compound 3 exhibited moderate growth inhibitory activity towards Candida albicans and Cryptococcus neoformans fungal species. Compound 6 has been identified as active against the above fungal species with no toxicity and hemolysis activity on the healthy cells. Compound 5 exhibited significant activity against the Mycobacterium tuberculosis H 37 R v strain. Further, compounds 4, 5 and 6 exhibited excellent free radical scavenging activity. All the developed compounds were found to exhibit stability over a wide range of pH conditions. The complexes were additionally studied for their interaction with human serum albumin (HSA) with the UV-vis spectroscopic technique.
Collapse
Affiliation(s)
- Anamika Sinha
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Riya Chaudhary
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Dinesh S Reddy
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Manasa Kongot
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Mahantesh M Kurjogi
- Multi-Disciplinary Research Unit, Karnataka Institute of Medical Sciences, Hubli, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| |
Collapse
|
12
|
Reddy DS, Sinha A, Kumar A, Saini VK. Drug re-engineering and repurposing: A significant and rapid approach to tuberculosis drug discovery. Arch Pharm (Weinheim) 2022; 355:e2200214. [PMID: 35841594 DOI: 10.1002/ardp.202200214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 01/11/2023]
Abstract
The prevalence of tuberculosis (TB) remains the leading cause of death from a single infectious agent, ranking it above all other contagious diseases. The problem to tackle this disease seems to become even worse due to the outbreak of SARS-CoV-2. Further, the complications related to drug-resistant TB, prolonged treatment regimens, and synergy between TB and HIV are significant drawbacks. There are several drugs to treat TB, but there is still no rapid and accurate treatment available. Intensive research is, therefore, necessary to discover newer molecular analogs that can probably eliminate this disease within a short span. An increase in efficacy can be achieved through re-engineering old TB-drug families and repurposing known drugs. These two approaches have led to the production of newer classes of compounds with novel mechanisms to treat multidrug-resistant strains. With respect to this context, we discuss structural aspects of developing new anti-TB drugs as well as examine advances in TB drug discovery. It was found that the fluoroquinolone, oxazolidinone, and nitroimidazole classes of compounds have greater potential to be further explored for TB drug development. Most of the TB drug candidates in the clinical phase are modified versions of these classes of compounds. Therefore, here we anticipate that modification or repurposing of these classes of compounds has a higher probability to reach the clinical phase of drug development. The information provided will pave the way for researchers to design and identify newer molecular analogs for TB drug development and also broaden the scope of exploring future-generation potent, yet safer anti-TB drugs.
Collapse
Affiliation(s)
- Dinesh S Reddy
- Centre for Nano and Material Sciences, Jain University, Bangalore, India
| | - Anamika Sinha
- Centre for Nano and Material Sciences, Jain University, Bangalore, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain University, Bangalore, India
| | - Vipin K Saini
- Materials and Environmental Chemistry Research Laboratory, School of Environment & Natural Resources, Doon University, Dehradun, India
| |
Collapse
|
13
|
Lisa John V, Joy F, Jose Kollannoor A, Joseph K, Nair Y, T. P. V. Amine functionalized carbon quantum dots from paper precursors for selective binding and fluorescent labelling applications. J Colloid Interface Sci 2022; 617:730-744. [DOI: 10.1016/j.jcis.2022.03.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 01/14/2023]
|
14
|
Lissette Mora-Medina T, Martínez-Pascual R, Ángel Peña-Rico M, Viñas-Bravo O, Montiel-Smith S, Pérez-Picaso L, Moreno-Díaz H. Preparation and cytotoxic evaluation of new steroidal oximes and aza-homosteroids from diosgenin and cholesterol. Steroids 2022; 182:109012. [PMID: 35307325 DOI: 10.1016/j.steroids.2022.109012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/27/2022]
Abstract
Using cholesterol and diosgenin as starting materials, we have designed a straightforward methodology to prepare in a reduced number of steps a novel series of steroidal oximes and their aza-homolactam analogs with four types of side chains: cholestane, spirostane, 22-oxocholestane and 22,26-epoxycholestene. The products were evaluated for their cytotoxic activity against the MCF-7 breast cancer cell line. Moreover, the selectivity of the most active compounds was determined against peripheral blood lymphocytes. Compounds 5, 8 and 13 were found to be the most active derivatives, exhibiting IC50 values in the low micromolar range (7.9-9.5 µM) and excellent selectivities (IC50 > 100 µM) against the non-tumor cell line.
Collapse
Affiliation(s)
- Thalía Lissette Mora-Medina
- División de Estudios de Posgrado, Maestría en Ciencias Químicas, Universidad del Papaloapan, Circuito Central 200, Col. Parque Industrial, Tuxtepec, 68301 Oaxaca, Mexico
| | - Roxana Martínez-Pascual
- Centro de Investigaciones Científicas, Instituto de Química Aplicada, Universidad del Papaloapan, Circuito Central 200, Col. Parque Industrial, Tuxtepec, 68301 Oaxaca, Mexico.
| | - Miguel Ángel Peña-Rico
- Centro de Investigaciones Científicas, Instituto de Química Aplicada, Universidad del Papaloapan, Circuito Central 200, Col. Parque Industrial, Tuxtepec, 68301 Oaxaca, Mexico
| | - Omar Viñas-Bravo
- Centro de Investigaciones Científicas, Instituto de Química Aplicada, Universidad del Papaloapan, Circuito Central 200, Col. Parque Industrial, Tuxtepec, 68301 Oaxaca, Mexico
| | - Sara Montiel-Smith
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, C.P. 72570, Puebla, Pue., Mexico
| | - Lemuel Pérez-Picaso
- Centro de Investigaciones Científicas, Instituto de Química Aplicada, Universidad del Papaloapan, Circuito Central 200, Col. Parque Industrial, Tuxtepec, 68301 Oaxaca, Mexico
| | - Hermenegilda Moreno-Díaz
- Centro de Investigaciones Científicas, Instituto de Química Aplicada, Universidad del Papaloapan, Circuito Central 200, Col. Parque Industrial, Tuxtepec, 68301 Oaxaca, Mexico
| |
Collapse
|
15
|
Collaboration between 3d-4f metal centers of heterodimetallic Ni(II)-Gd(III) complex in catecholase activity and interaction with FS-DNA & BSA. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Manne S, Sharma A, Sazonovas A, El-Faham A, de la Torre BG, Albericio F. Understanding OxymaPure as a Peptide Coupling Additive: A Guide to New Oxyma Derivatives. ACS OMEGA 2022; 7:6007-6023. [PMID: 35224362 PMCID: PMC8867806 DOI: 10.1021/acsomega.1c06342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
An in silico study, using the GALAS algorithm available in ACD/PhysChem Suite, was performed to calculate the pK a(s) of various oximes with potential application as peptide coupling additives. Among the known oximes and predicted structures, OxymaPure is superior based on the pK a values calculated, confirming the results described in the literature and validating this algorithm for further use in that field. Among the nondescribed oximes, based on pK a calculation, ethyl 2-(hydroxyimino)-2-nitroacetate seems to be a potential candidate to be used as an additive during peptide coupling.
Collapse
Affiliation(s)
- Srinivasa
Rao Manne
- Peptide
Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | - Anamika Sharma
- Peptide
Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
- KwaZulu-Natal
Research Innovation and Sequencing Platform (KRISP), School of Laboratory
Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South
Africa
- Department
of Chemistry, Prayoga Institute of Education
Research (PIER), Bangalore 560082, India
| | - Andrius Sazonovas
- Advanced
Chemistry Development, Inc. (ACD/Labs), 8 King Street East, Suite 107, Toronto, Ontario M5C 1B5, Canada
| | - Ayman El-Faham
- Department
of Chemistry, Faculty of Science, Alexandria
University, P.O. Box 426,
Ibrahimia, Alexandria 21321, Egypt
| | - Beatriz G. de la Torre
- Peptide
Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
- KwaZulu-Natal
Research Innovation and Sequencing Platform (KRISP), School of Laboratory
Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South
Africa
| | - Fernando Albericio
- Peptide
Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
- Institute
for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
- CIBER-BBN,
Networking Centre on Bioengineering, Biomaterials and Nanomedicine,
and Department of Organic Chemistry, University
of Barcelona, Martí
i Franqués 1-11, 08028 Barcelona, Spain
| |
Collapse
|
17
|
Prospects of Using Pharmacologically Active Compounds for the Creation of Antimycobacterial Drugs. Pharm Chem J 2022. [DOI: 10.1007/s11094-021-02544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Recent advancements and developments in search of anti-tuberculosis agents: A quinquennial update and future directions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Experimental and Computational Validation of Structural Features and BSA Binding Tendency of 5‐Hydroxy‐5‐trifluoromethyl‐3‐arylpyrazolines**. ChemistrySelect 2021. [DOI: 10.1002/slct.202102669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Samar M, Kuldeep S, Bhoomika Y, Vaseem A, Shweta S. A review on Coumarin derivatives as potent anti-Tuberculosis agent. Mini Rev Med Chem 2021; 22:1064-1080. [PMID: 34579635 DOI: 10.2174/1389557521666210927124511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tuberculosis (TB) is an acute or chronic infectious disease caused by several species of Myco-bacterium, collectively called as tubercle bacilli or Mycobacterium tuberculosis complex. Around 10 million people get sick with tuberculosis (TB) each year. TB is the second leading cause of deaths today after HIV/AIDS. A serious problem in the context of MDR-TB, is the extensively drug-resistant TB which is an im-portant reason for the restricted chemotherapy in TB. Therefore, there is a need to explore new antitubercular (anti-TB) agents. Coumarin is an oxygen-containing heterocyclic compound and can be widely found in many natural products, and many of them display diverse biological activities.The wide spectrum of activities of coumarin molecules have intrigued the scientists to explore the natural coumarins and their synthetic deriva-tives for their potential as anti-TB drugs. OBJECTIVE The objective of this review is to emphasize on important coumarin analogs with anti-TB activities and their structure-activity relationships (SAR) for designing better anti-TB agents. METHOD Latest, authentic and published reports on various synthetic and natural coumarin derivatives and their anti-TB activities is being thoroughly studied and analyzed. The structural requirements of coumarins as anti-TB drugs have also been studied. RESULT Collection and compilation of reports on various synthetic and natural coumarin derivatives and their anti-TB activities is being done. CONCLUSION The study provides latest report on coumarin derivatives synthesized as anti-TB agent and wheth-er their activity depends on structural changes or not.
Collapse
Affiliation(s)
- Mujeeb Samar
- Faculty of Pharmacy, Integral University, Kursi road, Lucknow-226026 (U.P.). India
| | - Singh Kuldeep
- Faculty of Pharmacy, Integral University, Kursi road, Lucknow-226026 (U.P.). India
| | - Yogi Bhoomika
- Hygia Institute Of Pharmaceutical Education And Research.Lucknow. India
| | - Ansari Vaseem
- Faculty of Pharmacy, Integral University, Kursi road, Lucknow-226026 (U.P.). India
| | - Sinha Shweta
- Goel Institute of Pharmaceutical Sciences, Lucknow -226028 (U.P.). India
| |
Collapse
|
21
|
Zhang Y, Zhou Y, Zhang H, Tian L, Hao J, Yuan Y, Li W, Liu Y. DNA binding and evaluation of anticancer activity in vitro and in vivo of iridium(III) polypyridyl complexes. J Inorg Biochem 2021; 224:111580. [PMID: 34438219 DOI: 10.1016/j.jinorgbio.2021.111580] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 01/25/2023]
Abstract
In this report, we synthesized three new iridium(III) complexes: [Ir(piq)2(apip)]PF6 (Ir1, piq = 1-phenylisoquinoline, apip = 2-aminophenyl-1H-imidazo[4,5-f][1,10]phenanthroline), [Ir(piq)2(maip)]PF6 (Ir2, maip = 3-aminophenyl-1H-imidazo[4,5-f][1,10]phenanthroline) and [Ir(piq)2(paip)]PF6 (Ir3, paip = 4-aminophenyl-1H-imidazo[4,5-f][1,10]phenanthroline). The DNA binding was investigated. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was used to detect the cytotoxic activity of Ir1, Ir2 and Ir3, the complexes show highly active against B16 cells with IC50 values of 0.3 ± 0.2 μM, 3.7 ± 0.2 μM and 4.6 ± 1.1 μM, respectively. Subsequently, cellular uptake suggested that the cytotoxicity of the complexes is attributed to their differences in cellular uptake levels. In addition, complexes Ir1, Ir2 and Ir3 induce cell cycle arrest at the G0/G1 phase and regulate the cell cycle mediators such as cyclin D1, CDK6 (cyclin-dependent kinase 6), CDK4 and p21, leading to the inhibition of B16 cells proliferation. The autophagy was investigated by monodansylcadaverine (MDC) staining. The complexes can promote the change from LC3-I to LC3-II, up-regulate levels of Beclin-1 and down-regulate expression of p62. The complexes induced apoptosis by regulating the expression levels of related indicators such as PARP (poly ADP-ribose polymerase), PI3K (phosphoinositide-3 kinase), AKT (protein kinase B), Caspase, Bcl-2 (B-cell lymphoma-2), Bad (Bcl2 associated death promoter), Bax (Bcl2-associated X) and Cyto C (cytochrome C). Additionally, Ir1 exerted significant antitumor activity in the suppression of malignant melanoma proliferation in vivo. As indicated in the above results, these complexes were highly effective for malignant melanoma treatment through the intrinsic pathway and provided much insight into anticancer drugs for tumor therapy.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yi Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Huiwen Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Li Tian
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jing Hao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuhan Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
22
|
Shahedi A, Bolorizadeh MA, Karimi-Maleh H. A europium (III) complex tested for deoxyribonucleic acid-binding, bovine serum albumin binding, and antibacterial activity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Schepetkin IA, Plotnikov MB, Khlebnikov AI, Plotnikova TM, Quinn MT. Oximes: Novel Therapeutics with Anticancer and Anti-Inflammatory Potential. Biomolecules 2021; 11:biom11060777. [PMID: 34067242 PMCID: PMC8224626 DOI: 10.3390/biom11060777] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Oximes have been studied for decades because of their significant roles as acetylcholinesterase reactivators. Over the last twenty years, a large number of oximes have been reported with useful pharmaceutical properties, including compounds with antibacterial, anticancer, anti-arthritis, and anti-stroke activities. Many oximes are kinase inhibitors and have been shown to inhibit over 40 different kinases, including AMP-activated protein kinase (AMPK), phosphatidylinositol 3-kinase (PI3K), cyclin-dependent kinase (CDK), serine/threonine kinases glycogen synthase kinase 3 α/β (GSK-3α/β), Aurora A, B-Raf, Chk1, death-associated protein-kinase-related 2 (DRAK2), phosphorylase kinase (PhK), serum and glucocorticoid-regulated kinase (SGK), Janus tyrosine kinase (JAK), and multiple receptor and non-receptor tyrosine kinases. Some oximes are inhibitors of lipoxygenase 5, human neutrophil elastase, and proteinase 3. The oxime group contains two H-bond acceptors (nitrogen and oxygen atoms) and one H-bond donor (OH group), versus only one H-bond acceptor present in carbonyl groups. This feature, together with the high polarity of oxime groups, may lead to a significantly different mode of interaction with receptor binding sites compared to corresponding carbonyl compounds, despite small changes in the total size and shape of the compound. In addition, oximes can generate nitric oxide. This review is focused on oximes as kinase inhibitors with anticancer and anti-inflammatory activities. Oximes with non-kinase targets or mechanisms of anti-inflammatory activity are also discussed.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
| | - Mark B. Plotnikov
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia;
| | - Andrei I. Khlebnikov
- Kizhner Research Center, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia;
- Scientific Research Institute of Biological Medicine, Altai State University, 656049 Barnaul, Russia
| | - Tatiana M. Plotnikova
- Department of Pharmacology, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
- Correspondence: ; Tel.: +1-406-994-4707; Fax: +1-406-994-4303
| |
Collapse
|
24
|
Synthesis, 2D NMR, crystal structure, Hirshfeld surface, stereochemical and DFT studies of 4,8,9,10-tetraaryl-1,3-diazaadamantan-6-one O-methoxy oximes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Design, synthesis, molecular docking, anti-proliferative and anti-TB studies of 2H-chromen-8-azaspiro[4.5]decane-7,9-dione conjugates. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Su S, Chen M, Li Q, Wang Y, Chen S, Sun N, Xie C, Huai Z, Huang Y, Xue W. Novel penta-1,4-diene-3-one derivatives containing quinazoline and oxime ether fragments: Design, synthesis and bioactivity. Bioorg Med Chem 2021; 32:115999. [PMID: 33444848 DOI: 10.1016/j.bmc.2021.115999] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/31/2020] [Indexed: 02/07/2023]
Abstract
A series of novel penta-1,4-diene-3-one derivatives containing quinazoline and oxime ether moieties were designed and synthesized. Their anticancer activities were evaluated by MTT assay, the results showed that most compounds exhibited extremely inhibitory effects against hepatoma SMMC-7721 cells. In particular, compounds Q2 and Q8 displayed the more potent inhibitory activity with IC50 values of 0.64 and 0.63 μM, which were better than that of gemcitabine (1.40 μM). Further mechanism studies indicated that compounds Q2, Q8, Q13 and Q19 could control the migration of SMMC-7721 cells effectively, and inhibit the proliferation of cancer cells by inhibiting the DNA replication. Western-blot results showed that compounds Q2 and Q8 induced irreversible apoptosis of SMMC-7721 cells by regulating the expression level of apoptose-related proteins. Those studies demonstrated that the penta-1,4-diene-3-one derivatives containing quinazoline and oxime ether fragments merited further research as potential anticancer agents.
Collapse
Affiliation(s)
- Shijun Su
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Mei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qin Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yihui Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Shuai Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Nan Sun
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Chengwei Xie
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ziyou Huai
- School of Life Science, Bengbu Medical College, Anhui, Bengbu 233030, China
| | - Yinjiu Huang
- School of Life Science, Bengbu Medical College, Anhui, Bengbu 233030, China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
27
|
Thakur A, Patwa J, Sharma A, Flora SJ. Synthesis, Molecular Docking, BSA, and in-vitro reactivation study of imidazopyridine oxime against paraoxon inhibited acetylcholinesterase. Med Chem 2021; 18:273-287. [PMID: 33563155 DOI: 10.2174/1573406417666210208223240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 11/22/2022]
Abstract
AIM To synthesize and evaluate the fused heterocyclic imidazopyridine oxime as a reactivator against paraoxon inhibited acetylcholinesterase. BACKGROUND Organophosphorus compounds (OPs) include parathion, malathion, chlorpyrifos, monocrotophos, and diazinon which are commonly used in agriculture for enhancing agricultural productivity via killing crop-damaging pests. However, people may get exposed to OPs pesticides unintentionally/intentionally via ingestion, inhalation or dermal. The current treatment regimen includes reactivator such as mono or bis-pyridinium oximes along with anticholinergic and an anticonvulsant drugs are recommended for the treatment of OP poisoning. Unfortunately, the drawback of the existing reactivator is that owing to the permanent charge present on the pyridinium makes them inefficient to cross the blood-brain barrier (BBB) and reactivate OP-inhibited central nervous system (CNS) acetylcholinesterase. Therefore, there is a need of reactivator that could cross the BBB and reactivate the OP inhibited acetylcholinesterase. OBJECTIVE The objectives of the study were synthesis, molecular docking, BSA binding and in-vitro estimation of oximes of various substituted imidazo [1,2-a]pyridine against paraoxon inhibited acetylcholinesterase. METHOD The reactivators were synthesized in three steps and characterized using various spectroscopic techniques. Molecular docking study was performed on 2WHP and 3ZLV PDB using Autodock tool. The acid dissociation constant (pKa) of oximes was calculated experimentally and drug-likeness properties of the oximes were calculated In silico using mole inspiration and Swiss ADME software. The binding of oximes with bovine serum albumin (BSA) was also investigated by UV-Vis spectrophotometer. The reactivation potential of the oximes was determined by in vitro enzymatic assay. RESULT in-silico study inferred that synthesized molecules fulfilled the parameters that required for a successful CNS drug candidate. Further, in-vitro enzymatic assay indicated reasonable reactivation potential of the oximes against paraoxon-inhibited AChE. The binding of oximes with bovine serum albumin (BSA) revealed static quenching of intrinsic fluorescence of BSA by oxime. The binding constant value and number of binding sites were found 0.24 mol-1 and 1 respectively. CONCLUSION The results of study concluded that this scaffold could be used for further designing of more efficient uncharged reactivators.
Collapse
Affiliation(s)
- Ashima Thakur
- Department of Medicinal Chemistry and Toxicology, National Institute of Pharmaceutical Education and Research, Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, Uttar Pradesh 226301, . India
| | - Jayant Patwa
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, Uttar Pradesh 226301, . India
| | - Abha Sharma
- Department of Medicinal Chemistry and Toxicology, National Institute of Pharmaceutical Education and Research, Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, Uttar Pradesh 226301, . India
| | - Swaran Jeet Flora
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, Uttar Pradesh 226301, . India
| |
Collapse
|
28
|
Reddy DS, Kongot M, Kumar A. Coumarin hybrid derivatives as promising leads to treat tuberculosis: Recent developments and critical aspects of structural design to exhibit anti-tubercular activity. Tuberculosis (Edinb) 2021; 127:102050. [PMID: 33540334 DOI: 10.1016/j.tube.2020.102050] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022]
Abstract
Tuberculosis (TB) is a highly contagious airborne disease with nearly 25% of the world's population infected with it. Challenges such as multi drug resistant TB (MDR-TB), extensive drug resistant TB (XDR-TB) and in rare cases totally drug resistant TB (TDR-TB) emphasizes the critical and urgent need in developing novel TB drugs. Moreover, the prolonged and multi drug treatment regime suffers a major drawback due to high toxicity and vulnerability in TB patients. This calls for intensified research efforts in identifying novel molecular scaffolds which can combat these issues with minimal side effects. In this pursuit, researchers have screened many bio-active molecules among which coumarin have been identified as promising candidates for TB drug discovery and development. Coumarins are naturally occurring compounds known for their low toxicity and varied biological activity. The biological spectrum of coumarin has intrigued medicinal researchers to investigate coumarin scaffolds for their relevance as anti-TB drugs. In this review we focus on the recent developments of coumarin and its critical aspects of structural design required to exhibit anti-tubercular (anti-TB) activity. The information provided will help medicinal chemists to design and identify newer molecular analogs for TB treatment and also broadens the scope of exploring future generation potent yet safer coumarin based anti-TB agents.
Collapse
Affiliation(s)
- Dinesh S Reddy
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Jakkasandra Post, Bangalore, 562112, India
| | - Manasa Kongot
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Jakkasandra Post, Bangalore, 562112, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Jakkasandra Post, Bangalore, 562112, India.
| |
Collapse
|
29
|
Yenİlmez ÇİftÇİ G, Yilmaz S, Bayik N, Şenkuytu E, Kaya EN, DurmuŞ M, Bulut M. Chemosensor properties of 7-hydroxycoumarin substituted cyclotriphosphazenes. Turk J Chem 2021; 44:64-73. [PMID: 33488143 PMCID: PMC7751823 DOI: 10.3906/kim-1908-51] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/17/2019] [Indexed: 01/26/2023] Open
Abstract
The newly synthesized cyclotriphosphazene cored coumarin chemosensors 5, 6, and 7 were successfully characterized by
1
H NMR,
31
P NMR, and MALDI-TOF mass spectrometry. Additionally, the photophysical and metal sensing properties of the targeted compounds were determined by fluorescence spectroscopy in the presence of various metals (Li
+
, Na
+
, K
+
, Cs
+
, Mg
2+
, Ca
2+
, Ba
2+
, Cr
3+
, Mn
2+
, Fe
3+
, Co
2+
, Al
3+
, Hg
+
, Cu
2+
, Zn
2+
, Ag
+
, and Cd
2+
) . The fluorescence titration results showed that compounds 5, 6, and 7 could be employed as fluorescent chemosensors for Fe
3+
ions with high sensitivity. The complex stoichiometry between final cyclotriphosphazene chemosensors and Fe
3+
ions was also determined by Job’s plots.
Collapse
Affiliation(s)
- Gönül Yenİlmez ÇİftÇİ
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli Turkey
| | - Sergen Yilmaz
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli Turkey
| | - Nagihan Bayik
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli Turkey
| | - Elif Şenkuytu
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli Turkey
| | - Esra Nur Kaya
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli Turkey
| | - Mahmut DurmuŞ
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli Turkey
| | - Mustafa Bulut
- Department of Chemistry, Faculty of Art and Science, Marmara University, Kadıköy, İstanbul Turkey
| |
Collapse
|
30
|
Shakdofa MM, Morsy NA, Rasras AJ, Al‐Hakimi AN, Shakdofa AM. Synthesis, characterization, and density functional theory studies of hydrazone–oxime ligand derived from 2,4,6‐trichlorophenyl hydrazine and its metal complexes searching for new antimicrobial drugs. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Mohamad M.E. Shakdofa
- Department of Chemistry, College of Science and Arts at Khulais University of Jeddah Jeddah Saudi Arabia
| | - Nagy A. Morsy
- Department of Biochemistry, College of Science University of Jeddah Jeddah Saudi Arabia
| | - Anas J. Rasras
- Department of Chemistry, Faculty of Science Al‐Balqa Applied University Al‐Salt 19117 Jordan
| | - Ahmed N. Al‐Hakimi
- Department of Chemistry, College of Science Qassim University Buraidah Saudi Arabia
- Department of Chemistry, Faculty of Science Ibb University Ibb Yemen
| | - Adel M.E. Shakdofa
- Department of Chemistry, Faculty of Science Menoufia University Shebin El‐Kom Egypt
| |
Collapse
|
31
|
Huang J, He Z, Cheng R, Cheng Z, Wang S, Wu X, Niu B, Shen GX, Liao X. Assessment of binding interaction dihydromyricetin and myricetin with bovine lactoferrin and effects on antioxidant activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 243:118731. [PMID: 32827907 DOI: 10.1016/j.saa.2020.118731] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
The binding interactions of bovine lactoferrin (BLF) with two flavonoids dihydromyricetin (DMY) and myricetin (MY) were investigated by the multi-spectroscopic, microscale thermophoresis (MST) techniques, molecular docking, and then their antioxidant activities were studied by detection of free radical scavenging activity against DPPH. Results of UV-vis and fluorescence spectroscopies showed that DMY/MY and BLF formed the ground state complex through the static quenching mechanism. Moreover, MY with more planar stereochemical structure had higher affinity for BLF than DMY with twisted stereochemical structure, according to the binding constant (Kb), free energy change (ΔG°), dissociation constant (Kd) and donor-acceptor distance (r). Thermodynamic parameters revealed that hydrogen bond and van der Waals force were major forces in the formation of BLF-DMY complex, while hydrophobic interactions played major roles in the formation of BLF-DMY complex. The circular dichroism (CD) study indicated that MY induced more conformational change in BLF than DMY. Furthermore, molecular modeling provided insights into the difference of binding interactions between BLF and two flavonoids. Finally, the radical scavenging activity assays indicated the presence of BLF delayed the decrease in antioxidant capacities of two flavonoids. These results were helpful to understand the binding mechanism and biological effects of non-covalent BLF-flavonoid interaction.
Collapse
Affiliation(s)
- Junyi Huang
- Laboratory of Food Nutrition and Chronic Disease Intervention, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Ziyu He
- Laboratory of Food Nutrition and Chronic Disease Intervention, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Runqing Cheng
- Laboratory of Food Nutrition and Chronic Disease Intervention, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Zhuo Cheng
- Laboratory of Food Nutrition and Chronic Disease Intervention, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Shanshan Wang
- Laboratory of Food Nutrition and Chronic Disease Intervention, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xianyong Wu
- Laboratory of Food Nutrition and Chronic Disease Intervention, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Bing Niu
- Laboratory of Food Nutrition and Chronic Disease Intervention, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Garry X Shen
- Departments of Internal Medicine and Food and Human Nutritional Sciences, University of Manitoba, Canada.
| | - Xianyan Liao
- Laboratory of Food Nutrition and Chronic Disease Intervention, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
32
|
Alghamdi S, Rehman SU, Shesha NT, Faidah H, Khurram M, Rehman SU. Promising Lead Compounds in the Development of Potential Clinical Drug Candidate for Drug-Resistant Tuberculosis. Molecules 2020; 25:molecules25235685. [PMID: 33276545 PMCID: PMC7729780 DOI: 10.3390/molecules25235685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 11/16/2022] Open
Abstract
According to WHO report, globally about 10 million active tuberculosis cases, resulting in about 1.6 million deaths, further aggravated by drug-resistant tuberculosis and/or comorbidities with HIV and diabetes are present. Incomplete therapeutic regimen, meager dosing, and the capability of the latent and/or active state tubercular bacilli to abide and do survive against contemporary first-line and second line antitubercular drugs escalate the prevalence of drug-resistant tuberculosis. As a better understanding of tuberculosis, microanatomy has discovered an extended range of new promising antitubercular targets and diagnostic biomarkers. However, there are still no new approved antitubercular drugs of routine therapy for several decades, except for bedaquiline, delamanid, and pretomanid approved tentatively. Despite this, innovative methods are also urgently needed to find potential new antitubercular drug candidates, which potentially decimate both latent state and active state mycobacterium tuberculosis. To explore and identify the most potential antitubercular drug candidate among various reported compounds, we focused to highlight the promising lead derivatives of isoniazid, coumarin, griselimycin, and the antimicrobial peptides. The aim of the present review is to fascinate significant lead compounds in the development of potential clinical drug candidates that might be more precise and effective against drug-resistant tuberculosis, the world research looking for a long time.
Collapse
Affiliation(s)
- Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca 24321, Saudi Arabia;
| | - Shaheed Ur Rehman
- Department of Pharmacy, Abasyn University Peshawar, Khyber Pakhtunkhwa 25000, Pakistan;
- Correspondence: (S.U.R.); (M.K.); Tel.: +923459832402 (S.U.R.)
| | - Nashwa Talaat Shesha
- Regional Laboratory, Directorate of Health Affairs Makkah, Mecca 24321, Saudi Arabia;
| | - Hani Faidah
- Microbiology Department, Faculty of Medicine, Umm Al-Qura University, Mecca 24321, Saudi Arabia;
| | - Muhammad Khurram
- Department of Pharmacy, Abasyn University Peshawar, Khyber Pakhtunkhwa 25000, Pakistan;
- Correspondence: (S.U.R.); (M.K.); Tel.: +923459832402 (S.U.R.)
| | - Sabi Ur Rehman
- Department of Pharmacy, Abasyn University Peshawar, Khyber Pakhtunkhwa 25000, Pakistan;
| |
Collapse
|
33
|
Zhou X, Xiao R, Chen M, Bai L. Synthesis of Uscharin Oxime Analogues and Their Biological Evaluation as HIF‐1 Inhibitors. ChemistrySelect 2020. [DOI: 10.1002/slct.202003586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xiaobo Zhou
- State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Taipa Macau
| | - Riping Xiao
- State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Taipa Macau
| | - Ming Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Taipa Macau
| | - Li‐Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine and Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Taipa Macau
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease (Macau University of Science and Technology)
| |
Collapse
|
34
|
Rani A, Johansen MD, Roquet-Banères F, Kremer L, Awolade P, Ebenezer O, Singh P, Sumanjit, Kumar V. Design and synthesis of 4-Aminoquinoline-isoindoline-dione-isoniazid triads as potential anti-mycobacterials. Bioorg Med Chem Lett 2020; 30:127576. [PMID: 32980514 DOI: 10.1016/j.bmcl.2020.127576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
A series of 4-aminoquinoline-isoindoline-dione-isoniazid triads were synthesized and assessed for their anti-mycobacterial activities and cytotoxicity. Most of the synthesized compounds exhibited promising activities against the mc26230 strain of M. tuberculosis with MIC in the range of 5.1-11.9 µM and were non-cytotoxic against Vero cells. The conjugates lacking either isoniazid or quinoline core in their structural framework failed to inhibit the growth of M. tuberculosis; thus, further strengthening the proposed design of triads in the present study.
Collapse
Affiliation(s)
- Anu Rani
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Matt D Johansen
- Institut de Recherche en Infectiologie (IRIM) de Montpellier, CNRS, UMR 9004 Université de Montpellier, France
| | - Françoise Roquet-Banères
- Institut de Recherche en Infectiologie (IRIM) de Montpellier, CNRS, UMR 9004 Université de Montpellier, France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie (IRIM) de Montpellier, CNRS, UMR 9004 Université de Montpellier, France; INSERM, IRIM, 34293 Montpellier, France
| | - Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Oluwakemi Ebenezer
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Sumanjit
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
35
|
Reddy DS, Kongot M, Singh V, Siddiquee MA, Patel R, Singhal NK, Avecilla F, Kumar A. Biscoumarin-pyrimidine conjugates as potent anticancer agents and binding mechanism of hit candidate with human serum albumin. Arch Pharm (Weinheim) 2020; 354:e2000181. [PMID: 32945576 DOI: 10.1002/ardp.202000181] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/03/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022]
Abstract
In our continuing efforts to develop therapeutically active coumarin-based compounds, a series of new C4-C4' biscoumarin-pyrimidine conjugates (1a-l) was synthesized via SN 2 reaction of substituted 4-bromomethyl coumarin with thymine. All compounds were characterized using spectroscopic techniques, that is, attenuated total reflection infrared (ATR-IR), CHN elemental analysis, and 1 H and 13 C NMR (nuclear magnetic resonance). In addition, the structure of compound 1d (1,3-bis[(7-chloro-2-oxo-2H-chromen-4-yl)methyl]-5-methylpyrimidine-2,4(1H,3H)-dione) was established through X-ray crystallography. Compounds 1a-l were screened for in vitro anticancer activity against C6 rat glioma cells. Among the screened compounds, 1,3-bis[(6-chloro-2-oxo-2H-chromen-4-yl)methyl]-5-methylpyrimidine-2,4(1H,3H)-dione (1c) was identified as the best antiproliferative candidate, exhibiting an IC50 value of 4.85 μM. All the compounds (1a-l) were found to be nontoxic toward healthy human embryonic kidney cells (HEK293), indicating their selective nature. In addition, the most active compound (1c) displayed strong binding interactions with the drug carrier protein, human serum albumin, and exhibited good solution stability at biological pH conditions. Fluorescence, UV-visible spectrophotometry and molecular modeling methodologies were employed for studying the interaction mechanism of compound 1c with protein.
Collapse
Affiliation(s)
- Dinesh S Reddy
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, India
| | - Manasa Kongot
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, India
| | - Vishal Singh
- National Agri Food Biotechnology Institute, Mohali, India
| | - Md Abrar Siddiquee
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | | | - Fernando Avecilla
- Departamento de Química, Facultade de Ciencias, Grupo Xenomar, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, A Coruña, Spain
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, India
| |
Collapse
|
36
|
Overview on developed synthesis procedures of coumarin heterocycles. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01984-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractConsidering highly valuable biological and pharmaceutical properties of coumarins, the synthesis of these heterocycles has been considered for many organic and pharmaceutical chemists. This review includes the recent research in synthesis methods of coumarin systems, investigating their biological properties and describing the literature reports for the period of 2016 to the middle of 2020. In this review, we have classified the contents based on co-groups of coumarin ring. These reported methods are carried out in the classical and non-classical conditions particularly under green condition such as using green solvent, catalyst and other procedures.
Collapse
|
37
|
Yinhua D, Foroughi MM, Aramesh-Boroujeni Z, Jahani S, Peydayesh M, Borhani F, Khatami M, Rohani M, Dusek M, Eigner V. The synthesis, characterization, DNA/BSA/HSA interactions, molecular modeling, antibacterial properties, and in vitro cytotoxic activities of novel parent and niosome nano-encapsulated Ho(iii) complexes. RSC Adv 2020; 10:22891-22908. [PMID: 35520355 PMCID: PMC9054688 DOI: 10.1039/d0ra03436c] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/25/2020] [Indexed: 12/22/2022] Open
Abstract
Based on the importance of metal-centered complexes that can interact with DNA, this research focused on the synthesis of a new Ho(iii) complex. This complex was isolated and characterized via elemental analysis, and FT-IR, fluorescence, and UV-vis spectroscopy. Additional confirmation of the Ho(iii) complex structure was obtained via single-crystal X-ray diffraction. DNA interaction studies were carried out via circular dichroism (CD) spectroscopy, UV-vis absorption spectroscopy, viscosity measurements and emission spectroscopy; it was proposed that the metal complex acts as an effective DNA binder based on studies in the presence of fish DNA (FS-DNA), showing high binding affinity to DNA in the presence of hydrophobic and electron donating substituents. Also, the interactions of this complex with human (HSA) and bovine serum albumin (BSA) proteins were studied via fluorescence spectroscopy techniques and the obtained results reveal an excellent propensity for binding in both cases. Furthermore, the interactions of the Ho(iii) complex with DNA, BSA and HSA were confirmed via molecular docking analysis. The antimicrobial activities of the Ho(iii) complex were tested against Gram-negative bacteria and Gram-positive bacteria. In addition, a niosome nano-encapsulated Ho(iii) complex was synthesized, and the parent and encapsulated complexes were evaluated as potential antitumor candidates. The main structure of the Ho(iii) complex is maintained after encapsulation using niosome nanoparticles. The MTT method was used to assess the anticancer properties of the Ho(iii) complex and its encapsulated form toward human lung carcinoma and breast cancer cell lines. The anticancer activity in the encapsulated form was more than that of the parent Ho(iii) complex. In conclusion, these compounds could be considered as new antitumor candidates.
Collapse
Affiliation(s)
- Deng Yinhua
- Department of Pharmacy, Hunan Provincial People's Hospital Changsha 410005 P. R. China
- Department of Pharmacy, The First Hospital Affiliated to Hunan Normal University Changsha 410005 P. R. China
| | | | - Zahra Aramesh-Boroujeni
- Department of Clinical Laboratory, AlZahra Hospital, Isfahan University of Medical Sciences Isfahan Iran
| | - Shohreh Jahani
- Nanobioelectrochemistry Research Center, Bam University of Medical Sciences Bam Iran +98 35331321750
| | - Mohadesh Peydayesh
- Clinical Research Center, Pastor Educational Hospital, Bam University of Medical Sciences Bam Iran
| | - Fariba Borhani
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mehrdad Khatami
- Nanobioelectrochemistry Research Center, Bam University of Medical Sciences Bam Iran +98 35331321750
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences Kerman Iran
| | - Meysam Rohani
- Department of Medicine, Medical School, Bam University of Medical Sciences Bam Iran
| | - Michal Dusek
- Institute of Physics of the Czech Academy of Sciences Na Slovance 2 18221 Prague 8 Czech Republic
| | - Vaclav Eigner
- Institute of Physics of the Czech Academy of Sciences Na Slovance 2 18221 Prague 8 Czech Republic
| |
Collapse
|
38
|
Villagracia AR, Ong HL, Lagua FM, Alea G. Chemical reactivity and bioactivity properties of pyrazinamide analogs of acetylsalicylic acid and salicylic acid using conceptual density functional theory. Heliyon 2020; 6:e04239. [PMID: 32613118 PMCID: PMC7322055 DOI: 10.1016/j.heliyon.2020.e04239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 11/14/2022] Open
Abstract
Conventional drugs used to treat Tuberculosis (TB) are becoming ineffective due to the occurrence of multiple drug resistant strains of tuberculosis (TB). This has made the TB disease a a serious global health dilemma. Hence, there is desperate necessity for the advancement of new drugs. In this work, the chemical reactivity and bioactivity of several analogs ofpyrazinamide (PZA) were investigated. PZA is one of the first-line of drugs used to treat tuberculosis and is a key contributor to shortening the treatment time for the disease. Chemical reactivity descriptors of pyrazinamide (PZA) and its analogs of acetylsalicyclic acid and salicyclic acid were investigated using conceptual density functional theory in water as a solvent at the MN12SX/Def2TZVP level of theory. Results have shown that all PZA analogs have improved their global and local reactivity indeces as compared to pyrazinamide based on its electronegativity, electrodonating power, electroaccepting power, eletrophilicity, global hardness and dual descriptor condensed fukui indexes. Moreover, their pKa values are slightly higher than PZA. In terms of its drug-likeness, all PZA analogs passed the Lipinski's Rule of Five criteria. Furthermore, their bioactivity scores are significantly better than pyrazinamide indicating good reaction to G-Protein Coupled Receptor (GPCR) ligands, kinase inhibitors, ion channel modulators, nuclear receptor ligands, protease inhibitors and other enzyme targets. Overall, the PZA analogs are found to be promising anti-tuberculosis drugs. Based on global and local reactivity descriptors, pKa and bioactivity scores, PZA analog of 5-n-Octanoylsalicylic acid is the most reactive among the PZA analogs tested.
Collapse
Affiliation(s)
| | - Hui Lin Ong
- Centre of Excellence for Biomass Utilization, Taiwan-Malaysia Innovation Center for Clean Water and Sustainable Energy (WISE Center), Universiti Malaysia Perlis (UniMAP), Kompleks Pusat Pengajian Jejawi 2, Taman Muhibbah, 02600 Arau, Perlis, Malaysia
- School of Materials Engineering, Universiti Malaysia Perlis (UniMAP), Kompleks Pusat Pengajian Jejawi 2, Taman Muhibbah, 02600 Arau, Perlis, Malaysia
| | - Faith Marie Lagua
- Chemistry Department, De La Salle University, Manila 0922, Philippines
| | - Glenn Alea
- Chemistry Department, De La Salle University, Manila 0922, Philippines
| |
Collapse
|
39
|
Eker Y, Şenkuytu E, Ölçer Z, Yıldırım T, Çiftçi GY. Novel coumarin cyclotriphosphazene derivatives: Synthesis, characterization, DNA binding analysis with automated biosensor and cytotoxicity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Potential anti-TB investigational compounds and drugs with repurposing potential in TB therapy: a conspectus. Appl Microbiol Biotechnol 2020; 104:5633-5662. [PMID: 32372202 DOI: 10.1007/s00253-020-10606-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/27/2020] [Accepted: 04/05/2020] [Indexed: 02/07/2023]
Abstract
The latest WHO report estimates about 1.6 million global deaths annually from TB, which is further exacerbated by drug-resistant (DR) TB and comorbidities with diabetes and HIV. Exiguous dosing, incomplete treatment course, and the ability of the tuberculosis bacilli to tolerate and survive current first-line and second-line anti-TB drugs, in either their latent state or active state, has resulted in an increased prevalence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and totally drug-resistant TB (TDR-TB). Although a better understanding of the TB microanatomy, genome, transcriptome, proteome, and metabolome, has resulted in the discovery of a few novel promising anti-TB drug targets and diagnostic biomarkers of late, no new anti-TB drug candidates have been approved for routine therapy in over 50 years, with only bedaquiline, delamanid, and pretomanid recently receiving tentative regulatory approval. Considering this, alternative approaches for identifying possible new anti-TB drug candidates, for effectively eradicating both replicating and non-replicating Mycobacterium tuberculosis, are still urgently required. Subsequently, several antibiotic and non-antibiotic drugs with known treatment indications (TB targeted and non-TB targeted) are now being repurposed and/or derivatized as novel antibiotics for possible use in TB therapy. Insights gathered here reveal that more studies focused on drug-drug interactions between licensed and potential lead anti-TB drug candidates need to be prioritized. This write-up encapsulates the most recent findings regarding investigational compounds with promising anti-TB potential and drugs with repurposing potential in TB therapy.
Collapse
|
41
|
Gritzapis PS, Varras PC, Andreou NP, Katsani KR, Dafnopoulos K, Psomas G, Peitsinis ZV, Koumbis AE, Fylaktakidou KC. p-Pyridinyl oxime carbamates: synthesis, DNA binding, DNA photocleaving activity and theoretical photodegradation studies. Beilstein J Org Chem 2020; 16:337-350. [PMID: 32256851 PMCID: PMC7082612 DOI: 10.3762/bjoc.16.33] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/19/2020] [Indexed: 12/23/2022] Open
Abstract
A number of p-pyridinyl oxime carbamate derivatives were prepared upon the reaction of the corresponding oximes with isocyanates. These novel compounds reacted photochemically in the presence of supercoiled plasmid DNA. Structure-activity relationship (SAR) studies revealed that the substituent on the imine group was not affecting the extend of the DNA damage, whereas the substituent of the carbamate group was critical, with the halogenated derivatives to be able to cause extensive single and double stranded DNA cleavages, acting as "synthetic nucleases", independently of oxygen and pH. Calf thymus-DNA affinity studies showed a good-to-excellent affinity of selected both active and non-active derivatives. Preliminary theoretical studies were performed, in an effort to explain the reasons why some derivatives cause photocleavage and some others not, which were experimentally verified using triplet state activators and quenchers. These theoretical studies seem to allow the prediction of the activity of derivatives able to pass intersystem crossing to their triplet energy state and thus create radicals able to damage DNA. With this study, it is shown that oxime carbamate derivatives have the potential to act as novel effective photobase generating DNA-photocleavers, and are proposed as new leads for "on demand" biotechnological applications in drug discovery and medicine.
Collapse
Affiliation(s)
- Panagiotis S Gritzapis
- Laboratory of Organic, Bioorganic and Natural Product Chemistry, Molecular Biology and Genetics Department, Democritus University of Thrace, University Campus, Dragana, 68100, Alexandroupolis, Greece
| | - Panayiotis C Varras
- Laboratory of Organic, Bioorganic and Natural Product Chemistry, Molecular Biology and Genetics Department, Democritus University of Thrace, University Campus, Dragana, 68100, Alexandroupolis, Greece
| | - Nikolaos-Panagiotis Andreou
- Laboratory of Organic, Bioorganic and Natural Product Chemistry, Molecular Biology and Genetics Department, Democritus University of Thrace, University Campus, Dragana, 68100, Alexandroupolis, Greece
| | - Katerina R Katsani
- Laboratory of Biochemistry and Molecular Virology, Molecular Biology and Genetics Department, Democritus University of Thrace, University Campus, Dragana, 68100, Alexandroupolis, Greece
| | - Konstantinos Dafnopoulos
- Laboratory of Organic, Bioorganic and Natural Product Chemistry, Molecular Biology and Genetics Department, Democritus University of Thrace, University Campus, Dragana, 68100, Alexandroupolis, Greece
- Laboratory of Inorganic Chemistry, Chemistry Department, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Chemistry Department, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Zisis V Peitsinis
- Laboratory of Organic Chemistry, Chemistry Department, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Alexandros E Koumbis
- Laboratory of Organic Chemistry, Chemistry Department, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Konstantina C Fylaktakidou
- Laboratory of Organic, Bioorganic and Natural Product Chemistry, Molecular Biology and Genetics Department, Democritus University of Thrace, University Campus, Dragana, 68100, Alexandroupolis, Greece
- Laboratory of Organic Chemistry, Chemistry Department, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
42
|
Sharma K, Yadav P, Sharma B, Pandey M, Awasthi SK. Interaction of coumarin triazole analogs to serum albumins: Spectroscopic analysis and molecular docking studies. J Mol Recognit 2020; 33:e2834. [PMID: 32017307 DOI: 10.1002/jmr.2834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/10/2019] [Accepted: 12/20/2019] [Indexed: 12/30/2022]
Abstract
The interaction of triazole substituted 4-methyl-7-hydroxycoumarin derivatives (CUM1-4) with serum albumin (bovine serum albumin [BSA] and human serum albumin [HSA]) have been studied employing ultraviolet-visible (UV-Vis), fluorescence, circular dichroism (CD) spectroscopy, and molecular docking methods at physiological pH 7.4. The fluorescence quenching occurred with increasing concentration of CUMs, and the binding constant of CUM derivatives with BSA and HSA obtained from fluorescence quenching experiment was found to be ~ 104 L mol-1 . CD study showed conformational changes in the secondary structure of serum albumin upon titration of CUMs. The observed experimental results were further validated by theoretical studies involving density functional theory (DFT) and molecular docking.
Collapse
Affiliation(s)
- Kumkum Sharma
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, New Delhi, India
| | - Priyanka Yadav
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, New Delhi, India
| | - Bhawana Sharma
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, New Delhi, India
| | - Meenakshi Pandey
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, New Delhi, India
| | - Satish K Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi, New Delhi, India
| |
Collapse
|
43
|
Francisco CS, Francisco CS, Constantino AF, Neto ÁC, Lacerda V. Synthetic Methods Applied in the Preparation of Coumarin-based Compounds. CURR ORG CHEM 2020. [DOI: 10.2174/1385272823666191121150047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coumarins (2H-chromen-2-ones) are heterocyclic compounds of wide scientific
interest due to their important biological and pharmaceutical properties such as antitumor,
antioxidant, anti-inflammatory and antimicrobial activities as well as enzymatic inhibitors
related to neurodegenerative diseases. Due to their structural variability, this compound
class has been attracting considerable interest in the natural products and synthetic organic
chemistry areas. Coumarins and their derivatives have been prepared by a variety of methods,
including Perkin, Wittig and Reformatsky reactions, Pechmann and Knoevenagel
condensations, and Claisen rearrangement, among others. In the present review we report
the different synthetic methods used in the preparation of coumarin derivatives exploited
in the last ten years (from 2008 to 2018), regarding the research demand for new structural
scaffolds.
Collapse
Affiliation(s)
- Carla S. Francisco
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, Campus Goiabeiras, Vitória, Brazil
| | - Cristina S. Francisco
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, Campus Goiabeiras, Vitória, Brazil
| | | | - Álvaro Cunha Neto
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, Campus Goiabeiras, Vitória, Brazil
| | - Valdemar Lacerda
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas, Universidade Federal do Espírito Santo, Campus Goiabeiras, Vitória, Brazil
| |
Collapse
|
44
|
Synthesis of novel metal (II) complexes tailored from 9-oxo-9H-fluorene-1-carboxylic acid via green protocol: DNA cleavage and anticancer studies. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
45
|
Omidi S, Kakanejadifard A. A review on biological activities of Schiff base, hydrazone, and oxime derivatives of curcumin. RSC Adv 2020; 10:30186-30202. [PMID: 35518272 PMCID: PMC9056295 DOI: 10.1039/d0ra05720g] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Schiff base, hydrazone, and oxime derivatives of curcumin showed enhanced biological activities.
Collapse
Affiliation(s)
- Sakineh Omidi
- Department of Chemistry
- Faculty of Science
- Lorestan University
- Khorramabad
- Iran
| | - Ali Kakanejadifard
- Department of Chemistry
- Faculty of Science
- Lorestan University
- Khorramabad
- Iran
| |
Collapse
|
46
|
Khan S, Zafar A, Naseem I. Probing the interaction of a coumarin-di(2-picolyl)amine hybrid drug-like molecular entity with human serum albumin: Multiple spectroscopic and molecular modeling techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117330. [PMID: 31280128 DOI: 10.1016/j.saa.2019.117330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
HSA is an important plasma protein responsible for transport of drug molecules. Coumarin derivatives play critical role as anticancer, antidiabetic and antiparkinson agents. In our lab we have synthesized coumarin-based pharmacophore, di(2-picolyl)amine-3(bromoacetyl) coumarin (ligand-L) endowed with anticancer activity. Anticancer agents binding mode of HSA provides valuable pharmacological information and is a structural guidance in synthesizing new drugs with greater efficacy. Thus, binding mechanism of ligand-L with HSA was explored using spectroscopic and molecular docking techniques. UV-Vis spectroscopy demonstrates hyperchromism in the absorbance spectra of HSA on addition of ligand-L suggesting interaction of ligand-L with HSA. Fluorescence spectroscopy indicates quenching in the fluorescence of HSA in the presence of ligand-L confirming the complex formation and this binding follows static mechanism. Steady state fluorescence spectroscopy revealed high binding affinity between ligand-L and HSA with a 1:1 stoichiometry. Thermodynamic parameters obtained by ITC suggest that the interaction between ligand-L and HSA is mainly driven by van der Waals forces and hydrogen bonds, and the negative value of ΔG is an indication of spontaneous binding process. Competitive binding and molecular docking experiments showed that the binding site of ligand-L mainly resides in sub-domain IIA of HSA. CD experiments revealed no significant conformational changes in the secondary structure of HSA on binding of ligand-L. We also found that esterase-like activity of HSA was not affected by ligand-L. In conclusion, this study demonstrates binding mechanism of ligand-L with HSA, and the binding did not induce conformational changes in HSA. This study is likely to provide better understanding of transport and delivery of ligand-L via HSA. Overall, it will provide insights into pharmacokinetic properties of ligand-L and designing new ligand-L based derivatives with greater efficacy.
Collapse
Affiliation(s)
- Saman Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Atif Zafar
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Imrana Naseem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
47
|
Beyazit N, Kaya K, Şenel P, Özdemir AD, Gölcü A. Crystal structure and DNA binding properties of khellin oxime. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Achar G, Hokrani PP, Brinda K, Małecki JG, Budagumpi S. Synthesis, characterization, crystal structure and antibacterial properties of N– and O–functionalized (benz)imidazolium salts and their N–heterocyclic carbene silver(I) complexes. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
49
|
Crystal structure, Hirshfeld surface, DFT and BSA binding studies of dihydropyrazole-1-thiocarboxamides. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.06.100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
50
|
Coumarin tethered cyclic imides as efficacious glucose uptake agents and investigation of hit candidate to probe its binding mechanism with human serum albumin. Bioorg Chem 2019; 92:103212. [PMID: 31465968 DOI: 10.1016/j.bioorg.2019.103212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/06/2019] [Accepted: 08/20/2019] [Indexed: 12/30/2022]
Abstract
A series of novel coumarin-cyclic imide conjugates (1a-1j) were designed and synthesized to evaluate their glucose uptake activity by insulin resistant liver hepatocyte carcinoma (HepG2) cells through 2-NBDG uptake assay. Compounds (1a-1j) were characterised using various analytical methods such as 1H NMR, 13C NMR, IR, GC-MS, elemental and single-crystal X-ray diffraction techniques. Compounds (1a-1j) exhibited 85.21 - 65.80% of glucose uptake and showed low level of cytotoxicity towards human embryonic kidney cells (HEK-293) indicating good selectivity and safety profile. Compound 1f was identified as a hit candidate exhibiting 85.21% of glucose uptake which was comparable with standard antidiabetic drug Metformin (93.25% glucose uptake). Solution stability study under physiological pH conditions ≈ (3.4 - 8.7), indicates that compound 1f is sufficiently stable at varied pH conditions and thereby compatible with bio-physiological environments. Interaction of 1f with human serum albumin (HSA) were also studied which quantifies that compound 1f binds with HSA efficiently through facile binding reaction in solution. Fluorescence, UV-vis spectrophotometry and molecular modeling methodologies were employed for studying the interaction mechanism of compound 1f with protein.
Collapse
|