1
|
Hassan RA, Hamed MIA, Abdou AM, Hedia RH, Ibrahim ES, Fouad EA, Alam SS, El-Dash Y. Synthesis and evaluation of antibacterial activity of new thieno[2,3-d]pyrimidine hybrid compounds targeting dihydropteroate synthase to combat antibiotic resistance. Bioorg Chem 2025; 161:108549. [PMID: 40318508 DOI: 10.1016/j.bioorg.2025.108549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
The rising threat of antibiotic resistance demands innovative approaches to combat infectious diseases. This study explores new thieno[2,3-d]pyrimidine-based hybrid compounds targeting dihydropteroate synthase (DHPS), a critical enzyme in bacterial folate synthesis but absent in human cells. The compounds were designed using bioisosteric replacements and spacer variations. Biological evaluations revealed promising activity against Staphylococcus aureus. Compounds 5b, 14a, and 14b exhibited potent antibacterial effects with MIC values as low as 4 μg/mL for 5b. Time-dependent killing studies demonstrated rapid bactericidal action, superior to vancomycin for 5b and 14b. Additionally, these compounds disrupted biofilm formation and eradicated established biofilms. Plasma stability assays showed reduced efficacy in complex fluids, indicating potential challenges in clinical application. Notably, resistance development against 5b was minimal, underscoring its potential as a durable antimicrobial agent. This study underscores the promise of targeting conserved DHPS sites in developing effective treatments for resistant Gram-positive infections while addressing biofilm-related challenges in chronic infections.
Collapse
Affiliation(s)
- Rasha A Hassan
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mohammed I A Hamed
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt
| | - Amr M Abdou
- Department of Microbiology and Immunology, National Research Centre, Dokki, Giza 12622, Egypt.
| | - Riham H Hedia
- Department of Microbiology and Immunology, National Research Centre, Dokki, Giza 12622, Egypt
| | - Eman S Ibrahim
- Department of Microbiology and Immunology, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ehab A Fouad
- Zoonosis Department, National Research, Centre, Dokki, Giza 12622, Egypt
| | - Sally S Alam
- Department of Cell Biology, National Research Centre, Dokki 12622, Egypt
| | - Yara El-Dash
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
2
|
Gao C, Li R, Li Y, Wu Y, Qu Y, Ampomah-Wireko M, Zheng J, Wang Z, Wang YN, Zhang E. Design, synthesis and evaluation of quinolone quaternary ammonium antibacterial agent with killing ability to biofilm. Bioorg Chem 2025; 162:108579. [PMID: 40383012 DOI: 10.1016/j.bioorg.2025.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
Staphylococcus aureus (S. aureus) is the most common and widely distributed pathogenic bacterium. The problem of methicillin-resistant Staphylococcus aureus (MRSA) caused by the widespread use of antibiotics is particularly severe. In addition, S. aureus can resist antibiotics by forming biofilms, making clinical treatment difficult. A series of antimicrobial quinolone-based quaternary ammonium compounds were designed and synthesized. Among them, the optimal compound 3e showed the strongest activity against S. aureus, and it had relatively low hemolytic toxicity and cytotoxicity. Compound 3e has excellent bactericidal performance, capable of quickly and thoroughly sterilizing. In continuous sub-lethal concentration bacterial passage culture, no bacterial resistance tendency caused by 3e was found. Moreover, 3e can exert a significant level of activity in blood components and still has a period of suppression on bacteria after the drug is removed. Encouragingly, 3e has a certain bactericidal potential against bacteria with high concentration and high tolerance. It has shown strong bactericidal effects when fighting against persister bacteria and biofilms in vitro. Mechanism research indicates that 3e exerts its antimicrobial action through related membrane activity and is related to membrane components phosphatidylglycerol (PG) and cardiolipin (CL). In addition, 3e can also bind to bacterial DNA.
Collapse
Affiliation(s)
- Chen Gao
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ruirui Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yuanbo Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yuequan Wu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ye Qu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jiangbo Zheng
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhenya Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ya-Na Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China.
| | - En Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Pingyuan Laboratory (Zhengzhou University), PR China.
| |
Collapse
|
3
|
Chen S, Qu Y, Li R, Ampomah-Wireko M, Kong H, Li D, Wang M, Gao C, Qin S, Liu J, Wang Z, Zhang M, Zhang E. Exploration of membrane-active cephalosporin derivatives as potent antibacterial agents against Staphylococcus aureus biofilms and persisters. Eur J Med Chem 2025; 289:117484. [PMID: 40081101 DOI: 10.1016/j.ejmech.2025.117484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/22/2025] [Accepted: 03/05/2025] [Indexed: 03/15/2025]
Abstract
Developing innovative antimicrobial agents is essential in the fight against drug-resistant bacteria, as well as biofilms and persistent bacteria. In this study, four series of amphiphilic cephalosporin derivatives were synthesized. Most of the compounds showed good activity against Gram-positive bacteria, among which membrane-active cephalosporin 15e showed high activity against Staphylococcus aureus. Furthermore, 15e can maintain antimicrobial activity in mammalian body fluids and does not develop detectable resistance. Antibacterial mechanism studies demonstrated that the compound 15e can destroy the bacterial cell membrane, causing leakage of intracellular nucleic acids and proteins. Moreover, it can also suppress bacterial metabolic activity and induce the accumulation of reactive oxygen species (ROS) in the bacteria. Of greater significance, compound 15e effectively prevented the formation of biofilms and eradicated established biofilms and persister cells. Notably, compound 15e exhibited potent in vivo antibacterial efficacy, which was better than cephalothin. These findings suggest that 15e has a potential to become a drug candidate for treating bacterial infections.
Collapse
Affiliation(s)
- Shengcong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ye Qu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ruirui Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hongtao Kong
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Daran Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Meng Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Chen Gao
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jifeng Liu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhenya Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Muchen Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China.
| | - En Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Pingyuan Laboratory (Zhengzhou University), PR China.
| |
Collapse
|
4
|
Ampomah-Wireko M, Qu Y, Li D, Wu Y, Li R, Li Y, Kong H, Li ZH, Wang YN, Zhang E. Design, synthesis and antibacterial evaluation of oxazolidinone derivatives containing N-methylglycyl or quaternary ammonium salts. Bioorg Med Chem 2025; 122:118144. [PMID: 40056888 DOI: 10.1016/j.bmc.2025.118144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/20/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
The continuous evolution of multidrug-resistant (MDR) bacteria to existing antibiotic treatment regimens poses a serious threat to human health, so the discovery of new and potent antimicrobial drugs that are less likely to develop resistance is of great clinical significance. As a result, oxazolidinone antibiotics have emerged as a significant class of bacterial protein synthesis inhibitors, with particular success in the treatment of MDR Gram-positive infections. Herein, a series of novel C-ring modified oxazolidinone derivatives with the introduction of N-methylglycyl groups or quaternary ammonium salts were synthesized and evaluated for their antibacterial efficacy, among which most of the N-methylglycyl derivatives showed significant activity against E. faecalis. Notably, compounds 11g-11i showed good activity against E. faecalis and S. aureus with MICs of 2-8 μg/mL. The selected compound 11g exhibited rapid bactericidal properties, good biofilm disruption capacity, low tendency to induce bacterial resistance, and low cytotoxicity against mammalian cells (HeLa). Furthermore, compound 11g showed relatively good stability in mammalian body fluids and exhibited a longer post-antibiotic effect (PAE). Mechanistic studies showed that compound 11g exerted its antibacterial effect by inhibiting glutathione (GSH) activity and inducing reactive oxygen species (ROS) accumulation, leading to bacterial death. These findings suggest that 11g is a promising candidate for the exploitation of N-methylglycyl oxazolidinones as novel antibacterial agents.
Collapse
Affiliation(s)
- Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ye Qu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Daran Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yuequan Wu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ruirui Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yuanbo Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hongtao Kong
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhi-Hao Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Ya-Na Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China.
| | - En Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Pingyuan Laboratory (Zhengzhou University), PR China.
| |
Collapse
|
5
|
Liu J, Cao Y, Xu C, Li R, Xiong Y, Wei Y, Meng X, Dan W, Lu C, Dai J. Quaternized antimicrobial peptide mimics based on harmane as potent anti-MRSA agents by multi-target mechanism covering cell wall, cell membrane and intracellular targets. Eur J Med Chem 2024; 276:116657. [PMID: 39032402 DOI: 10.1016/j.ejmech.2024.116657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024]
Abstract
Infectious disease caused by methicillin-resistant Staphylococcus aureus (MRSA) seriously threatens public health. The design of antimicrobial peptide mimics (AMPMs) based on natural products (NPs) is a new strategy to kill MRSA and slow the development of drug resistance recently. Here, we reported the design and synthesis of novel AMPMs based on harmane skeleton. Notably, compound 9b exhibited comparable or even better anti-MRSA activity in vitro and in vivo with minimum inhibitory concentration (MIC) of 0.5-2 μg/mL than the positive drug vancomycin. The highly active compound 9b not only showed low cytotoxicity, no obvious hemolysis and good plasma stability, but also presented low tendency of developing resistance. Anti-MRSA mechanism revealed that compound 9b could destroy cell wall structure by interacting with lipoteichoic acid and peptidoglycan, cause membrane damage by depolarization, increased permeability and destructed integrity, reduce cell metabolic activity by binding to lactate dehydrogenase (LDH), interfere cellular redox homeostasis, and bind to DNA. Overall, compound 9b killed the MRSA by multi-target mechanism, which provide a promising light for combating the growing MRSA resistance.
Collapse
Affiliation(s)
- Jinyi Liu
- School of Life Science and Technology, Shandong Second Medical University, Shandong, China
| | - Yidan Cao
- School of Life Science and Technology, Shandong Second Medical University, Shandong, China
| | - Chenggong Xu
- School of Life Science and Technology, Shandong Second Medical University, Shandong, China
| | - Runchu Li
- School of Life Science and Technology, Shandong Second Medical University, Shandong, China
| | - Yingyan Xiong
- School of Life Science and Technology, Shandong Second Medical University, Shandong, China
| | - Yi Wei
- School of Life Science and Technology, Shandong Second Medical University, Shandong, China
| | - Xianghui Meng
- School of Life Science and Technology, Shandong Second Medical University, Shandong, China
| | - Wenjia Dan
- School of Life Science and Technology, Shandong Second Medical University, Shandong, China.
| | - Chunbo Lu
- School of Life Science and Technology, Shandong Second Medical University, Shandong, China.
| | - Jiangkun Dai
- School of Life Science and Technology, Shandong Second Medical University, Shandong, China.
| |
Collapse
|
6
|
Ampomah-Wireko M, Chen S, Li R, Gao C, Wang M, Qu Y, Kong H, Nininahazwe L, Zhang E. Recent advances in the exploration of oxazolidinone scaffolds from compound development to antibacterial agents and other bioactivities. Eur J Med Chem 2024; 269:116326. [PMID: 38513340 DOI: 10.1016/j.ejmech.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Bacterial infections cause a variety of life-threatening diseases, and the continuous evolution of drug-resistant bacteria poses an increasing threat to current antimicrobial regimens. Gram-positive bacteria (GPB) have a wide range of genetic capabilities that allow them to adapt to and develop resistance to practically all existing antibiotics. Oxazolidinones, a class of potent bacterial protein synthesis inhibitors with a unique mechanism of action involving inhibition of bacterial ribosomal translation, has emerged as the antibiotics of choice for the treatment of drug-resistant GPB infections. In this review, we discussed the oxazolidinone antibiotics that are currently on the market and in clinical development, as well as an updated synopsis of current advances on their analogues, with an emphasis on innovative strategies for structural optimization of linezolid, structure-activity relationship (SAR), and safety properties. We also discussed recent efforts aimed at extending the activity of oxazolidinones to gram-negative bacteria (GNB), antitumor, and coagulation factor Xa. Oxazolidinone antibiotics can accumulate in GNB by a conjugation to siderophore-mediated β-lactamase-triggered release, making them effective against GNB.
Collapse
Affiliation(s)
- Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shengcong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ruirui Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Chen Gao
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Meng Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ye Qu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hongtao Kong
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lauraine Nininahazwe
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - En Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Pingyuan Laboratory (Zhengzhou University), PR China.
| |
Collapse
|
7
|
Chen S, Qin S, Li R, Qu Y, Ampomah-Wireko M, Nininahazwe L, Wang M, Gao C, Zhang E. Design, synthesis and antibacterial evaluation of low toxicity amphiphilic-cephalosporin derivatives. Eur J Med Chem 2024; 268:116293. [PMID: 38447461 DOI: 10.1016/j.ejmech.2024.116293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Global public health is facing a serious problem as a result of the rise in antibiotic resistance and the decline in the discovery of new antibiotics. In this study, two series of amphiphilic-cephalosporins were designed and synthesized, several of which showed good antibacterial activity against both Gram-positive and Gram-negative bacteria. Structure-activity relationships indicated that the length of the hydrophobic alkyl chain significantly affects the antibacterial activity against Gram-negative bacteria. The best compound 2d showed high activity against drug-susceptible Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) with MICs of 0.5 and 2-4 μg/mL, respectively. Furthermore, 2d remained active in complex mammalian body fluids and had a longer post-antibiotic effect (PAE) than vancomycin. Mechanism studies indicated that compound 2d lacks membrane-damaging properties and can target penicillin-binding proteins to disrupt bacterial cell wall structure, inhibit the metabolic activity and induce the accumulation of reactive oxygen species (ROS) in bacteria. Compound 2d showed minimal drug resistance and was nontoxic to HUVEC and HBZY-1 cells with CC50 > 128 μg/mL. These findings suggest that 2d is a promising drug candidate for treating bacterial infections.
Collapse
Affiliation(s)
- Shengcong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ruirui Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ye Qu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Lauraine Nininahazwe
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Meng Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Chen Gao
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - En Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China; Pingyuan Laboratory (Zhengzhou University), PR China.
| |
Collapse
|
8
|
Gao C, Qin S, Wang M, Li R, Ampomah-Wireko M, Chen S, Qu Y, Zhang E. Effective ciprofloxacin cationic antibacterial agent against persister bacteria with low hemolytic toxicity. Eur J Med Chem 2024; 267:116215. [PMID: 38354522 DOI: 10.1016/j.ejmech.2024.116215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
With the widespread use of antibiotics, bacterial resistance has developed rapidly. To make matters worse, infections caused by persistent bacteria and biofilms often cannot be completely eliminated, which brings great difficulties to clinical medication. In this work, three series of quinolone pyridinium quaternary ammonium small molecules were designed and synthesized. Most of the compounds showed good antibacterial activity against Gram-positive bacteria (S. aureus and E. faecalis) and Gram-negative bacteria (E. coli and S. maltophilia). The activity of the para-pyridine quaternary ammonium salt was better than that of the meta-pyridine. 3f was the optimal compound with good stability in body fluids and was unlikely to induce bacterial resistance. The hemolysis rate of erythrocytes at 1280 μg/mL for 3f was only 5.1%. Encouragingly, 3f rapidly killed bacteria within 4 h at 4 × MIC concentration and was effective in killing persistent bacteria in biofilms. The antibacterial mechanism experiments showed that 3f could cause disorder of bacterial membrane potential, increase bacterial membrane permeability, dissolve and destroy the membrane. Incomplete bacterial membranes lead to leakage of bacterial genetic material, concomitant production of ROS, and bacterial death due to these multiple effects.
Collapse
Affiliation(s)
- Chen Gao
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China Zhengzhou University, Zhengzhou 450001, PR China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China Zhengzhou University, Zhengzhou 450001, PR China
| | - Meng Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China Zhengzhou University, Zhengzhou 450001, PR China
| | - Ruirui Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China Zhengzhou University, Zhengzhou 450001, PR China
| | - Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China Zhengzhou University, Zhengzhou 450001, PR China
| | - Shengcong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China Zhengzhou University, Zhengzhou 450001, PR China
| | - Ye Qu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China Zhengzhou University, Zhengzhou 450001, PR China
| | - En Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China Zhengzhou University, Zhengzhou 450001, PR China; Pingyuan Laboratory (Zhengzhou University), PR China.
| |
Collapse
|
9
|
Yuan J, Wang J, Li X, Zhang Y, Xian J, Wang C, Zhang J, Wu C. Amphiphilic small molecule antimicrobials: From cationic antimicrobial peptides (CAMPs) to mechanism-related, structurally-diverse antimicrobials. Eur J Med Chem 2023; 262:115896. [PMID: 39491431 DOI: 10.1016/j.ejmech.2023.115896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
Bacterial infections are characterized by their rapid and widespread proliferation, leading to significant morbidity. Despite the availability of a variety of antimicrobial drugs, the resistance exhibited by pathogenic microorganisms towards these drugs demonstrates a consistent upward trajectory year after year. This trend can be attributed to the abuse or misuse of antibiotics. Although antimicrobial peptides can avoid the emergence of drug resistance to a certain extent, their clinical application has been hindered by factors such as their high production cost, poor in vivo stability, and potential cytotoxicity. Consequently, there arises an urgent need for the development of novel antimicrobial drugs. Small-molecule amphiphatic antimicrobials have a good prospect for research and development. These peptides hold the potential to address several issues, including the high cost of antimicrobial peptide production, poor in vivo stability, and cytotoxicity. Moreover, they exhibit the capability to overcome bacterial resistance, thereby considerably satisfying market demands and clinical needs. This paper reviews recent research pertaining to small molecule host-defending amphiphatic antimicrobials with cationic amphiphilic structures. It focuses on the design concepts, inherent relationships, drug-like properties, antimicrobial activities, application prospects, and emerging screening methods for novel antimicrobial. This review assumes paramount importance in mitigating the current shortcomings of antimicrobial agents. It also provides potential new ideas and methodologies for the research and development of antimicrobial agents.
Collapse
Affiliation(s)
- Jiani Yuan
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ya Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jinghong Xian
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Chengyong Wu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
10
|
Ganesan N, Mishra B, Felix L, Mylonakis E. Antimicrobial Peptides and Small Molecules Targeting the Cell Membrane of Staphylococcus aureus. Microbiol Mol Biol Rev 2023; 87:e0003722. [PMID: 37129495 PMCID: PMC10304793 DOI: 10.1128/mmbr.00037-22] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Clinical management of Staphylococcus aureus infections presents a challenge due to the high incidence, considerable virulence, and emergence of drug resistance mechanisms. The treatment of drug-resistant strains, such as methicillin-resistant S. aureus (MRSA), is further complicated by the development of tolerance and persistence to antimicrobial agents in clinical use. To address these challenges, membrane disruptors, that are not generally considered during drug discovery for agents against S. aureus, should be explored. The cell membrane protects S. aureus from external stresses and antimicrobial agents, but membrane-targeting antimicrobial agents are probably less likely to promote bacterial resistance. Nontypical linear cationic antimicrobial peptides (AMPs), highly modified AMPs such as daptomycin (lipopeptide), bacitracin (cyclic peptide), and gramicidin S (cyclic peptide), are currently in clinical use. Recent studies have demonstrated that AMPs and small molecules can penetrate the cell membrane of S. aureus, inhibit phospholipid biosynthesis, or block the passage of solutes between the periplasm and the exterior of the cell. In addition to their primary mechanism of action (MOA) that targets the bacterial membrane, AMPs and small molecules may also impact bacteria through secondary mechanisms such as targeting the biofilm, and downregulating virulence genes of S. aureus. In this review, we discuss the current state of research into cell membrane-targeting AMPs and small molecules and their potential mechanisms of action against drug-resistant physiological forms of S. aureus, including persister cells and biofilms.
Collapse
Affiliation(s)
- Narchonai Ganesan
- Infectious Diseases Division, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Biswajit Mishra
- Infectious Diseases Division, Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Medicine, The Miriam Hospital, Providence, Rhode Island, USA
| | - LewisOscar Felix
- Infectious Diseases Division, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Medicine, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
11
|
Fernandes GFS, Scarim CB, Kim SH, Wu J, Castagnolo D. Oxazolidinones as versatile scaffolds in medicinal chemistry. RSC Med Chem 2023; 14:823-847. [PMID: 37252095 PMCID: PMC10211318 DOI: 10.1039/d2md00415a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/06/2023] [Indexed: 11/19/2023] Open
Abstract
Oxazolidinone is a five-member heterocyclic ring with several biological applications in medicinal chemistry. Among the three possible isomers, 2-oxazolidinone is the most investigated in drug discovery. Linezolid was pioneered as the first approved drug containing an oxazolidinone ring as the pharmacophore group. Numerous analogues have been developed since its arrival on the market in 2000. Some have succeeded in reaching the advanced stages of clinical studies. However, most oxazolidinone derivatives reported in recent decades have not reached the initial stages of drug development, despite their promising pharmacological applications in a variety of therapeutic areas, including antibacterial, antituberculosis, anticancer, anti-inflammatory, neurologic, and metabolic diseases, among other areas. Therefore, this review article aims to compile the efforts of medicinal chemists who have explored this scaffold over the past decades and highlight the potential of the class for medicinal chemistry.
Collapse
Affiliation(s)
| | - Cauê Benito Scarim
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University Araraquara 14800903 Brazil
| | - Seong-Heun Kim
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
- School of Cancer and Pharmaceutical Sciences, King's College London 150 Stamford Street SE1 9NH London UK
| | - Jingyue Wu
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
| | - Daniele Castagnolo
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
| |
Collapse
|
12
|
Wang X, Jin B, Han Y, Wang T, Sheng Z, Tao Y, Yang H. Optimization and Antibacterial Evaluation of Novel 3-(5-Fluoropyridine-3-yl)-2-oxazolidinone Derivatives Containing a Pyrimidine Substituted Piperazine. Molecules 2023; 28:molecules28114267. [PMID: 37298744 DOI: 10.3390/molecules28114267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
In this study, a series of novel 3-(5-fluoropyridine-3-yl)-2-oxazolidinone derivatives were designed and synthesized based on compounds previously reported, and their antibacterial activity was investigated. Then their antibacterial activity was investigated for the first time. Preliminary screening results showed that all these compounds exhibited antibacterial activity against gram-positive bacteria, including 7 drug-sensitive strains and 4 drug-resistant strains, among which compound 7j exhibited an 8-fold stronger inhibitory effect than linezolid, with a minimum inhibitory concentration (MIC) value of 0.25 µg/mL. Further molecular docking studies predicted the possible binding mode between active compound 7j and the target. Interestingly, these compounds could not only hamper the formation of biofilms, but also have better safety, as confirmed by cytotoxicity experiments. All these results indicate that these 3-(5-fluoropyridine-3-yl)-2-oxazolidinone derivatives have the potential to be developed into novel candidates for the treatment of gram-positive bacterial infections.
Collapse
Affiliation(s)
- Xin Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bo Jin
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yutong Han
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Tong Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zunlai Sheng
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Ye Tao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Hongliang Yang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| |
Collapse
|
13
|
Emam SH, Hassan RA, Osman EO, Hamed MIA, Abdou AM, Kandil MM, Elbaz EM, Mikhail DS. Coumarin derivatives with potential anticancer and antibacterial activity: Design, synthesis, VEGFR-2 and DNA gyrase inhibition, and in silico studies. Drug Dev Res 2023; 84:433-457. [PMID: 36779381 DOI: 10.1002/ddr.22037] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 02/14/2023]
Abstract
A series of coumarin derivatives were designed, synthesized, and evaluated for their antiproliferative activity. Compound 3e exhibited significant antiproliferative activity and was further evaluated at five doses at the National Cancer Institute. It effectively inhibited vascular endothelial growth factor receptor-2 (VEGFR-2) with an IC50 value of 0.082 ± 0.004 µM compared with sorafenib. While compound 3e significantly downregulated total VEGFR-2 and its phosphorylation, it markedly reduced the HUVEC's migratory potential, resulting in a significant disruption in wound healing. Furthermore, compound 3e caused a 22.51-fold increment in total apoptotic level in leukemia cell line HL-60(TB) and a 6.91-fold increase in the caspase-3 level. Compound 3e also caused cell cycle arrest, mostly at the G1/S phase. Antibacterial activity was evaluated against Gram-positive and Gram-negative bacterial strains. Compound 3b was the most active derivative, with the same minimum inhibitory concentration and minimum bactericidal concentration value of 128 μg/mL against K. pneumonia and high stability in mammalian plasma. Moreover, compounds 3b and 3f inhibited Gram-negative DNA gyrase with IC50 = 0.73 ± 0.05 and 1.13 ± 0.07 µM, respectively, compared to novobiocin with an IC50 value of 0.17 ± 0.02 µM. The binding affinity and pattern of derivative 3e toward the VEGFR-2 active site and compounds 3a-c and 3f in the DNA gyrase active site were evaluated using molecular modeling. Overall, ADME studies of the synthesized coumarin derivatives displayed promising pharmacokinetic properties.
Collapse
Affiliation(s)
- Soha H Emam
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rasha A Hassan
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Eman O Osman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohammed I A Hamed
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Amr M Abdou
- Department of Microbiology and Immunology, National Research Centre, Dokki, Giza, Egypt
| | - Mai M Kandil
- Department of Microbiology and Immunology, National Research Centre, Dokki, Giza, Egypt
| | - Eman Maher Elbaz
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Demiana S Mikhail
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
14
|
Comito M, Monguzzi R, Tagliapietra S, Palmisano G, Cravotto G. Towards Antibiotic Synthesis in Continuous-Flow Processes. Molecules 2023; 28:molecules28031421. [PMID: 36771086 PMCID: PMC9919330 DOI: 10.3390/molecules28031421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Continuous-flow chemistry has become a mainstream process and a notable trend among emerging technologies for drug synthesis. It is routinely used in academic and industrial laboratories to generate a wide variety of molecules and building blocks. The advantages it provides, in terms of safety, speed, cost efficiency and small-equipment footprint compared to analog batch processes, have been known for some time. What has become even more important in recent years is its compliance with the quality objectives that are required by drug-development protocols that integrate inline analysis and purification tools. There can be no doubt that worldwide government agencies have strongly encouraged the study and implementation of this innovative, sustainable and environmentally friendly technology. In this brief review, we list and evaluate the development and applications of continuous-flow processes for antibiotic synthesis. This work spans the period of 2012-2022 and highlights the main cases in which either active ingredients or their intermediates were produced under continuous flow. We hope that this manuscript will provide an overview of the field and a starting point for a deeper understanding of the impact of flow chemistry on the broad panorama of antibiotic synthesis.
Collapse
Affiliation(s)
- Marziale Comito
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
- Research and Development, ACS Dobfar SpA, Via Paullo 9, 20067 Tribiano, Italy
| | - Riccardo Monguzzi
- Research and Development, ACS Dobfar SpA, Via Paullo 9, 20067 Tribiano, Italy
| | - Silvia Tagliapietra
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Giovanni Palmisano
- Dipartimento di Scienza e Alta Tecnologia, University of Insubria, Via Valleggio 9, 22100 Como, Italy
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
- Correspondence: ; Tel.: +39-011-670-7183
| |
Collapse
|
15
|
Shen BY, Wang MM, Xu SM, Gao C, Wang M, Li S, Ampomah-Wireko M, Chen SC, Yan DC, Qin S, Zhang E. Antibacterial efficacy evaluation and mechanism probe of small lysine chalcone peptide mimics. Eur J Med Chem 2022; 244:114885. [DOI: 10.1016/j.ejmech.2022.114885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2022]
|
16
|
Efficacy of natural antimicrobial peptides versus peptidomimetic analogues: a systematic review. Future Med Chem 2022; 14:1899-1921. [PMID: 36421051 DOI: 10.4155/fmc-2022-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aims: This systematic review was carried out to determine whether synthetic peptidomimetics exhibit significant advantages over antimicrobial peptides in terms of in vitro potency. Structural features - molecular weight, charge and length - were examined for correlations with activity. Methods: Original research articles reporting minimum inhibitory concentration values against Escherichia coli, indexed until 31 December 2020, were searched in PubMed/ScienceDirect/Google Scholar and evaluated using mixed-effects models. Results: In vitro antimicrobial activity of peptidomimetics resembled that of antimicrobial peptides. Net charge significantly affected minimum inhibitory concentration values (p < 0.001) with a trend of 4.6% decrease for increments in charge by +1. Conclusion: AMPs and antibacterial peptidomimetics exhibit similar potencies, providing an opportunity to exploit the advantageous stability and bioavailability typically associated with peptidomimetics.
Collapse
|
17
|
Zhou Y, Huang W, Lei E, Yang A, Li Y, Wen K, Wang M, Li L, Chen Z, Zhou C, Bai S, Han J, Song W, Ren X, Zeng X, Pu H, Wan M, Feng X. Cooperative Membrane Damage as a Mechanism for Pentamidine-Antibiotic Mutual Sensitization. ACS Chem Biol 2022; 17:3178-3190. [PMID: 36269311 DOI: 10.1021/acschembio.2c00613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Most Gram-positive-selective antibiotics have low activity against Gram-negative bacteria due to the presence of an outer membrane barrier. There is, therefore, interest in developing combination therapies that can penetrate the outer membrane (OM) with known antibiotics coupled with membrane-active sensitizing adjuvants. However, two unanswered questions hinder the development of such combination therapies: the sensitization spectrum of the sensitizer and the mechanism of antibiotic-sensitizer mutual potentiation. Here, with pentamidine as an example, we screened a library of 170 FDA-approved antibiotics in combination with pentamidine, a compound known to disturb the OM of Gram-negative bacteria. We found that four antibiotics, minocycline, linezolid, valnemulin, and nadifloxacin, displaced enhanced activity in combination with pentamidine against several multidrug-resistant Gram-negative bacteria. Through a descriptor-based structural-activity analysis and multiple cell-based biochemical assays, we found that hydrophobicity, partial charge, rigidity, and surface rugosity were key factors that affected sensitization via a cooperative membrane damage mechanism in which lipopolysaccharides and phospholipids were identified as sites of synergy. Finally, in vitro experiments showed that the linezolid-pentamidine combination slowed the generation of drug resistance, and there was also potent activity in in vivo experiments. Overall, our results highlight the importance of the physicochemical properties of antibiotics and cooperative membrane damage for synergistic pentamidine-antibiotic drug combinations.
Collapse
Affiliation(s)
- Yu Zhou
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wei Huang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - E Lei
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Anming Yang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Youzhi Li
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Kang Wen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Min Wang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Lanxin Li
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Zheng Chen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Cailing Zhou
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.,College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Silei Bai
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jingyu Han
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wenwen Song
- Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, Hunan 410082, China.,College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Xuanbai Ren
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xiangxiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Muyang Wan
- Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, Hunan 410082, China.,College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Xinxin Feng
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
18
|
Jin B, Wang T, Chen JY, Liu XQ, Zhang YX, Zhang XY, Sheng ZL, Yang HL. Synthesis and Biological Evaluation of 3-(Pyridine-3-yl)-2-Oxazolidinone Derivatives as Antibacterial Agents. Front Chem 2022; 10:949813. [PMID: 35923260 PMCID: PMC9339906 DOI: 10.3389/fchem.2022.949813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
In this research, a series of 3-(pyridine-3-yl)-2-oxazolidinone derivatives was designed, synthesized, and evaluated for in vitro antibacterial activity, which included bacteriostatic, morphological, kinetic studies, and molecular docking. The results demonstrated that compounds 21b, 21d, 21e and 21f exhibited strong antibacterial activity similar to that of linezolid toward five Gram-positive bacteria. After observing the effect of the drug on the morphology and growth dynamics of the bacteria, the possible modes of action were predicted by molecular docking. Furthermore, the antibiofilm activity and the potential drug resistance assay was proceeded. These compounds exhibited universal antibiofilm activity and compound 21d showed significant concentration-dependent inhibition of biofilm formation. Compound 21d also showed a stable effect on S. pneumoniae (ATCC 49619) with less drug resistance growth for 15 days, which is much longer than that of linezolid. Overall, these results can be used to guide further exploration of novel antimicrobial agents.
Collapse
Affiliation(s)
- Bo Jin
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tong Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jia-yi Chen
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiao-qing Liu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yi-xin Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiu-ying Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zun-lai Sheng
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Hong-Liang Yang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
- *Correspondence: Hong-Liang Yang,
| |
Collapse
|
19
|
Lei E, Tao H, Jiao S, Yang A, Zhou Y, Wang M, Wen K, Wang Y, Chen Z, Chen X, Song J, Zhou C, Huang W, Xu L, Guan D, Tan C, Liu H, Cai Q, Zhou K, Modica J, Huang SY, Huang W, Feng X. Potentiation of Vancomycin: Creating Cooperative Membrane Lysis through a "Derivatization-for-Sensitization" Approach. J Am Chem Soc 2022; 144:10622-10639. [PMID: 35657057 DOI: 10.1021/jacs.2c03784] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Gram-negative bacteria, especially the ones with multidrug resistance, post dire challenges to antibiotic treatments due to the presence of the outer membrane (OM), which blocks the entry of many antibiotics. Current solutions for such permeability issues, namely lipophilic-cationic derivatization of antibiotics and sensitization with membrane-active agents, cannot effectively potentiate the large, globular, and hydrophilic antibiotics such as vancomycin, due to ineffective disruption of the OM. Here, we present our solution for high-degree OM binding of vancomycin via a hybrid "derivatization-for-sensitization" approach, which features a combination of LPS-targeting lipo-cationic modifications on vancomycin and OM disruption activity from a sensitizing adjuvant. 106- to 107-fold potentiation of vancomycin and 20-fold increase of the sensitizer's effectiveness were achieved with a combination of a vancomycin derivative and its sensitizer. Such potentiation is the result of direct membrane lysis through cooperative membrane binding for the sensitizer-antibiotic complex, which strongly promotes the uptake of vancomycin and adds to the extensive antiresistance effectiveness. The potential of such derivatization-for-sensitization approach was also supported by the combination's potent in vivo antimicrobial efficacy in mouse model studies, and the expanded application of such strategy on other antibiotics and sensitizer structures.
Collapse
Affiliation(s)
- E Lei
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Huanyu Tao
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shang Jiao
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Anming Yang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yu Zhou
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Min Wang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Kang Wen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Yi Wang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.,School of Biology, Hunan University, Changsha, Hunan, 410082, China, Hunan University, Changsha, Hunan 410082, China
| | - Zhiyong Chen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xianhui Chen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Junfeng Song
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Cailing Zhou
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China.,School of Biology, Hunan University, Changsha, Hunan, 410082, China, Hunan University, Changsha, Hunan 410082, China
| | - Wei Huang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Lili Xu
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dongliang Guan
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cuiyan Tan
- Department of Pulmonary and Critical Care Medicine, Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong 519000, China
| | - Haoran Liu
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Qingyun Cai
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, China
| | - Justin Modica
- Departments of Chemistry and Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinxin Feng
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
20
|
Guo Y, Yang R, Chen F, Yan T, Wen T, Li F, Su X, Wang L, Du J, Liu J. Triphenyl-sesquineolignan analogues derived from Illicium simonsii Maxim exhibit potent antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) by disrupting bacterial membranes. Bioorg Chem 2021; 110:104824. [PMID: 33773225 DOI: 10.1016/j.bioorg.2021.104824] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
Infections caused by clinical methicillin-resistant Staphylococcus aureus (MRSA) are a serious public problem. Triphenyl-sesquineolignans from Illicium genus possess antibacterial activity, but few researches have reported their antibacterial spectrums, structure-activity relationships (SARs) and antibacterial mechanism. In this study, three triphenyl-sesquineolignans, dunnianol (1), macranthol (2) and isodunnianol (3) were isolated from the stems and leaves of I. simonsii Maxim, and seven dunnianol derivatives were prepared through esterification, etherification and halogenation reactions. Among all triphenyl-sesquineolignan analogues, compound 6 showed the best antibacterial activity against four Gram-positive bacteria (MICs = 1-2 µg/mL) and ten clinical MRSA strains (MICs = 2-8 µg/mL), and also exhibited characteristics of killing MRSA more rapidly than tigecycline. Meanwhile, compound 6 did not only show a low probability of drug resistance development, but also exhibited relatively low hemolysis, and good stability in 50% plasma. Further mechanism studies revealed that 6 could kill bacterial strains by disrupting bacterial membranes. These results suggested that 6 may be developed into a new antibacterial candidate for combating MRSA infections.
Collapse
Affiliation(s)
- Yong Guo
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China.
| | - Ruige Yang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Fangfang Chen
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Tingting Yan
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Tingyu Wen
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Fang Li
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China; School of Science, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China
| | - Xiaoyu Su
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Lei Wang
- School of Science, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China
| | - Juan Du
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China
| | - Jifeng Liu
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, Henan Province, People's Republic of China.
| |
Collapse
|
21
|
Ahmad N, Wee CE, Wai LK, Zin NM, Azmi F. Biomimetic amphiphilic chitosan nanoparticles: Synthesis, characterization and antimicrobial activity. Carbohydr Polym 2021; 254:117299. [DOI: 10.1016/j.carbpol.2020.117299] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 02/01/2023]
|
22
|
Emerging Transcriptional and Genomic Mechanisms Mediating Carbapenem and Polymyxin Resistance in Enterobacteriaceae: a Systematic Review of Current Reports. mSystems 2020; 5:5/6/e00783-20. [PMID: 33323413 PMCID: PMC7771540 DOI: 10.1128/msystems.00783-20] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The spread of carbapenem- and polymyxin-resistant Enterobacteriaceae poses a significant threat to public health, challenging clinicians worldwide with limited therapeutic options. This review describes the current coding and noncoding genetic and transcriptional mechanisms mediating carbapenem and polymyxin resistance, respectively. The spread of carbapenem- and polymyxin-resistant Enterobacteriaceae poses a significant threat to public health, challenging clinicians worldwide with limited therapeutic options. This review describes the current coding and noncoding genetic and transcriptional mechanisms mediating carbapenem and polymyxin resistance, respectively. A systematic review of all studies published in PubMed database between 2015 to October 2020 was performed. Journal articles evaluating carbapenem and polymyxin resistance mechanisms, respectively, were included. The search identified 171 journal articles for inclusion. Different New Delhi metallo-β-lactamase (NDM) carbapenemase variants had different transcriptional and affinity responses to different carbapenems. Mutations within the Klebsiella pneumoniae carbapenemase (KPC) mobile transposon, Tn4401, affect its promoter activity and expression levels, increasing carbapenem resistance. Insertion of IS26 in ardK increased imipenemase expression 53-fold. ompCF porin downregulation (mediated by envZ and ompR mutations), micCF small RNA hyperexpression, efflux upregulation (mediated by acrA, acrR, araC, marA, soxS, ramA, etc.), and mutations in acrAB-tolC mediated clinical carbapenem resistance when coupled with β-lactamase activity in a species-specific manner but not when acting without β-lactamases. Mutations in pmrAB, phoPQ, crrAB, and mgrB affect phosphorylation of lipid A of the lipopolysaccharide through the pmrHFIJKLM (arnBCDATEF or pbgP) cluster, leading to polymyxin resistance; mgrB inactivation also affected capsule structure. Mobile and induced mcr, efflux hyperexpression and porin downregulation, and Ecr transmembrane protein also conferred polymyxin resistance and heteroresistance. Carbapenem and polymyxin resistance is thus mediated by a diverse range of genetic and transcriptional mechanisms that are easily activated in an inducing environment. The molecular understanding of these emerging mechanisms can aid in developing new therapeutics for multidrug-resistant Enterobacteriaceae isolates.
Collapse
|
23
|
Cheng P, Yang Y, Zhang J, Li F, Li X, Liu H, Ishfaq M, Xu G, Zhang X. Antimicrobial Resistance and Virulence Profiles of mcr-1-Positive Escherichia coli Isolated from Swine Farms in Heilongjiang Province of China. J Food Prot 2020; 83:2209-2215. [PMID: 32730609 DOI: 10.4315/jfp-20-190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/27/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT The emergence and global distribution of the mcr-1 gene for colistin resistance have become a public concern because of threats to the role of colistin as the last line of defense against some bacteria. Because of the prevalence of mcr-1-positive Escherichia coli isolates in food animals, production of these animals has been regarded as one of the major sources of amplification and spread of mcr-1. In this study, 249 E. coli isolates were recovered from 300 fecal samples collected from swine farms in Heilongjiang Province, People's Republic of China. Susceptibility testing revealed that 186 (74.70%) of these isolates were colistin resistant, and 86 were positive for mcr-1. The mcr-1-positive isolates had extensive antimicrobial resistance profiles and additional resistance genes, including blaTEM, blaCTX-M, aac3-IV, tet(A), floR, sul1, sul2, sul3, and oqxAB. No mutations in genes pmrAB and mgrB were associated with colistin resistance. Phylogenetic group analysis revealed that the mcr-1-positive E. coli isolates belonged to groups A (52.33% of isolates), B1 (33.72%), B2 (5.81%), and D (8.14%). The prevalence of the virulence-associated genes iutA, iroN, fimH, vat, ompA, and traT was moderate. Seven mcr-1-positive isolates were identified as extraintestinal pathogenic. Among 20 mcr-1-positive E. coli isolates, multilocus sequence typing revealed that sequence type 10 was the most common (five isolates). The conjugation assays revealed that the majority of mcr-1 genes were transferable at frequencies of 7.05 × 10-7 to 7.57 × 10-4. The results of this study indicate the need for monitoring and minimizing the further dissemination of mcr-1 among E. coli isolates in food animals, particularly swine. HIGHLIGHTS
Collapse
Affiliation(s)
- Ping Cheng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, People's Republic of China
| | - Yuqi Yang
- Pharmacology Teaching and Research Department, School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Dongqing Road, University Town, Huaxi District, Guiyang, People's Republic of China
| | - Junchuan Zhang
- College of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Fulei Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, People's Republic of China
| | - Xiaoting Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, People's Republic of China
| | - Haibin Liu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, People's Republic of China
| | - Muhammad Ishfaq
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, People's Republic of China
| | - Guofeng Xu
- College of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, People's Republic of China
| |
Collapse
|
24
|
Zhang Z, Zhang BS, Li KL, An Y, Liu C, Gou XY, Liang YM. Palladium-Catalyzed Amination/Dearomatization Reaction of Indoles and Benzofurans. J Org Chem 2020; 85:7817-7839. [PMID: 32441518 DOI: 10.1021/acs.joc.0c00475] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This report describes a palladium-catalyzed dearomatization and amination tandem reaction of 2,3-disubstituted indoles and benzofurans via the Catellani strategy. This reaction provides a new method for the construction of amino-substituted indoline-fused cyclic and benzofuran spiro compounds in good yields. The reaction has broad functional group compatibility and substrate scope.
Collapse
Affiliation(s)
- Zhe Zhang
- State key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Bo-Sheng Zhang
- State key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Kai-Li Li
- Lanzhou University Second Clinical Medical College, Lanzhou 730000, China
| | - Yang An
- State key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Ce Liu
- State key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Ya Gou
- State key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
25
|
Cui DY, Kong HT, Yang Y, Cai J, Shen BY, Yan DC, Zhang XJ, Qu YL, Bai MM, Zhang E. Asymmetric synthesis of linezolid thiazolidine-2-thione derivatives via CS2 mediated decarboxylation cyclization. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
García-Olaiz G, Alcántar-Zavala E, Ochoa-Terán A, Cabrera A, Muñiz-Salazar R, Montes-Ávila J, Salazar-Medina AJ, Alday E, Velazquez C, Medina-Franco JL, Laniado-Laborín R. Design, synthesis and evaluation of the antibacterial activity of new Linezolid dipeptide-type analogues. Bioorg Chem 2020; 95:103483. [DOI: 10.1016/j.bioorg.2019.103483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 11/24/2022]
|
27
|
Zhang N, Ma S. Recent development of membrane-active molecules as antibacterial agents. Eur J Med Chem 2019; 184:111743. [DOI: 10.1016/j.ejmech.2019.111743] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/09/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
|
28
|
Chen C, Yang K. Ebselen bearing polar functionality: Identification of potent antibacterial agents against multidrug-resistant Gram-negative bacteria. Bioorg Chem 2019; 93:103286. [PMID: 31585265 DOI: 10.1016/j.bioorg.2019.103286] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/20/2019] [Accepted: 09/15/2019] [Indexed: 01/06/2023]
Abstract
Antibiotic-resistant bacteria has become one of the greatest challenges to global human health today. Innovative strategies are needed to identify new therapeutic leads to tackle infections of drug-resistant Gram-negative bacteria. We herein synthesize a series of EB analogues to investigate their antibacterial activities. Select polar functionality at N-terminus of EB exhibited higher activities against multi-drug-resistant Gram-negative pathogens, including E. coli, P. aeruginosa and K. pneumoniae. EB analogue 4g and 4i exhibited potent antibacterial activities against E. coli-ESBL (MIC = 1-4 µg/mL) and E. coli producing NDM-1 (MIC = 4-32 µg/mL), which is superior to the traditional antibiotics (cefazolin, imipenem). Furthermore, the time-kill kinetics studies and the inhibition zone tests indicated that analogue 4i effectively and rapidly cause death of E. coli-ESBL and E. coli-NDM-1. Additionally, accumulation assays and SEM images showed that 4i could permeate bacterial membranes, leading to an irregular cell morphology. Importantly, bacterial resistance for analogue 4i was difficult to induce against E. coli-ESBL. EB analogues here reported low cytotoxicity against L-929 cells and mice model in vivo. We believe that EB analogues with polar functionality could play a pivotal role in the development of novel antibacterial agents in eradicating multi-drug-resistant Gram-negative pathogens infections.
Collapse
Affiliation(s)
- Cheng Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi'an 710127, PR China
| | - Kewu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, 1 Xuefu Avenue, Xi'an 710127, PR China.
| |
Collapse
|
29
|
Chu W, Yang Y, Cai J, Kong H, Bai M, Fu X, Qin S, Zhang E. Synthesis and Bioactivities of New Membrane-Active Agents with Aromatic Linker: High Selectivity and Broad-Spectrum Antibacterial Activity. ACS Infect Dis 2019; 5:1535-1545. [PMID: 31328496 DOI: 10.1021/acsinfecdis.9b00078] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The worldwide emergence of microbial resistance to antibiotics constitutes an important and growing public health threat, and novel antibiotics are urgently needed. In this report, a series of symmetrical membrane-active agents linked by an aromatic nucleus were designed and synthesized. Some showed high antibacterial activity against clinical drug-resistant bacterial isolates including methicillin-resistant Staphylococcus aureus (MRSA), carbapenemase-producing Enterobacter aerogenes, and delhi metallo-β-lactamase-1-producing Enterobacteriaceae (NDM-1), as well as drug-sensitive bacteria including Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Stenotrophomonas maltophilia. Lead compound 2n, with good selectivity for S. aureus (minimum inhibitory concentration [MIC] 0.25 μg/mL) versus mammalian erythrocytes (hemolytic concentration [HC50] 1211 μg/mL), had notable properties, including stability in complex mammalian fluids, rapid killing of pathogens, ability to eradicate established biofilms, and little induction of bacterial drug-resistance. In a mouse MRSA infection model, compound 2n exhibited a similar level of efficacy to vancomycin in killing bacteria and suppressing inflammation, demonstrating its therapeutic potential.
Collapse
Affiliation(s)
- Wenchao Chu
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yi Yang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Hongtao Kong
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Mengmeng Bai
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiangjing Fu
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China
| | - En Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, PR China
| |
Collapse
|
30
|
Chu W, Yang Y, Qin S, Cai J, Bai M, Kong H, Zhang E. Low-toxicity amphiphilic molecules linked by an aromatic nucleus show broad-spectrum antibacterial activity and low drug resistance. Chem Commun (Camb) 2019; 55:4307-4310. [DOI: 10.1039/c9cc00857h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amphiphilic molecules linked by an aromatic nucleus, possessing strong bactericidal activity, high selectivity, less drug resistance, and high in vivo efficacy against MRSA, were developed.
Collapse
Affiliation(s)
- Wenchao Chu
- School of Pharmaceutical Sciences
- Institute of Drug Discovery and Development
- Key Laboratory of Advanced Pharmaceutical Technology
- Ministry of Education of China
- Zhengzhou University
| | - Yi Yang
- School of Pharmaceutical Sciences
- Institute of Drug Discovery and Development
- Key Laboratory of Advanced Pharmaceutical Technology
- Ministry of Education of China
- Zhengzhou University
| | - Shangshang Qin
- School of Pharmaceutical Sciences
- Institute of Drug Discovery and Development
- Key Laboratory of Advanced Pharmaceutical Technology
- Ministry of Education of China
- Zhengzhou University
| | - Jianfeng Cai
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| | - Mengmeng Bai
- School of Pharmaceutical Sciences
- Institute of Drug Discovery and Development
- Key Laboratory of Advanced Pharmaceutical Technology
- Ministry of Education of China
- Zhengzhou University
| | - Hongtao Kong
- School of Pharmaceutical Sciences
- Institute of Drug Discovery and Development
- Key Laboratory of Advanced Pharmaceutical Technology
- Ministry of Education of China
- Zhengzhou University
| | - En Zhang
- School of Pharmaceutical Sciences
- Institute of Drug Discovery and Development
- Key Laboratory of Advanced Pharmaceutical Technology
- Ministry of Education of China
- Zhengzhou University
| |
Collapse
|
31
|
Wang MM, Chu WC, Yang Y, Yang QQ, Qin SS, Zhang E. Dithiocarbamates: Efficient metallo-β-lactamase inhibitors with good antibacterial activity when combined with meropenem. Bioorg Med Chem Lett 2018; 28:3436-3440. [DOI: 10.1016/j.bmcl.2018.09.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/19/2018] [Indexed: 11/26/2022]
|