1
|
Fathy A, Allam A, ElHady AK, El-Gamil DS, Lin KC, Chang YH, Lee YH, Hilscher S, Schutkowski M, Ibrahim HS, Chen SH, Chen CH, Abadi AH, Sippl W, Chen PJ, Cheng YS, Abdel-Halim M. Development of potent and selective tetrahydro-β-carboline-based HDAC6 inhibitors with promising activity against triple-negative breast cancer. RSC Med Chem 2025:d5md00086f. [PMID: 40256307 PMCID: PMC12004265 DOI: 10.1039/d5md00086f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025] Open
Abstract
Overexpression of histone deacetylase 6 (HDAC6) is implicated in tumorigenesis, invasion, migration, survival, apoptosis, and growth of various malignancies, making it a promising target for cancer treatment. Building on our previous work, we report a novel series of tetrahydro-β-carboline-piperazinedione derivatives as HDAC6 inhibitors. Structural modifications were introduced at the 6-aryl group, with the m-bromophenyl derivative (9c) emerging as the most potent HDAC6 inhibitor, exhibiting an IC50 of 7 nM. Compound 9c demonstrated robust growth inhibitory activity across 60 cancer cell lines from the NCI panel, with a mean GI50 of 2.64 μM and a GI50 below 5 μM for nearly all tested lines, while exhibiting significantly lower cytotoxicity towards non-tumor cell lines. The triple-negative breast cancer cell line MDA-MB-231 was selected for further investigation of 9c's cellular effects. 9c selectively increased the acetylation of non-histone α-tubulin in MDA-MB-231 cells, confirming its HDAC6 selectivity. Furthermore, 9c effectively induced apoptosis, caused apoptotic sub-G1 phase accumulation, upregulated pro-apoptotic caspase-3, and downregulated anti-apoptotic Bcl-2. Notably, 9c reduced the expression of programmed death-ligand 1 (PD-L1), a key immune checkpoint protein that enables tumor cells to evade immune surveillance, highlighting its potential role in enhancing anti-tumor immunity. In addition, 9c inhibited phosphorylated extracellular signal-regulated kinase (ERK)1/2, a central signaling pathway that drives cell proliferation, survival, and migration, further highlighting its significance in suppressing tumor progression and growth. In migration assays, 9c impaired cell motility, achieving 80% gap closure inhibition in a wound-healing assay. Collectively, these findings underline compound 9c as a highly promising candidate for the treatment of triple-negative breast cancer, with the added benefits of PD-L1 and ERK inhibition for potential synergy in enhancing anti-tumor immunity and reducing tumor cell proliferation.
Collapse
Affiliation(s)
- Aya Fathy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo Cairo 11835 Egypt
| | - Amro Allam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo Cairo 11835 Egypt
| | - Ahmed K ElHady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo Cairo 11835 Egypt
- School of Life & Medical Sciences, University of Hertfordshire hosted by Global Academic Foundation New Administrative Capital Cairo Egypt
| | - Dalia S El-Gamil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo Cairo 11835 Egypt
- Department of Chemistry, Faculty of Pharmacy, Ahram Canadian University Cairo 12451 Egypt
| | - Kai-Chun Lin
- Institute of Plant Biology, College of Life Science, National Taiwan University Taipei 10617 Taiwan
| | - Yen-Hua Chang
- Institute of Plant Biology, College of Life Science, National Taiwan University Taipei 10617 Taiwan
| | - Yu-Hsuan Lee
- Department of Life Science, College of Life Science, National Taiwan University Taipei 10617 Taiwan
| | - Sebastian Hilscher
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg Halle (Saale) Germany
| | - Mike Schutkowski
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg Halle (Saale) Germany
| | - Hany S Ibrahim
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg Halle (Saale) Germany
| | - Shun-Hua Chen
- School of Nursing, Fooyin University Kaohsiung 831301 Taiwan
| | - Chun-Hong Chen
- Department of Medical Research, E-Da Hospital and Graduate Institute of Medicine, I-Shou University Kaohsiung 824410 Taiwan
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo Cairo 11835 Egypt
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg Halle (Saale) Germany
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital and Graduate Institute of Medicine, I-Shou University Kaohsiung 824410 Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University Kaohsiung 80708 Taiwan
| | - Yi-Sheng Cheng
- Institute of Plant Biology, College of Life Science, National Taiwan University Taipei 10617 Taiwan
- Department of Life Science, College of Life Science, National Taiwan University Taipei 10617 Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University Taipei 10617 Taiwan
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo Cairo 11835 Egypt
| |
Collapse
|
2
|
Jungwirth J, Mieland AO, Piée-Staffa A, Heimburg T, Brenner W, Ehrhardt C, Sippl W, Henke A, Krämer OH. Pharmacologically induced proteolysis of histone deacetylase-6 attenuates influenza virus replication despite limited anti-tumor effects. Life Sci 2025; 363:123401. [PMID: 39814129 DOI: 10.1016/j.lfs.2025.123401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/23/2024] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
The protein deacetylase HDAC6 has been controversially linked to cancer cell proliferation and viral propagation. We analyzed whether a pharmacological depletion of HDAC6 with a recent proteolysis-targeting chimera (PROTAC) kills tumor cells. We show that low micromolar doses of the cereblon-based PROTAC TH170, but not its inactive analog TH170E, induce proteasomal degradation of HDAC6. The elimination of HDAC6 by TH170 does not compromise leukemia cell growth and survival, DNA integrity, and the stability of selected cancer-relevant proteins. Increasing the doses of TH170 generates a hook-effect on HDAC6 degradation and the apoptosis-associated fragmentation of HDAC6. Unlike the specific elimination of HDAC6 that low doses of TH170 evoke, this fragmentation of HDAC6 is linked to apoptosis and an accumulation of acetylated histones. Thus, like HDAC6 inhibitors, pharmacological degraders of HDAC6 do not induce leukemic cell death unless they are used in non-selective concentrations. Bioinformatic analyses of 91 lymphoid, 37 myeloid, and 125 lung cancer cells in which HDAC6 was deleted by CRISPR-Cas9 corroborate these data. HDAC6 is expressed in various bronchus and lung cell types. In a human lung cell model, TH170 reduces influenza A virus replication dependent on the strain and without compromising cell vitality. These data suggest that pharmacologically amenable kinase-independent functions of HDAC6 control viral replication. Eliminating HDAC6 could be a promising anti-viral strategy with a benign impact on host cells.
Collapse
Affiliation(s)
- Johannes Jungwirth
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Germany; Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Andreas O Mieland
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Andrea Piée-Staffa
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Tino Heimburg
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Walburgis Brenner
- Department of Obstetrics and Gynecology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Christina Ehrhardt
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Germany.
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany.
| | - Andreas Henke
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Germany.
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
3
|
Inserra A, Campanale A, Rezai T, Romualdi P, Rubino T. Epigenetic mechanisms of rapid-acting antidepressants. Transl Psychiatry 2024; 14:359. [PMID: 39231927 PMCID: PMC11375021 DOI: 10.1038/s41398-024-03055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Rapid-acting antidepressants (RAADs), including dissociative anesthetics, psychedelics, and empathogens, elicit rapid and sustained therapeutic improvements in psychiatric disorders by purportedly modulating neuroplasticity, neurotransmission, and immunity. These outcomes may be mediated by, or result in, an acute and/or sustained entrainment of epigenetic processes, which remodel chromatin structure and alter DNA accessibility to regulate gene expression. METHODS In this perspective, we present an overview of the known mechanisms, knowledge gaps, and future directions surrounding the epigenetic effects of RAADs, with a focus on the regulation of stress-responsive DNA and brain regions, and on the comparison with conventional antidepressants. MAIN BODY Preliminary correlative evidence indicates that administration of RAADs is accompanied by epigenetic effects which are similar to those elicited by conventional antidepressants. These include changes in DNA methylation, post-translational modifications of histones, and differential regulation of non-coding RNAs in stress-responsive chromatin areas involved in neurotrophism, neurotransmission, and immunomodulation, in stress-responsive brain regions. Whether these epigenetic changes causally contribute to the therapeutic effects of RAADs, are a consequence thereof, or are unrelated, remains unknown. Moreover, the potential cell type-specificity and mechanisms involved are yet to be fully elucidated. Candidate mechanisms include neuronal activity- and serotonin and Tropomyosine Receptor Kinase B (TRKB) signaling-mediated epigenetic changes, and direct interaction with DNA, histones, or chromatin remodeling complexes. CONCLUSION Correlative evidence suggests that epigenetic changes induced by RAADs accompany therapeutic and side effects, although causation, mechanisms, and cell type-specificity remain largely unknown. Addressing these research gaps may lead to the development of novel neuroepigenetics-based precision therapeutics.
Collapse
Affiliation(s)
- Antonio Inserra
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Behavioral Neuroscience Laboratory, University of South Santa Catarina (UNISUL), Tubarão, Brazil., Tubarão, Brazil.
| | | | - Tamim Rezai
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Varese, Italy
| |
Collapse
|
4
|
Jha S, Kim JH, Kim M, Nguyen AH, Ali KH, Gupta SK, Park SY, Ha E, Seo YH. Design, synthesis, and biological evaluation of HDAC6 inhibitors targeting L1 loop and serine 531 residue. Eur J Med Chem 2024; 265:116057. [PMID: 38142511 DOI: 10.1016/j.ejmech.2023.116057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023]
Abstract
Histone deacetylases (HDACs) are a group of enzymes that remove acetyl groups from histones, leading to the silencing of genes. Targeting specific isoforms of HDACs has emerged as a promising approach for cancer therapy, as it can overcome drawbacks associated with pan-HDAC inhibitors. HDAC6 is a unique HDAC isoform that deacetylates non-histone proteins and is primarily located in the cytoplasm. It also has two catalytic domains and a zinc-finger ubiquitin binding domain (Zf-UBD) unlike other HDACs. HDAC6 plays a critical role in various cellular processes, including cell motility, protein degradation, cell proliferation, and transcription. Hence, the deregulation of HDAC6 is associated with various malignancies. In this study, we report the design and synthesis of a series of HDAC6 inhibitors. We evaluated the synthesized compounds by HDAC enzyme assay and identified that compound 8g exhibited an IC50 value of 21 nM and 40-fold selective activity towards HDAC6. We also assessed the effect of compound 8g on various cell lines and determined its ability to increase protein acetylation levels by Western blotting. Furthermore, the increased acetylation of α-tubulin resulted in microtubule polymerization and changes in cell morphology. Our molecular docking study supported these findings by demonstrating that compound 8g binds well to the catalytic pocket via L1 loop of HDAC6 enzyme. Altogether, compound 8g represents a preferential HDAC6 inhibitor that could serve as a lead for the development of more potent and specific inhibitors.
Collapse
Affiliation(s)
- Sonam Jha
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea
| | - Ji Hyun Kim
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea
| | - Mikyung Kim
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 704-701, South Korea
| | - Ai-Han Nguyen
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea
| | - Khan Hashim Ali
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea
| | - Sunil K Gupta
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea
| | - Sun You Park
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (KMEDIhub), 41061, South Korea
| | - Eunyoung Ha
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 704-701, South Korea.
| | - Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu, 704-701, South Korea.
| |
Collapse
|
5
|
Yang HM, Lee C, Min J, Ha N, Bae D, Nam G, Park HJ. Development of a tetrahydroindazolone-based HDAC6 inhibitor with in-vivo anti-arthritic activity. Bioorg Med Chem 2024; 99:117587. [PMID: 38237257 DOI: 10.1016/j.bmc.2024.117587] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/06/2024]
Abstract
Histone deacetylase 6 (HDAC6) induces the expression of pro-inflammatory cytokines in macrophages; therefore, HDAC inhibitors may be beneficial for the treatment of macrophage-associated immune disorders and chronic inflammatory diseases, including atherosclerosis and rheumatoid arthritis. Structure-activity relationship studies were conducted on various phenyl hydroxamate HDAC6 inhibitors with indolone/indazolone-based bi- or tricyclic ring moieties as the cap group aiming to develop novel anti-arthritic drug candidates. Several compounds exhibited nanomolar activity and HDAC6 selectivity greater than 500-fold over HDAC1. Compound 21, a derivative with the tetrahydroindazolone cap group, is a potent HDAC6 inhibitor with an IC50 of 18 nM and 217-fold selectivity over HDAC1 and showed favorable oral bioavailability in animals. Compound 21 increases the acetylation level of tubulin without affecting histone acetylation in cutaneous T-cell lymphoma cells and inhibits TNF-α secretion in LPS-stimulated macrophage cells. The anti-arthritic effects of compound 21 were evaluated using a rat adjuvant-induced arthritis (AIA) model. Treatment with compound 21 significantly reduced the arthritis score, and combination treatment with methotrexate showed a synergistic effect in AIA models. We identified a novel HDAC6 inhibitor, compound 21, with excellent in vivo anti-arthritic efficacy, which can lead to the development of oral anti-arthritic drugs.
Collapse
Affiliation(s)
- Hyun-Mo Yang
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea; Chong Kun Dang Research Institute, CKD Pharmaceuticals, Gyeonggi-do 16995, South Korea
| | - Changsik Lee
- Chong Kun Dang Research Institute, CKD Pharmaceuticals, Gyeonggi-do 16995, South Korea
| | - Jaeki Min
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea; Chong Kun Dang Research Institute, CKD Pharmaceuticals, Gyeonggi-do 16995, South Korea
| | - Nina Ha
- Chong Kun Dang Research Institute, CKD Pharmaceuticals, Gyeonggi-do 16995, South Korea
| | - Daekwon Bae
- Chong Kun Dang Research Institute, CKD Pharmaceuticals, Gyeonggi-do 16995, South Korea
| | - Gibeom Nam
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea
| | - Hyun-Ju Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, South Korea.
| |
Collapse
|
6
|
Peng J, Xie F, Qin P, Liu Y, Niu H, Sun J, Xue H, Zhao Q, Liu J, Wu J. Recent development of selective inhibitors targeting the HDAC6 as anti-cancer drugs: Structure, function and design. Bioorg Chem 2023; 138:106622. [PMID: 37244230 DOI: 10.1016/j.bioorg.2023.106622] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
HDAC6, a member of the histone deacetylase family, mainly is a cytosolic protein and regulates cell growth by acting on non-histone substrates, such as α -tubulin, cortactin, heat shock protein HSP90, programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1), that are closely related to the proliferation, invasion, immune escape and angiogenesis of cancer tissues. The approved drugs targeting the HDACs are all pan-inhibitors and have many side effects due to their lack of selectivity. Therefore, development of selective inhibitors of HDAC6 has attracted much attention in the field of cancer therapy. In this review, we will summarize the relationship between HDAC6 and cancer, and discuss the design strategies of HDAC6 inhibitors for cancer treatment in recent years.
Collapse
Affiliation(s)
- Jie Peng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Fei Xie
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Pengxia Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Yujing Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoqian Niu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jie Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoyu Xue
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Qianlong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingqian Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingde Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
7
|
Khetmalis YM, Fathima A, Schweipert M, Debarnot C, Bandaru NVMR, Murugesan S, Jamma T, Meyer-Almes FJ, Sekhar KVGC. Design, Synthesis, and Biological Evaluation of Novel Quinazolin-4(3H)-One-Based Histone Deacetylase 6 (HDAC6) Inhibitors for Anticancer Activity. Int J Mol Sci 2023; 24:11044. [PMID: 37446224 DOI: 10.3390/ijms241311044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
A series of novel quinazoline-4-(3H)-one derivatives were designed and synthesized as histone deacetylase 6 (HDAC6) inhibitors based on novel quinazoline-4-(3H)-one as the cap group and benzhydroxamic acid as the linker and metal-binding group. A total of 19 novel quinazoline-4-(3H)-one analogues (5a-5s) were obtained. The structures of the target compounds were characterized using 1H-NMR, 13C-NMR, LC-MS, and elemental analyses. Characterized compounds were screened for inhibition against HDAC8 class I, HDAC4 class IIa, and HDAC6 class IIb. Among the compounds tested, 5b proved to be the most potent and selective inhibitor of HDAC6 with an IC50 value 150 nM. Some of these compounds showed potent antiproliferative activity in several tumor cell lines (HCT116, MCF7, and B16). Amongst all the compounds tested for their anticancer effect against cancer cell lines, 5c emerged to be most active against the MCF-7 line with an IC50 of 13.7 μM; it exhibited cell-cycle arrest in the G2 phase, as well as promoted apoptosis. Additionally, we noted a significant reduction in the colony-forming capability of cancer cells in the presence of 5c. At the intracellular level, selective inhibition of HDAC6 was enumerated by monitoring the acetylation of α-tubulin with a limited effect on acetyl-H3. Importantly, the obtained results suggested a potent effect of 5c at sub-micromolar concentrations as compared to the other molecules as HDAC6 inhibitors in vitro.
Collapse
Affiliation(s)
- Yogesh Mahadu Khetmalis
- Department of Chemistry, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Ashna Fathima
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Markus Schweipert
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| | - Cécile Debarnot
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| | | | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science Pilani, Pilani Campus, Pilani 333031, Rajasthan, India
| | - Trinath Jamma
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Haardtring 100, 64295 Darmstadt, Germany
| | | |
Collapse
|
8
|
Li X, Ye F, Wang Y, Sun X, Chen H, Chen T, Gao Y, Chen H. Synthesis, structure-activity relationship, and biological evaluation of quinolines for development of anticancer agents. Arch Pharm (Weinheim) 2023:e2200673. [PMID: 37160703 DOI: 10.1002/ardp.202200673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Tetrahydro-β-carbolines (THβCs) are a kind of natural alkaloids with multiple pharmaceutical activities. Herein, a focused compound library derived from THβCs was synthesized and their anticancer activities were studied in several cancer cell lines. Among them, three compounds showed considerable anticancer activities with low micromolar to submicromolar IC50 values. The abilities to induce apoptosis and alter mitochondrial membrane potential levels, which are comparable to those of the commercial anticancer drug adriamycin, were confirmed by one representative compound (21) on the B16/F10 cell line. Our preliminary structure-activity relationship studies indicated that alkylamines with suitable lengths are very important for potency improvement.
Collapse
Affiliation(s)
- Xudong Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Fu Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Yuran Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Xianbin Sun
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Hui Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Tingyan Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Yu Gao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
9
|
Mustafa AHM, Krämer OH. Pharmacological Modulation of the Crosstalk between Aberrant Janus Kinase Signaling and Epigenetic Modifiers of the Histone Deacetylase Family to Treat Cancer. Pharmacol Rev 2023; 75:35-61. [PMID: 36752816 DOI: 10.1124/pharmrev.122.000612] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 12/13/2022] Open
Abstract
Hyperactivated Janus kinase (JAK) signaling is an appreciated drug target in human cancers. Numerous mutant JAK molecules as well as inherent and acquired drug resistance mechanisms limit the efficacy of JAK inhibitors (JAKi). There is accumulating evidence that epigenetic mechanisms control JAK-dependent signaling cascades. Like JAKs, epigenetic modifiers of the histone deacetylase (HDAC) family regulate the growth and development of cells and are often dysregulated in cancer cells. The notion that inhibitors of histone deacetylases (HDACi) abrogate oncogenic JAK-dependent signaling cascades illustrates an intricate crosstalk between JAKs and HDACs. Here, we summarize how structurally divergent, broad-acting as well as isoenzyme-specific HDACi, hybrid fusion pharmacophores containing JAKi and HDACi, and proteolysis targeting chimeras for JAKs inactivate the four JAK proteins JAK1, JAK2, JAK3, and tyrosine kinase-2. These agents suppress aberrant JAK activity through specific transcription-dependent processes and mechanisms that alter the phosphorylation and stability of JAKs. Pharmacological inhibition of HDACs abrogates allosteric activation of JAKs, overcomes limitations of ATP-competitive type 1 and type 2 JAKi, and interacts favorably with JAKi. Since such findings were collected in cultured cells, experimental animals, and cancer patients, we condense preclinical and translational relevance. We also discuss how future research on acetylation-dependent mechanisms that regulate JAKs might allow the rational design of improved treatments for cancer patients. SIGNIFICANCE STATEMENT: Reversible lysine-ɛ-N acetylation and deacetylation cycles control phosphorylation-dependent Janus kinase-signal transducer and activator of transcription signaling. The intricate crosstalk between these fundamental molecular mechanisms provides opportunities for pharmacological intervention strategies with modern small molecule inhibitors. This could help patients suffering from cancer.
Collapse
Affiliation(s)
- Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| |
Collapse
|
10
|
Kaur S, Rajoria P, Chopra M. HDAC6: A unique HDAC family member as a cancer target. Cell Oncol (Dordr) 2022; 45:779-829. [PMID: 36036883 DOI: 10.1007/s13402-022-00704-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND HDAC6, a structurally and functionally distinct member of the HDAC family, is an integral part of multiple cellular functions such as cell proliferation, apoptosis, senescence, DNA damage and genomic stability, all of which when deregulated contribute to carcinogenesis. Among several HDAC family members known so far, HDAC6 holds a unique position. It differs from the other HDAC family members not only in terms of its subcellular localization, but also in terms of its substrate repertoire and hence cellular functions. Recent findings have considerably expanded the research related to the substrate pool, biological functions and regulation of HDAC6. Studies in HDAC6 knockout mice highlighted the importance of HDAC6 as a cell survival player in stressful situations, making it an important anticancer target. There is ample evidence stressing the importance of HDAC6 as an anti-cancer synergistic partner of many chemotherapeutic drugs. HDAC6 inhibitors have been found to enhance the effectiveness of conventional chemotherapeutic drugs such as DNA damaging agents, proteasome inhibitors and microtubule inhibitors, thereby highlighting the importance of combination therapies involving HDAC6 inhibitors and other anti-cancer agents. CONCLUSIONS Here, we present a review on HDAC6 with emphasis on its role as a critical regulator of specific physiological cellular pathways which when deregulated contribute to tumorigenesis, thereby highlighting the importance of HDAC6 inhibitors as important anticancer agents alone and in combination with other chemotherapeutic drugs. We also discuss the synergistic anticancer effect of combination therapies of HDAC6 inhibitors with conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Sumeet Kaur
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Prerna Rajoria
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Madhu Chopra
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
11
|
Winkler R, Mägdefrau AS, Piskor EM, Kleemann M, Beyer M, Linke K, Hansen L, Schaffer AM, Hoffmann ME, Poepsel S, Heyd F, Beli P, Möröy T, Mahboobi S, Krämer OH, Kosan C. Targeting the MYC interaction network in B-cell lymphoma via histone deacetylase 6 inhibition. Oncogene 2022; 41:4560-4572. [PMID: 36068335 PMCID: PMC9525236 DOI: 10.1038/s41388-022-02450-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022]
Abstract
Overexpression of MYC is a genuine cancer driver in lymphomas and related to poor prognosis. However, therapeutic targeting of the transcription factor MYC remains challenging. Here, we show that inhibition of the histone deacetylase 6 (HDAC6) using the HDAC6 inhibitor Marbostat-100 (M-100) reduces oncogenic MYC levels and prevents lymphomagenesis in a mouse model of MYC-induced aggressive B-cell lymphoma. M-100 specifically alters protein-protein interactions by switching the acetylation state of HDAC6 substrates, such as tubulin. Tubulin facilitates nuclear import of MYC, and MYC-dependent B-cell lymphoma cells rely on continuous import of MYC due to its high turn-over. Acetylation of tubulin impairs this mechanism and enables proteasomal degradation of MYC. M-100 targets almost exclusively B-cell lymphoma cells with high levels of MYC whereas non-tumor cells are not affected. M-100 induces massive apoptosis in human and murine MYC-overexpressing B-cell lymphoma cells. We identified the heat-shock protein DNAJA3 as an interactor of tubulin in an acetylation-dependent manner and overexpression of DNAJA3 resulted in a pronounced degradation of MYC. We propose a mechanism by which DNAJA3 associates with hyperacetylated tubulin in the cytoplasm to control MYC turnover. Taken together, our data demonstrate a beneficial role of HDAC6 inhibition in MYC-dependent B-cell lymphoma.
Collapse
Affiliation(s)
- René Winkler
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, 07745, Germany.,Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Germans Trias i Pujol, Badalona, 08916, Spain
| | - Ann-Sophie Mägdefrau
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, 07745, Germany
| | - Eva-Maria Piskor
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, 07745, Germany
| | - Markus Kleemann
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, 07745, Germany
| | - Mandy Beyer
- Institute of Toxicology, University Medical Center Mainz, Mainz, 55131, Germany
| | - Kevin Linke
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, 07745, Germany
| | - Lisa Hansen
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, 07745, Germany
| | - Anna-Maria Schaffer
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, 07745, Germany
| | | | - Simon Poepsel
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, University of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany
| | - Florian Heyd
- Laboratory of RNA Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, 14195, Germany
| | - Petra Beli
- Institute of Molecular Biology (IMB), Mainz, 55128, Germany
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
| | - Siavosh Mahboobi
- Department of Pharmaceutical/Medicinal Chemistry I, Institute of Pharmacy, University of Regensburg, Regensburg, 93040, Germany
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Center Mainz, Mainz, 55131, Germany
| | - Christian Kosan
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Jena, 07745, Germany.
| |
Collapse
|
12
|
Zeyen P, Zeyn Y, Herp D, Mahmoudi F, Yesiloglu TZ, Erdmann F, Schmidt M, Robaa D, Romier C, Ridinger J, Herbst-Gervasoni CJ, Christianson DW, Oehme I, Jung M, Krämer OH, Sippl W. Identification of histone deacetylase 10 (HDAC10) inhibitors that modulate autophagy in transformed cells. Eur J Med Chem 2022; 234:114272. [PMID: 35306288 PMCID: PMC9007901 DOI: 10.1016/j.ejmech.2022.114272] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/02/2023]
Abstract
Histone deacetylases (HDACs) are a family of 18 epigenetic modifiers that fall into 4 classes. Histone deacetylase inhibitors (HDACi) are valid tools to assess HDAC functions. HDAC6 and HDAC10 belong to the class IIb subgroup of the HDAC family. The targets and biological functions of HDAC10 are ill-defined. This lack of knowledge is due to a lack of specific and potent HDAC10 inhibitors with cellular activity. Here, we have synthesized and characterized piperidine-4-acrylhydroxamates as potent and highly selective inhibitors of HDAC10. This was achieved by targeting the acidic gatekeeper residue Glu274 of HDAC10 with a basic piperidine moiety that mimics the interaction of the polyamine substrate of HDAC10. We have confirmed the binding modes of selected inhibitors using X-ray crystallography. Promising candidates were selected based on their specificity by in vitro profiling using recombinant HDACs. The most promising HDAC10 inhibitors 10c and 13b were tested for specificity in acute myeloid leukemia (AML) cells with the FLT3-ITD oncogene. By immunoblot experiments we assessed the hyperacetylation of histones and tubulin-α, which are class I and HDAC6 substrates, respectively. As validated test for HDAC10 inhibition we used flow cytometry assessing autolysosome formation in neuroblastoma and AML cells. We demonstrate that 10c and 13b inhibit HDAC10 with high specificity over HDAC6 and with no significant impact on class I HDACs. The accumulation of autolysosomes is not a consequence of apoptosis and 10c and 13b are not toxic for normal human kidney cells. These data show that 10c and 13b are nanomolar inhibitors of HDAC10 with high specificity. Thus, our new HDAC10 inhibitors are tools to identify the downstream targets and functions of HDAC10 in cells.
Collapse
|
13
|
Nawar N, Bukhari S, Adile AA, Suk Y, Manaswiyoungkul P, Toutah K, Olaoye OO, Raouf YS, Sedighi A, Garcha HK, Hassan MM, Gwynne W, Israelian J, Radu TB, Geletu M, Abdeldayem A, Gawel JM, Cabral AD, Venugopal C, de Araujo ED, Singh SK, Gunning PT. Discovery of HDAC6-Selective Inhibitor NN-390 with in Vitro Efficacy in Group 3 Medulloblastoma. J Med Chem 2022; 65:3193-3217. [PMID: 35119267 DOI: 10.1021/acs.jmedchem.1c01585] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Histone deacetylase 6 (HDAC6) has been targeted in clinical studies for anticancer effects due to its role in oncogenic transformation and metastasis. Through a second-generation structure-activity relationship (SAR) study, the design, and biological evaluation of the selective HDAC6 inhibitor NN-390 is reported. With nanomolar HDAC6 potency, >200-550-fold selectivity for HDAC6 in analogous HDAC isoform functional assays, potent intracellular target engagement, and robust cellular efficacy in cancer cell lines, NN-390 is the first HDAC6-selective inhibitor to show therapeutic potential in metastatic Group 3 medulloblastoma (MB), an aggressive pediatric brain tumor often associated with leptomeningeal metastases and therapy resistance. MB stem cells contribute to these patients' poor clinical outcomes. NN-390 selectively targets this cell population with a 44.3-fold therapeutic margin between patient-derived Group 3 MB cells in comparison to healthy neural stem cells. NN-390 demonstrated a 45-fold increased potency over HDAC6-selective clinical candidate citarinostat. In summary, HDAC6-selective molecules demonstrated in vitro therapeutic potential against Group 3 MB.
Collapse
Affiliation(s)
- Nabanita Nawar
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Shazreh Bukhari
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Ashley A Adile
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Yujin Suk
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Pimyupa Manaswiyoungkul
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Krimo Toutah
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Olasunkanmi O Olaoye
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Yasir S Raouf
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Abootaleb Sedighi
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Harsimran Kaur Garcha
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Muhammad Murtaza Hassan
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - William Gwynne
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Johan Israelian
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Tudor B Radu
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mulu Geletu
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Ayah Abdeldayem
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Justyna M Gawel
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Aaron D Cabral
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Chitra Venugopal
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Elvin D de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Sheila K Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada.,Department of Surgery, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.,Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
14
|
Facile synthesis of C1-substituted β-carbolines as CDK4 inhibitors for the treatment of cancer. Bioorg Chem 2022; 121:105659. [DOI: 10.1016/j.bioorg.2022.105659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/05/2022] [Accepted: 02/05/2022] [Indexed: 01/04/2023]
|
15
|
Fernández-Serrano M, Winkler R, Santos JC, Le Pannérer MM, Buschbeck M, Roué G. Histone Modifications and Their Targeting in Lymphoid Malignancies. Int J Mol Sci 2021; 23:253. [PMID: 35008680 PMCID: PMC8745418 DOI: 10.3390/ijms23010253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
In a wide range of lymphoid neoplasms, the process of malignant transformation is associated with somatic mutations in B cells that affect the epigenetic machinery. Consequential alterations in histone modifications contribute to disease-specific changes in the transcriptional program. Affected genes commonly play important roles in cell cycle regulation, apoptosis-inducing signal transduction, and DNA damage response, thus facilitating the emergence of malignant traits that impair immune surveillance and favor the emergence of different B-cell lymphoma subtypes. In the last two decades, the field has made a major effort to develop therapies that target these epigenetic alterations. In this review, we discuss which epigenetic alterations occur in B-cell non-Hodgkin lymphoma. Furthermore, we aim to present in a close to comprehensive manner the current state-of-the-art in the preclinical and clinical development of epigenetic drugs. We focus on therapeutic strategies interfering with histone methylation and acetylation as these are most advanced in being deployed from the bench-to-bedside and have the greatest potential to improve the prognosis of lymphoma patients.
Collapse
Affiliation(s)
- Miranda Fernández-Serrano
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain; (M.F.-S.); (J.C.S.)
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08014 Barcelona, Spain
| | - René Winkler
- Chromatin, Metabolism and Cell Fate Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain; (R.W.); (M.-M.L.P.)
| | - Juliana C. Santos
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain; (M.F.-S.); (J.C.S.)
| | - Marguerite-Marie Le Pannérer
- Chromatin, Metabolism and Cell Fate Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain; (R.W.); (M.-M.L.P.)
| | - Marcus Buschbeck
- Chromatin, Metabolism and Cell Fate Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain; (R.W.); (M.-M.L.P.)
- Program of Personalized and Predictive Medicine of Cancer, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain; (M.F.-S.); (J.C.S.)
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08014 Barcelona, Spain
| |
Collapse
|
16
|
A review of synthetic bioactive tetrahydro-β-carbolines: A medicinal chemistry perspective. Eur J Med Chem 2021; 225:113815. [PMID: 34479038 DOI: 10.1016/j.ejmech.2021.113815] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/22/2021] [Accepted: 08/29/2021] [Indexed: 12/21/2022]
Abstract
1, 2, 3, 4-Tetrahydro-β-carboline (THβC) scaffold is widespread in many natural products (NPs) and synthetic compounds which show a variety of pharmacological activities. In this article, we reviewed the design, structures and biological characteristics of reported synthetic THβC compounds, and structure and activity relationship (SAR) of them were also discussed. This work might provide a reference for subsequent drug development based on THβC.
Collapse
|
17
|
Blasl AT, Schulze S, Qin C, Graf LG, Vogt R, Lammers M. Post-translational lysine ac(et)ylation in health, ageing and disease. Biol Chem 2021; 403:151-194. [PMID: 34433238 DOI: 10.1515/hsz-2021-0139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
The acetylation/acylation (ac(et)ylation) of lysine side chains is a dynamic post-translational modification (PTM) regulating fundamental cellular processes with implications on the organisms' ageing process: metabolism, transcription, translation, cell proliferation, regulation of the cytoskeleton and DNA damage repair. First identified to occur on histones, later studies revealed the presence of lysine ac(et)ylation in organisms of all kingdoms of life, in proteins covering all essential cellular processes. A remarkable finding showed that the NAD+-dependent sirtuin deacetylase Sir2 has an impact on replicative lifespan in Saccharomyces cerevisiae suggesting that lysine acetylation has a direct role in the ageing process. Later studies identified sirtuins as mediators for beneficial effects of caloric/dietary restriction on the organisms' health- or lifespan. However, the molecular mechanisms underlying these effects are only incompletely understood. Progress in mass-spectrometry, structural biology, synthetic and semi-synthetic biology deepened our understanding of this PTM. This review summarizes recent developments in the research field. It shows how lysine ac(et)ylation regulates protein function, how it is regulated enzymatically and non-enzymatically, how a dysfunction in this post-translational machinery contributes to disease development. A focus is set on sirtuins and lysine acyltransferases as these are direct sensors and mediators of the cellular metabolic state. Finally, this review highlights technological advances to study lysine ac(et)ylation.
Collapse
Affiliation(s)
- Anna-Theresa Blasl
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Sabrina Schulze
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Chuan Qin
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Leonie G Graf
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Robert Vogt
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Michael Lammers
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| |
Collapse
|
18
|
Toutah K, Nawar N, Timonen S, Sorger H, Raouf YS, Bukhari S, von Jan J, Ianevski A, Gawel JM, Olaoye OO, Geletu M, Abdeldayem A, Israelian J, Radu TB, Sedighi A, Bhatti MN, Hassan MM, Manaswiyoungkul P, Shouksmith AE, Neubauer HA, de Araujo ED, Aittokallio T, Krämer OH, Moriggl R, Mustjoki S, Herling M, Gunning PT. Development of HDAC Inhibitors Exhibiting Therapeutic Potential in T-Cell Prolymphocytic Leukemia. J Med Chem 2021; 64:8486-8509. [PMID: 34101461 PMCID: PMC8237267 DOI: 10.1021/acs.jmedchem.1c00420] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/21/2022]
Abstract
Epigenetic targeting has emerged as an efficacious therapy for hematological cancers. The rare and incurable T-cell prolymphocytic leukemia (T-PLL) is known for its aggressive clinical course. Current epigenetic agents such as histone deacetylase (HDAC) inhibitors are increasingly used for targeted therapy. Through a structure-activity relationship (SAR) study, we developed an HDAC6 inhibitor KT-531, which exhibited higher potency in T-PLL compared to other hematological cancers. KT-531 displayed strong HDAC6 inhibitory potency and selectivity, on-target biological activity, and a safe therapeutic window in nontransformed cell lines. In primary T-PLL patient cells, where HDAC6 was found to be overexpressed, KT-531 exhibited strong biological responses, and safety in healthy donor samples. Notably, combination studies in T-PLL patient samples demonstrated KT-531 synergizes with approved cancer drugs, bendamustine, idasanutlin, and venetoclax. Our work suggests HDAC inhibition in T-PLL could afford sufficient therapeutic windows to achieve durable remission either as stand-alone or in combination with targeted drugs.
Collapse
Affiliation(s)
- Krimo Toutah
- Department
of Chemical and Physical Sciences, University
of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Nabanita Nawar
- Department
of Chemical and Physical Sciences, University
of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Sanna Timonen
- Hematology
Research Unit Helsinki, Helsinki University
Hospital Comprehensive Cancer Center, Helsinki, 00029 HUS, Finland
- Translational
Immunology Research Program and Department of Clinical Chemistry and
Hematology, University of Helsinki, Helsinki, 00014 Helsinki, Finland
- Institute
for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, 00014 Helsinki, Finland
| | - Helena Sorger
- Institute
of Animal Breeding and Genetics, University
of Veterinary Medicine Vienna, A-1210 Vienna, Austria
| | - Yasir S. Raouf
- Department
of Chemical and Physical Sciences, University
of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Shazreh Bukhari
- Department
of Chemical and Physical Sciences, University
of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Jana von Jan
- Department
of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf
(CIO ABCD), University of Cologne (UoC), 50923 Cologne, Germany
- Excellence
Cluster for Cellular Stress Response and Aging-Associated Diseases
(CECAD), UoC, 50923 Cologne, Germany
- Center
for Molecular Medicine Cologne (CMMC), UoC, 50923 Cologne, Germany
| | - Aleksandr Ianevski
- Institute
for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, 00014 Helsinki, Finland
| | - Justyna M. Gawel
- Department
of Chemical and Physical Sciences, University
of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Olasunkanmi O. Olaoye
- Department
of Chemical and Physical Sciences, University
of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mulu Geletu
- Department
of Chemical and Physical Sciences, University
of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Ayah Abdeldayem
- Department
of Chemical and Physical Sciences, University
of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Johan Israelian
- Department
of Chemical and Physical Sciences, University
of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Tudor B. Radu
- Department
of Chemical and Physical Sciences, University
of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Abootaleb Sedighi
- Department
of Chemical and Physical Sciences, University
of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Muzaffar N. Bhatti
- Department
of Chemical and Physical Sciences, University
of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Muhammad Murtaza Hassan
- Department
of Chemical and Physical Sciences, University
of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Pimyupa Manaswiyoungkul
- Department
of Chemical and Physical Sciences, University
of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Andrew E. Shouksmith
- Department
of Chemical and Physical Sciences, University
of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Heidi A. Neubauer
- Institute
of Animal Breeding and Genetics, University
of Veterinary Medicine Vienna, A-1210 Vienna, Austria
| | - Elvin D. de Araujo
- Centre
for Medicinal Chemistry, University of Toronto
Mississauga, 3359 Mississauga
Road, Mississauga, Ontario L5L 1C6, Canada
| | - Tero Aittokallio
- Institute
for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, 00014 Helsinki, Finland
- Department
of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway
- Oslo Centre
for Biostatistics and Epidemiology, University
of Oslo, 0316 Oslo, Norway
| | - Oliver H. Krämer
- Department
of Toxicology, University Medical Center, 55131 Mainz, Germany
| | - Richard Moriggl
- Institute
of Animal Breeding and Genetics, University
of Veterinary Medicine Vienna, A-1210 Vienna, Austria
| | - Satu Mustjoki
- Hematology
Research Unit Helsinki, Helsinki University
Hospital Comprehensive Cancer Center, Helsinki, 00029 HUS, Finland
- Translational
Immunology Research Program and Department of Clinical Chemistry and
Hematology, University of Helsinki, Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine
Flagship, 00014 Helsinki, Finland
| | - Marco Herling
- Department
of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf
(CIO ABCD), University of Cologne (UoC), 50923 Cologne, Germany
- Excellence
Cluster for Cellular Stress Response and Aging-Associated Diseases
(CECAD), UoC, 50923 Cologne, Germany
- Center
for Molecular Medicine Cologne (CMMC), UoC, 50923 Cologne, Germany
| | - Patrick T. Gunning
- Department
of Chemical and Physical Sciences, University
of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Centre
for Medicinal Chemistry, University of Toronto
Mississauga, 3359 Mississauga
Road, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
19
|
Zhang XH, Qin-Ma, Wu HP, Khamis MY, Li YH, Ma LY, Liu HM. A Review of Progress in Histone Deacetylase 6 Inhibitors Research: Structural Specificity and Functional Diversity. J Med Chem 2021; 64:1362-1391. [PMID: 33523672 DOI: 10.1021/acs.jmedchem.0c01782] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Histone deacetylases (HDACs) are essential for maintaining homeostasis by catalyzing histone deacetylation. Aberrant expression of HDACs is associated with various human diseases. Although HDAC inhibitors are used as effective chemotherapeutic agents in clinical practice, their applications remain limited due to associated side effects induced by weak isoform selectivity. HDAC6 displays unique structure and cellular localization as well as diverse substrates and exhibits a wider range of biological functions than other isoforms. HDAC6 inhibitors have been effectively used to treat cancers, neurodegenerative diseases, and autoimmune disorders without exerting significant toxic effects. Progress has been made in defining the crystal structures of HDAC6 catalytic domains which has influenced the structure-based drug design of HDAC6 inhibitors. This review summarizes recent literature on HDAC6 inhibitors with particular reference to structural specificity and functional diversity. It may provide up-to-date guidance for the development of HDAC6 inhibitors and perspectives for optimization of therapeutic applications.
Collapse
Affiliation(s)
- Xin-Hui Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qin-Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hui-Pan Wu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Mussa Yussuf Khamis
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yi-Han Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
- China Meheco Topfond Pharmaceutical Co., Ltd., Zhumadian, 463000, PR China
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
20
|
Su M, Gong X, Liu F. An update on the emerging approaches for histone deacetylase (HDAC) inhibitor drug discovery and future perspectives. Expert Opin Drug Discov 2021; 16:745-761. [PMID: 33530771 DOI: 10.1080/17460441.2021.1877656] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION HDACs catalyze the removal of acetyl groups from the ε-N-acetylated lysine residues of various protein substrates including both histone and nonhistone proteins. Different HDACs have distinct biological functions and are recruited to specific regions of the genome. HDAC inhibitors have attracted much attention in recent decades; indeed, there have been more than thirty HDAC inhibitors investigated in clinic trials with five approvals being achieved. AREAS COVERED This review covers the emerging approaches for HDAC inhibitor drug discovery from the past five years and includes discussion of structure-based rational design, isoform selectivity, and dual mechanism/multi-targeting. Chemical structures in addition to the in vitro and in vivo inhibiting activity of these compounds have also been discussed. EXPERT OPINION The exact role and biological functions of HDACs is still under investigation with a variety of HDAC inhibitors having been designed and evaluated. HDAC inhibitors have shown promise in treating cancer, AD, metabolic disease, viral infection, and multiple sclerosis, but there is still a lot of room for clinical improvement. In the future, more efforts should be put into (i) HDAC isoform identification (ii) the optimization of selectivity, activity, and pharmacokinetics; and (iii) unconventional approaches for discovering different effective scaffolds and pharmacophores.
Collapse
Affiliation(s)
- Ma Su
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| | - Xingyu Gong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, PR China
| |
Collapse
|
21
|
Beato A, Gori A, Boucherle B, Peuchmaur M, Haudecoeur R. β-Carboline as a Privileged Scaffold for Multitarget Strategies in Alzheimer's Disease Therapy. J Med Chem 2021; 64:1392-1422. [PMID: 33528252 DOI: 10.1021/acs.jmedchem.0c01887] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The natural β-carboline alkaloids display similarities with neurotransmitters that can be favorably exploited to design bioactive and bioavailable drugs for Alzheimer's disease (AD) therapy. Several AD targets are currently and intensively being investigated, divided in different hypotheses: mainly the cholinergic, the amyloid β (Aβ), and the Tau hypotheses. To date, only symptomatic treatments are available involving acetylcholinesterase and NMDA inhibitors. On the basis of plethoric single-target structure-activity relationship studies, the β-carboline scaffold was identified as a powerful tool for fostering activity and molecular interactions with a wide range of AD-related targets. This knowledge can undoubtedly be used to design multitarget-directed ligands, a highly relevant strategy preferred in the context of multifactorial pathology with intricate etiology such as AD. In this review, we first individually discuss the AD targets of the β-carbolines, and then we focus on the multitarget strategies dedicated to the deliberate design of new efficient scaffolds.
Collapse
Affiliation(s)
| | - Anthonin Gori
- Univ. Grenoble Alpes, CNRS, DPM, 38000 Grenoble, France.,CHANEL Parfums Beauté, F-93500 Pantin, France
| | | | | | | |
Collapse
|
22
|
He X, Li Z, Zhuo XT, Hui Z, Xie T, Ye XY. Novel Selective Histone Deacetylase 6 (HDAC6) Inhibitors: A Patent Review (2016-2019). Recent Pat Anticancer Drug Discov 2021; 15:32-48. [PMID: 32065106 DOI: 10.2174/1574892815666200217125419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Many human diseases are associated with dysregulation of HDACs. HDAC6 exhibits deacetylase activity not only to histone protein but also to non-histone proteins such as α- tubulin, HSP90, cortactin, and peroxiredoxin. These unique functions of HDAC6 have gained significant attention in the medicinal chemistry community in recent years. Thus a great deal of effort has devoted to developing selective HDAC6 inhibitors for therapy with the hope to minimize the side effects caused by pan-HDAC inhibition. OBJECTIVE The review intends to analyze the structural feature of the scaffolds, to provide useful information for those who are interested in this field, as well as to spark the future design of the new inhibitors. METHODS The primary tool used for patent searching is SciFinder. All patents are retrieved from the following websites: the World Intellectual Property Organization (WIPO®), the United States Patent Trademark Office (USPTO®), Espacenet®, and Google Patents. The years of patents covered in this review are between 2016 and 2019. RESULTS Thirty-six patents from seventeen companies/academic institutes were classified into three categories based on the structure of ZBG: hydroxamic acid, 1,3,4-oxadiazole, and 1,2,4-oxadiazole. ZBG connects to the cap group through a linker. The cap group can tolerate different functional groups, including amide, urea, sulfonamide, sulfamide, etc. The cap group appears to modulate the selectivity of HDAC6 over other HDAC subtypes. CONCLUSION Selectively targeting HDAC6 over other subtypes represents two fold advantages: it maximizes the pharmacological effects and minimizes the side effects seen in pan-HDAC inhibitors. Many small molecule selective HDAC6 inhibitors have advanced to clinical studies in recent years. We anticipate the approval of selective HDAC6 inhibitors as therapeutic agents in the near future.
Collapse
Affiliation(s)
- Xingrui He
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhen Li
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiao-Tao Zhuo
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zi Hui
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Tian Xie
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiang-Yang Ye
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
23
|
Recent advances in small molecular modulators targeting histone deacetylase 6. FUTURE DRUG DISCOVERY 2020. [DOI: 10.4155/fdd-2020-0023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) is a unique isozyme in the HDAC family with various distinguished characters. HDAC6 is predominantly localized in the cytoplasm and has several specific nonhistone substrates, such as α-tubulin, cortactin, Hsp90, tau and peroxiredoxins. Accumulating evidence reveals that targeting HDAC6 may serve as a promising therapeutic strategy for the treatment of cancers, neurological disorders and immune diseases, making the development of HDAC6 inhibitors particularly attractive. Recently, multitarget drug design and proteolysis targeting chimera technology have also been applied in the discovery of novel small molecular modulators targeting HDAC6. In this review, we briefly describe the structural features and biological functions of HDAC6 and discuss the recent advances in HDAC6 modulators, including selective inhibitors, chimeric inhibitors and proteolysis targeting chimeras for multiple therapeutic purposes.
Collapse
|
24
|
Li SG, Wang YT, Zhang Q, Wang KB, Xue JJ, Li DH, Jing YK, Lin B, Hua HM. Pegaharmols A–B, Axially Chiral β-Carboline-quinazoline Dimers from the Roots of Peganum harmala. Org Lett 2020; 22:7522-7525. [DOI: 10.1021/acs.orglett.0c02709] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sheng-Ge Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yue-Tong Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Qin Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Kai-Bo Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jing-Jing Xue
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Da-Hong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Yong-Kui Jing
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning Province, People’s Republic of China
| | - Hui-Ming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| |
Collapse
|
25
|
ElHady AK, Shih SP, Chen YC, Liu YC, Ahmed NS, Keeton AB, Piazza GA, Engel M, Abadi AH, Abdel-Halim M. Extending the use of tadalafil scaffold: Development of novel selective phosphodiesterase 5 inhibitors and histone deacetylase inhibitors. Bioorg Chem 2020; 98:103742. [PMID: 32199305 DOI: 10.1016/j.bioorg.2020.103742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/27/2020] [Accepted: 03/07/2020] [Indexed: 12/17/2022]
Abstract
Herein we present the synthesis and characterization of a novel chemical series of tadalafil analogues that display different pharmacological profiles. Compounds that have the 6R, 12aR configuration and terminal carboxylic acid group at the side chain arising from the piperazinedione nitrogen were potent PDE5 inhibitors, with compound 11 having almost equal potency to tadalafil and superior selectivity over PDE11, the most common off-target for tadalafil. Modifying the stereochemistry into 6S, 12aS configuration and adopting the hydroxamic acid moiety as a terminal group gave rise to compounds that only inhibited HDAC. Dual PDE5/HDAC inhibition could be achieved with compounds having 6R, 12aR configuration and hydroxamic acid moiety as a terminal group. The anticancer activity of the synthesized compounds was evaluated against a diverse number of cell lines of different origin. The compounds elicited anticancer activity against cell lines belonging to lymphoproliferative cancer as well as solid tumors. Despite the previous reports suggesting anticancer activity of PDE5 inhibitors, the growth inhibitory activity of the compounds seemed to be solely dependent on HDAC inhibition. Compound 26 (pan HDAC IC50 = 14 nM, PDE5 IC50 = 46 nM) displayed the most potent anticancer activity in the present series and was shown to induce apoptosis in Molt-4 cells. HDAC isoform selectivity testing for compound 26 showed that it is more selective for HDAC6 and 8 over HDAC1 by more than 20-fold.
Collapse
Affiliation(s)
- Ahmed K ElHady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Shou-Ping Shih
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, 70 Lien-Hai Road, Kaohsiung 804, Taiwan; Doctoral Degree Program in Marine Biotechnology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 115, Taiwan
| | - Yu-Cheng Chen
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 40402, Taiwan
| | - Yi-Chang Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Nermin S Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Adam B Keeton
- Department of Oncologic Sciences and Pharmacology, Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36608, USA
| | - Gary A Piazza
- Department of Oncologic Sciences and Pharmacology, Drug Discovery Research Center, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36608, USA
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt.
| |
Collapse
|
26
|
Song H, Niu X, Quan J, Li Y, Yuan L, Wang J, Ma C, Ma E. Discovery of specific HDAC6 inhibitor with anti-metastatic effects in pancreatic cancer cells through virtual screening and biological evaluation. Bioorg Chem 2020; 97:103679. [PMID: 32120077 DOI: 10.1016/j.bioorg.2020.103679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023]
Abstract
Histone deacetylase 6 (HDAC6) has been demonstrated to play a major role in cell motility and aggresome formation, and HDAC6 inhibition is therefore considered as a promising epigenetic strategy for cancer treatment. At present, only a minority of compounds have been reported as HDAC6 inhibitors, so specific HDAC6 inhibitors with safety profile need to be discovered urgently. In this paper, HDAC6 inhibitors with diverse structures were used to generate the pharmacophore model by ligand-based method, which contained two hydrogen bond acceptors and two hydrophobic groups. A combined virtual screening based on pharmacophore model and molecular docking was adopted to screen potential HDAC6 inhibitors. Subsequently, the HDAC6 inhibitory activity of the hit compounds were evaluated using an in vitro enzyme binding inhibition assay. The experimental results illustrated that cefoperazone sodium had the strongest inhibitory effect on HDAC6 among the six screened compounds, and its IC50 value was 8.59 ± 1.06 μM. Cefoperazone sodium significantly catalyzed the hyperacetylation of α-tubulin but not histone H3, proving that cefoperazone sodium was a selective inhibitor of HDAC6. Since the expression of HDAC6 plays an important role in cancer metastasis, the effects of cefoperazone sodium on migration and invasion of human pancreatic cancer PANC-1 cells were further investigated by wound healing and transwell chamber assays. It was found that cefoperazone sodium could evidently inhibit the migration and invasion of PANC-1 cells. Furthermore, the binding pattern of inhibitor at the active site of the crystal structure was revealed by molecular docking, providing a reference value for the structural design and optimization of HDAC6 inhibitors. This study provides a systematic virtual screening approach for discovering HDAC6 active inhibitors, and by which the specific effect of cefoperazone sodium against HDAC6 was found, suggesting its potential application on cancer therapy.
Collapse
Affiliation(s)
- Haoxuan Song
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Xueyan Niu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Jishun Quan
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Yanchun Li
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Lei Yuan
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Chao Ma
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China.
| | - Enlong Ma
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China.
| |
Collapse
|
27
|
Soumyanarayanan U, Ramanujulu PM, Mustafa N, Haider S, Fang Nee AH, Tong JX, Tan KS, Chng WJ, Dymock BW. Discovery of a potent histone deacetylase (HDAC) 3/6 selective dual inhibitor. Eur J Med Chem 2019; 184:111755. [DOI: 10.1016/j.ejmech.2019.111755] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 11/17/2022]
|
28
|
Choi MA, Park SY, Chae HY, Song Y, Sharma C, Seo YH. Design, synthesis and biological evaluation of a series of CNS penetrant HDAC inhibitors structurally derived from amyloid-β probes. Sci Rep 2019; 9:13187. [PMID: 31515509 PMCID: PMC6742641 DOI: 10.1038/s41598-019-49784-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
To develop novel CNS penetrant HDAC inhibitors, a new series of HDAC inhibitors having benzoheterocycle were designed, synthesized, and biologically evaluated. Among the synthesized compounds, benzothiazole derivative 9b exhibited a remarkable anti-proliferative activity (GI50 = 2.01 μM) against SH-SY5Y cancer cell line in a dose and time-dependent manner, better than the reference drug SAHA (GI50 = 2.90 μM). Moreover, compound 9b effectively promoted the accumulation of acetylated Histone H3 and α-tubulin through inhibition of HDAC1 and HDAC6 enzymes, respectively. HDAC enzyme assay also confirmed that compound 9b efficiently inhibited HDAC1 and HDAC6 isoforms with IC50 values of 84.9 nM and 95.9 nM. Furthermore, compound 9b inhibited colony formation capacity of SH-SY5Y cells, which is considered a hallmark of cell carcinogenesis and metastatic potential. The theoretical prediction, in vitro PAMPA-BBB assay, and in vivo brain pharmacokinetic studies confirmed that compound 9b had much higher BBB permeability than SAHA. In silico docking study demonstrated that compound 9b fitted in the substrate binding pocket of HDAC1 and HDAC6. Taken together, compound 9b provided a novel scaffold for developing CNS penetrant HDAC inhibitors and therapeutic potential for CNS-related diseases.
Collapse
Affiliation(s)
- Myeong A Choi
- College of Pharmacy, Keimyung University, Daegu, 42601, South Korea
| | - Sun You Park
- College of Pharmacy, Keimyung University, Daegu, 42601, South Korea
| | - Hye Yun Chae
- College of Pharmacy, Keimyung University, Daegu, 42601, South Korea
| | - Yoojin Song
- College of Pharmacy, Keimyung University, Daegu, 42601, South Korea
| | | | - Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu, 42601, South Korea.
| |
Collapse
|
29
|
Kassab SE, Mowafy S, Alserw AM, Seliem JA, El-Naggar SM, Omar NN, Awad MM. Structure-based design generated novel hydroxamic acid based preferential HDAC6 lead inhibitor with on-target cytotoxic activity against primary choroid plexus carcinoma. J Enzyme Inhib Med Chem 2019; 34:1062-1077. [PMID: 31072216 PMCID: PMC6522981 DOI: 10.1080/14756366.2019.1613987] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Histone deacetylase 6 (HDAC6) is an attractive target for cancer therapeutic intervention. Selective HDAC6 inhibitors is important to minimise the side effects of pan inhibition. Thus, new class of hydroxamic acid-based derivatives were designed on structural basis to perform preferential activity against HDAC6 targeting solid tumours. Interestingly, 1-benzylbenzimidazole-2-thio-N-hydroxybutanamide 10a showed impressive preference with submicromolar potency against HDAC6 (IC50 = 510 nM). 10a showed cytotoxic activity with interesting profile against CCHE-45 at (IC50 = 112.76 µM) when compared to standard inhibitor Tubacin (IC50 = 20 µM). Western blot analysis of acetylated-α-tubulin verified the HDAC6 inhibiting activity of 10a. Moreover, the insignificant difference in acetylated-α-tubulin induced by 10a and Tubacin implied the on-target cytotoxic activity of 10a. Docking of 10a in the binding site of HDAC6 attributed the activity of 10a to π-π stacking with the amino acids of the hydrophobic channel of HDAC6 and capture of zinc metal in bidentate fashion. The therapeutic usefulness besides the on-target activity may define 10a as an interesting safe-lead inhibitor for future development.
Collapse
Affiliation(s)
- Shaymaa E Kassab
- a Pharmaceutical Chemistry Department, Faulty of Pharmacy , Damanhour University , Damanhour , Egypt
| | - Samar Mowafy
- b Pharmaceutical Chemistry Department, Faculty of Pharmacy , Misr International University , Cairo , Egypt
| | - Aya M Alserw
- c Basic Research Unit, Department of Research , Children's Cancer Hospital in Egypt , Cairo , Egypt
| | - Joustin A Seliem
- c Basic Research Unit, Department of Research , Children's Cancer Hospital in Egypt , Cairo , Egypt
| | - Shahenda M El-Naggar
- c Basic Research Unit, Department of Research , Children's Cancer Hospital in Egypt , Cairo , Egypt
| | - Nesreen N Omar
- d Biochemistry Department, Faculty of Pharmacy , Modern University for Technology and Information , Cairo , Egypt
| | - Mohamed M Awad
- e Department of Pharmacology and Toxicology, Faculty of Pharmacy , Helwan University , Cairo , Egypt.,f Canadian Academy of Research and Development (CARD) , Mississauga , ON , Canada
| |
Collapse
|
30
|
Grünstein E, Sellmer A, Mahboobi S. Enantioselective synthesis and biological investigation of tetrahydro‐β‐carboline‐based HDAC6 inhibitors with improved solubility. Arch Pharm (Weinheim) 2019; 352:e1900026. [DOI: 10.1002/ardp.201900026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/12/2019] [Accepted: 03/17/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Elisabeth Grünstein
- Institute of Pharmacy, Faculty of Chemistry and PharmacyUniversity of RegensburgRegensburg Germany
| | - Andreas Sellmer
- Institute of Pharmacy, Faculty of Chemistry and PharmacyUniversity of RegensburgRegensburg Germany
| | - Siavosh Mahboobi
- Institute of Pharmacy, Faculty of Chemistry and PharmacyUniversity of RegensburgRegensburg Germany
| |
Collapse
|
31
|
Géraldy M, Morgen M, Sehr P, Steimbach RR, Moi D, Ridinger J, Oehme I, Witt O, Malz M, Nogueira MS, Koch O, Gunkel N, Miller AK. Selective Inhibition of Histone Deacetylase 10: Hydrogen Bonding to the Gatekeeper Residue is Implicated. J Med Chem 2019; 62:4426-4443. [PMID: 30964290 DOI: 10.1021/acs.jmedchem.8b01936] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The discovery of isozyme-selective histone deacetylase (HDAC) inhibitors is critical for understanding the biological functions of individual HDACs and for validating HDACs as drug targets. The isozyme HDAC10 contributes to chemotherapy resistance and has recently been described to be a polyamine deacetylase, but no studies toward selective HDAC10 inhibitors have been published. Using two complementary assays, we found Tubastatin A, an HDAC6 inhibitor, to potently bind HDAC10. We synthesized Tubastatin A derivatives and found that a basic amine in the cap group was required for strong HDAC10 binding. HDAC10 inhibitors mimicked knockdown by causing dose-dependent accumulation of acidic vesicles in a neuroblastoma cell line. Furthermore, docking into human HDAC10 homology models indicated that a hydrogen bond between a cap group nitrogen and the gatekeeper residue Glu272 was responsible for potent HDAC10 binding. Taken together, our data provide an optimal platform for the development of HDAC10-selective inhibitors, as exemplified with the Tubastatin A scaffold.
Collapse
Affiliation(s)
| | | | - Peter Sehr
- Chemical Biology Core Facility , European Molecular Biology Laboratory , 69117 Heidelberg , Germany
| | | | | | - Johannes Ridinger
- Biosciences Faculty , University of Heidelberg , 69120 Heidelberg , Germany.,Hopp Children's Cancer Center Heidelberg (KiTZ) , 69120 Heidelberg , Germany.,Department of Pediatric Oncology, Hematology and Immunology , University Hospital Heidelberg , 69120 Heidelberg , Germany
| | - Ina Oehme
- Hopp Children's Cancer Center Heidelberg (KiTZ) , 69120 Heidelberg , Germany.,German Cancer Consortium (DKTK) , 69120 Heidelberg , Germany
| | - Olaf Witt
- Hopp Children's Cancer Center Heidelberg (KiTZ) , 69120 Heidelberg , Germany.,Department of Pediatric Oncology, Hematology and Immunology , University Hospital Heidelberg , 69120 Heidelberg , Germany.,German Cancer Consortium (DKTK) , 69120 Heidelberg , Germany
| | | | - Mauro S Nogueira
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , 44227 Dortmund , Germany
| | - Oliver Koch
- Faculty of Chemistry and Chemical Biology , TU Dortmund University , 44227 Dortmund , Germany
| | - Nikolas Gunkel
- German Cancer Consortium (DKTK) , 69120 Heidelberg , Germany
| | - Aubry K Miller
- German Cancer Consortium (DKTK) , 69120 Heidelberg , Germany
| |
Collapse
|
32
|
Yang F, Zhao N, Ge D, Chen Y. Next-generation of selective histone deacetylase inhibitors. RSC Adv 2019; 9:19571-19583. [PMID: 35519364 PMCID: PMC9065321 DOI: 10.1039/c9ra02985k] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HDACs) are clinically validated epigenetic drug targets for cancer treatment. HDACs inhibitors (HDACis) have been successfully applied against a series of cancers. First-generation inhibitors are mainly pan-HDACis that target multiple isoforms which might lead to serious side effects. At present, the next-generation HDACis are mainly focused on being class- or isoform-selective which can provide improved risk–benefit profiles compared to non-selective inhibitors. Because of the rapid development in next-generation HDACis, it is necessary to have an updated and state-of-the-art overview. Here, we summarize the strategies and achievements of the selective HDACis. Histone deacetylases (HDACs) are clinically validated epigenetic drug targets for cancer treatment.![]()
Collapse
Affiliation(s)
- Feifei Yang
- School of Biological Science and Technology
- University of Jinan
- Jinan
- China
- Shanghai Key Laboratory of Regulatory Biology
| | - Na Zhao
- School of Biological Science and Technology
- University of Jinan
- Jinan
- China
| | - Di Ge
- School of Biological Science and Technology
- University of Jinan
- Jinan
- China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology
- The Institute of Biomedical Sciences and School of Life Sciences
- East China Normal University
- Shanghai
- China
| |
Collapse
|
33
|
Gupta S, Albertson DJ, Parnell TJ, Butterfield A, Weston A, Pappas LM, Dalley B, O'Shea JM, Lowrance WT, Cairns BR, Schiffman JD, Sharma S. Histone Deacetylase Inhibition Has Targeted Clinical Benefit in ARID1A-Mutated Advanced Urothelial Carcinoma. Mol Cancer Ther 2018; 18:185-195. [PMID: 30301863 DOI: 10.1158/1535-7163.mct-17-0957] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 04/12/2018] [Accepted: 10/02/2018] [Indexed: 01/08/2023]
Abstract
Histone deacetylase (HDAC) inhibition has sporadic clinical efficacy in urothelial carcinoma; the genomic basis for clinical response is not known. In two separate phase I clinical trials testing pharmacokinetic aspects of HDAC inhibitors in advanced solid tumors, we identified one patient with advanced urothelial carcinoma who had a complete response to belinostat, and one patient with advanced urothelial carcinoma who had a partial response to panobinostat. The archived tumors of the responders were genomically characterized in comparison to others with urothelial carcinoma on the trials. Urothelial carcinoma cell lines treated with panobinostat and belinostat were studied to elucidate the mechanisms of benefit. Notably, the urothelial carcinoma tumors that responded to HDAC inhibition had ARID1A mutations. ARID1A mutations were also noted in the tumors of three patients who had stable disease as their best response to HDAC inhibition. Corroborating the basis of sensitivity, transcriptional profiling of platinum-resistant ARID1A-mutated HT1197 cells treated with panobinostat reveals negative enrichment for both cyto-proliferative (MYC and E2F targets) and DNA repair gene sets, and positive enrichment for TP53 and inflammatory gene sets. Our study identifies ARID1A loss as a basis for clinical response to pan HDAC inhibition and offers avenues for potential rational therapeutic combinations with HDAC inhibitors in advanced urothelial carcinoma.
Collapse
Affiliation(s)
- Sumati Gupta
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Daniel J Albertson
- Department of Pathology and ARUP Laboratories, University of Utah, Salt Lake City, Utah
| | | | | | - Alexis Weston
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Lisa M Pappas
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Brian Dalley
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - John M O'Shea
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | | | - Bradley R Cairns
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | | | - Sunil Sharma
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
34
|
Liang YY, Zhang CM, Liu ZP. Evaluation of WO2017018805: 1,3,4-oxadiazole sulfamide derivatives as selective HDAC6 inhibitors. Expert Opin Ther Pat 2018; 28:647-651. [PMID: 30073889 DOI: 10.1080/13543776.2018.1508451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION There are great potential in the development of selective HDAC6 inhibitors for the treatment of infectious diseases, neoplasms, endocrine diseases, and other diseases associated with HDAC6 activity. Areas covered: The application claims 1,3,4-oxadiazole sulfamide derivatives as selective HDAC6 inhibitors for the treatment of infectious diseases, neoplasms, endocrine, nutritional, and metabolic diseases; mental and behavioral disorders; neurological diseases; diseases of the eye and adnexa; cardiovascular diseases; respiratory diseases; digestive diseases; diseases of the skin and subcutaneous tissue; disease of the musculoskeletal system and connective tissue; or congenital malformations, deformations and chromosomal abnormalities. Many of the exemplified compounds showed nanomole potency against HDAC6 and were more than 5000-fold selectivity for HDAC6 over HDAC1. Expert opinion: These 1,3,4-oxadiazole sulfamide derivatives have a unique zinc-binding group (ZBG) that provide good leads for the discovery of potent selective HDAC6 inhibitors for the treatment of a variety of diseases associated with HDAC6 activity.
Collapse
Affiliation(s)
- Yuan-Yuan Liang
- a Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , PR China
| | - Cheng-Mei Zhang
- a Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , PR China
| | - Zhao-Peng Liu
- a Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , PR China
| |
Collapse
|