1
|
Yuan Y, Li M, Apostolopoulos V, Matsoukas J, Wolf WM, Blaskovich MAT, Bojarska J, Ziora ZM. Tetrazoles: A multi-potent motif in drug design. Eur J Med Chem 2024; 279:116870. [PMID: 39316842 DOI: 10.1016/j.ejmech.2024.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
The unique physicochemical properties and fascinating bioisosterism of tetrazole scaffolds have received significant attention in medicinal chemistry. We report recent efforts using tetrazoles in drug design strategies in this context. Despite the increasing prevalence of tetrazoles in FDA-approved drugs for various conditions such as cancer, bacterial viral and fungal infections, asthma, hypertension, Alzheimer's disease, malaria, and tuberculosis, our understanding of their structure-activity relationships, multifunctional mechanisms, binding modes, and biochemical properties remains limited. We explore the potential of tetrazole bioisosteres in optimising lead molecules for innovative therapies, discussing applications, trends, advantages, limitations, and challenges. Additionally, we assess future research directions to drive further progress in this field.
Collapse
Affiliation(s)
- Ye Yuan
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Muzi Li
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Vasso Apostolopoulos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia; Institute for Health and Sport, Immunology and Translational Research, Victoria University, Werribee, VIC 3030, Australia; Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, 3021, Australia
| | - John Matsoukas
- New Drug, Patras Science Park, 26500 Patras, Greece; Institute for Health and Sport, Victoria University, Melbourne, VIC, 3030, Australia; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, AB, T2N 4N1, Canada
| | - Wojciech M Wolf
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Lodz, 90-924, Poland
| | - Mark A T Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Lodz, 90-924, Poland.
| | - Zyta M Ziora
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
2
|
Khalaj M, Musavi SM, Ghashang M. Alkyl ammonium hydrogen sulfate immobilized on Fe 3O 4@SiO 2 nanoparticles: a highly efficient catalyst for the multi-component preparation of novel tetrazolo[1,5-a]pyrimidine-6-carboxamide derivatives. Sci Rep 2024; 14:8870. [PMID: 38632295 PMCID: PMC11024118 DOI: 10.1038/s41598-024-59096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
In this, a three-component reaction for the preparation of novel tetrazolo[1,5-a]pyrimidine-6-carboxamide derivatives from N,N'-(sulfonylbis(1,4-phenylene))bis(3-oxobutanamide), aldehydes and 1H-tetrazol-5-amine is reported. The application of Fe3O4@SiO2-(PP)(HSO4)2 (A) as a catalyst afforded the desired products (a1-a18) in high yields in DMF as solvent as well as under solvent-free conditions.
Collapse
Affiliation(s)
- Mehdi Khalaj
- Department of Chemistry, Islamic Azad University, Buinzahra Branch, Buinzahra, Iran.
| | - Seyed Mahmoud Musavi
- Department of Chemistry, Islamic Azad University, Buinzahra Branch, Buinzahra, Iran
| | - Majid Ghashang
- Department of Chemistry, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
3
|
Iniyaval S, Saravanan V, Mai CW, Ramalingan C. Tetrazolopyrimidine-tethered phenothiazine molecular hybrids: synthesis, biological and molecular docking studies. NEW J CHEM 2024; 48:13384-13396. [DOI: 10.1039/d3nj05817d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2025]
Abstract
Molecular hybrids integrating phenothiazine and tetrazolopyrimidine structural motifs were designed, synthesized through a one-pot multi-component reaction and, evaluated for their radical scavenging, cytotoxicity and molecular docking studies.
Collapse
Affiliation(s)
- Shunmugam Iniyaval
- Department of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil, 626126, Tamil nadu, India
| | - Vadivel Saravanan
- Department of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil, 626126, Tamil nadu, India
| | - Chun-Wai Mai
- Department of Pharmaceutical Chemistry, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Chennan Ramalingan
- Department of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil, 626126, Tamil nadu, India
| |
Collapse
|
4
|
Piplani P, Kumar A, Kulshreshtha A, Vohra T, Piplani V. Recent Development of DNA Gyrase Inhibitors: An Update. Mini Rev Med Chem 2024; 24:1001-1030. [PMID: 37909434 DOI: 10.2174/0113895575264264230921080718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 11/03/2023]
Abstract
Antibiotic or antimicrobial resistance is an urgent global public health threat that occurs when bacterial or fungal infections do not respond to the drug regimen designed to treat these infections. As a result, these microbes are not evaded and continue to grow. Antibiotic resistance against natural and already-known antibiotics like Ciprofloxacin and Novobiocin can be overcome by developing an agent that can act in different ways. The success of agents like Zodiflodacin and Zenoxacin in clinical trials against DNA gyrase inhibitors that act on different sites of DNA gyrase has resulted in further exploration of this target. However, due to the emergence of bacterial resistance against these targets, there is a great need to design agents that can overcome this resistance and act with greater efficacy. This review provides information on the synthetic and natural DNA gyrase inhibitors that have been developed recently and their promising potential for combating antimicrobial resistance. The review also presents information on molecules that are in clinical trials and their current status. It also analysed the SAR studies and mechanisms of action of enlisted agents.
Collapse
Affiliation(s)
- Poonam Piplani
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160017, India
| | - Ajay Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160017, India
| | - Akanksha Kulshreshtha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160017, India
| | - Tamanna Vohra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160017, India
| | - Vritti Piplani
- Bhojia Dental College and Hospital, Baddi, 173205, India
| |
Collapse
|
5
|
Usul SK, Lüleci HB, Ergüden B, Aslan A. Antimicrobial Properties of Azole Functional Silica Nanocomposites. ChemistrySelect 2023; 8. [DOI: 10.1002/slct.202303059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/30/2023] [Indexed: 07/26/2024]
Abstract
AbstractSilica nanoparticles have become more attractive due to their surface characteristics, versatility, biocompatibility, and morphological and physicochemical properties. For this reason, their use in biological applications has been expanding in recent years. In this study, after functionalizing silica nanoparticles with glycidyl methacrylate monomer, nanocomposites were formed by attaching 1,2,4‐Triazole, 3‐Amino‐1,2,4‐Triazole, and 5‐Aminotetrazole particles to the surface. Notably, the thermal degradation temperature of all nanocomposites was determined to surpass 200 °C. However, it is worth mentioning that despite the favorable water uptake rates observed for MT(7.64 %) and M3(5.98 %) nanocomposites, MT did not exhibit resistance against Fenton chemicals and experienced degradation. It is important to note that the material loss in M3 nanocomposites is minimal, measuring less than 1 %. In order to reveal the antifungal and antibacterial activity of the synthesized nanoparticles, Minimum inhibitory concentration(MIC), as well as Minimum Fungicidal Concentration(MFC) against the yeast strain Saccharomyces cerevisiae, and Minimum Bactericidal Concentration(MBC) values against bacteria strains, Staphylococcus aureus, Enterococcus faecalis and Escherichia coli were determined. The findings of the study indicated that MP, M3, and M5 nanocomposites displayed a moderate level of antibacterial activity. It is noteworthy, however, that the antibacterial activity diminished when triazole was combined with MP at concentrations exceeding 100 mg/mL.
Collapse
Affiliation(s)
- Sedef Kaptan Usul
- Department of Bioengineering Gebze Technical University Kocaeli Turkey
| | | | - Bengü Ergüden
- Department of Bioengineering Gebze Technical University Kocaeli Turkey
| | - Ayşe Aslan
- Department of Bioengineering Gebze Technical University Kocaeli Turkey
- Institute of Energy Technologies Gebze Technical University Kocaeli Turkey
| |
Collapse
|
6
|
Synthesis of 2,4‐dihydrochromeno[3,4‐
d
][1,2,3]triazoles and 5‐(2
H
‐chromen‐3‐yl)‐1
H
‐tetrazoles via regioselective 1,3‐dipolar cycloaddition of 2
H
‐chromene‐3‐carbonitriles with NaN
3. ChemistrySelect 2022. [DOI: 10.1002/slct.202204197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Szostek T, Szulczyk D, Szymańska-Majchrzak J, Koliński M, Kmiecik S, Otto-Ślusarczyk D, Zawodnik A, Rajkowska E, Chaniewicz K, Struga M, Roszkowski P. Design and Synthesis of Menthol and Thymol Derived Ciprofloxacin: Influence of Structural Modifications on the Antibacterial Activity and Anticancer Properties. Int J Mol Sci 2022; 23:ijms23126600. [PMID: 35743043 PMCID: PMC9224473 DOI: 10.3390/ijms23126600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022] Open
Abstract
Sixteen new Ciprofloxacin derivatives were designed and successfully synthesized. In an in silico experiment, lipophilicity was established for obtained compounds. All compounds were screened for antimicrobial activity using standard and clinical strains. As for Gram-positive hospital microorganisms, all tested derivatives were active. Measured MICs were in the range 1–16 µg/mL, confirming high antimicrobial potency. Derivative 12 demonstrated activity against all standard Gram-positive Staphylococci, within the range of 0.8–1.6 µg/mL and was confirmed as the leading structure with MICs 1 µg/mL for S. pasteuri KR 4358 and S. aureus T 5591 (clinical strains). All compounds were screened for their in vitro cytotoxic properties via the MTT method. Three of the examined compounds (3, 11 and 16) showed good activity against cancer cells, and in parallel were found not to be cytotoxic toward normal cells. Doxorubicin SI ranged 0.14–1.11 while the mentioned three ranged 1.9–3.4. Selected Ciprofloxacin derivatives were docked into the crystal structure of topoisomerase II (DNA gyrase) in complex with DNA (PDB ID: 5BTC). In summary, leading structures were established (3, 11, 12 and 16). We have observed poor results in preformed studies for disubstituted derivatives, suggesting that 3-oxo-4-carboxylic acid core is the active DNA-gyrase binding site, and when structural changes were made in this fragment, there was an observed decrease in antibacterial potency.
Collapse
Affiliation(s)
- Tomasz Szostek
- Biochemical Research Scientific Association, Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Daniel Szulczyk
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.S.-M.); (D.O.-Ś.); (M.S.)
- Correspondence: (D.S.); (P.R.)
| | - Jolanta Szymańska-Majchrzak
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.S.-M.); (D.O.-Ś.); (M.S.)
| | - Michał Koliński
- Bioinformatics Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego St., 02-106 Warsaw, Poland;
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland;
| | - Dagmara Otto-Ślusarczyk
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.S.-M.); (D.O.-Ś.); (M.S.)
| | - Aleksandra Zawodnik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Eliza Rajkowska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (E.R.); (K.C.)
| | - Kinga Chaniewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (E.R.); (K.C.)
| | - Marta Struga
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.S.-M.); (D.O.-Ś.); (M.S.)
| | - Piotr Roszkowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (E.R.); (K.C.)
- Correspondence: (D.S.); (P.R.)
| |
Collapse
|
8
|
Novel 1,2,3-Triazole-Coumarin Hybrid Glycosides and Their Tetrazolyl Analogues: Design, Anticancer Evaluation and Molecular Docking Targeting EGFR, VEGFR-2 and CDK-2. Molecules 2022; 27:molecules27072047. [PMID: 35408446 PMCID: PMC9000887 DOI: 10.3390/molecules27072047] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
This study represents the design and synthesis of a new set of triazole-coumarin-glycosyl hybrids and their tetrazole hybrid analogues possessing various sugar moieties and modified analogues. All the newly synthesized derivatives were screened for their cytotoxic activities against a panel of human cancer cell lines. The coumarin derivatives 10, 13 and 15 derivatives revealed potent cytotoxic activities against Paca-2, Mel-501, PC-3 and A-375 cancer cell lines. These promising analogues were further examined for their inhibitory assessment against EGFR, VEGFR-2 and CDK-2/cyclin A2 kinases. The coumarin-tetrazole 10 displayed broad superior inhibitory activity against all screened enzymes compared with the reference drugs, erlotinib, sorafenib and roscovitine, respectively. The impact of coumarin-tetrazole 10 upon cell cycle and apoptosis induction was determined to detect its mechanism of action. Additionally, it upregulated the levels of casp-3, casp-7 and cytochrome-c proteins and downregulated the PD-1 level. Finally, molecular docking study was simulated to afford better rationalization and gain insight into the binding affinity between the promising derivatives and their targeted enzymes, which could be used as an optimum lead for further modification in the anticancer field.
Collapse
|
9
|
Radakovic N, Nikolić A, Jovanović NT, Stojković P, Stankovic N, Šolaja B, Opsenica I, Pavic A. Unraveling the anti-virulence potential and antifungal efficacy of 5-aminotetrazoles using the zebrafish model of disseminated candidiasis. Eur J Med Chem 2022; 230:114137. [PMID: 35077918 DOI: 10.1016/j.ejmech.2022.114137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022]
Abstract
Candida albicans remains the main causal agent of candidiasis, the most common fungal infection with disturbingly high mortality rates worldwide. The limited diversity and efficacy of clinical antifungal drugs, exacerbated by emerging drug resistance, have resulted in the failure of current antifungal therapies. This imposes an urgent demand for the development of innovative strategies for effective eradication of candidal infections. While the existing clinical drugs display fungicidal or fungistatic activity, the strategy specifically targeting C. albicans filamentation, as the most important virulence trait, represents an attractive approach for overcoming the drawbacks related to clinical antifungals. The results acquired in this study revealed the significant potential of 5-aminotetrazoles as a new class of effective and safe anti-virulence agents. Moreover, these novel agents were active when applied both alone and in combination with clinically approved polyenes. Complete prevention of C. albicans morphogenetic yeast-to-hyphae transition was achieved at doses as low as 1.3 μM under conditions mimicking various filamentation-responsive stimuli in the human body, while no cardio- or hepatotoxicity was observed at doses as high as 200 μM. The treatment of C. albicans-infected zebrafish embryos with nystatin alone had low efficacy, while the combination of nystatin and selected 5-aminotetrazoles prevented fungal filamentation, successfully eliminating the infection and rescuing the infected embryos from lethal disseminated candidiasis. In addition, the most potent anti-virulence 5-aminotetrazole prevented C. albicans in developing the resistance to nystatin when applied in combination, keeping the fungus sensitive to the antifungal drug.
Collapse
Affiliation(s)
- Natasa Radakovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Andrea Nikolić
- University of Belgrade - Faculty of Chemistry, PO Box 51, Studentski trg 16, 11158, Belgrade, Serbia
| | - Nataša Terzić Jovanović
- University of Belgrade - Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Serbia
| | - Pavle Stojković
- University of Belgrade - Faculty of Chemistry, PO Box 51, Studentski trg 16, 11158, Belgrade, Serbia
| | - Nada Stankovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Bogdan Šolaja
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000, Belgrade, Serbia
| | - Igor Opsenica
- University of Belgrade - Faculty of Chemistry, PO Box 51, Studentski trg 16, 11158, Belgrade, Serbia.
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| |
Collapse
|
10
|
Novel Tetrazole-Based Antimicrobial Agents Targeting Clinical Bacteria Strains: Exploring the Inhibition of Staphylococcus aureus DNA Topoisomerase IV and Gyrase. Int J Mol Sci 2021; 23:ijms23010378. [PMID: 35008805 PMCID: PMC8745314 DOI: 10.3390/ijms23010378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 01/15/2023] Open
Abstract
Eleven novel imide-tetrazoles were synthesized. In the initial stage of research, in silico structure-based pharmacological prediction was conducted. All compounds were screened for antimicrobial activity using standard and clinical strains. Within the studied group, compounds 1-3 were recognized as leading structures with the most promising results in antimicrobial studies. Minimal inhibitory concentration values for compounds 1, 2, 3 were within the range of 0.8-3.2 μg/mL for standard and clinical Gram-positive and Gram-negative bacterial strains, showing in some cases higher activity than the reference Ciprofloxacin. Additionally, all three inhibited the growth of all clinical Staphylococci panels: Staphylococcus aureus (T5592; T5591) and Staphylococcus epidermidis (5253; 4243) with MIC values of 0.8 μg/mL. Selected compounds were examined in topoisomerase IV decatenation assay and DNA gyrase supercoiling assay, followed by suitable molecular docking studies to explore the possible binding modes. In summary, the presented transition from substrate imide-thioureas to imide-tetrazole derivatives resulted in significant increase of antimicrobial properties. The compounds 1-3 proposed here provide a promising basis for further exploration towards novel antimicrobial drug candidates.
Collapse
|
11
|
Pavan Phani Kumar M, Anuradha V, Subramanyam C, Hari Babu VV. In silico molecular docking study, synthesis and α-amylase inhibitory activity evaluation of phosphorylated derivatives of purine. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1960833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - V. Anuradha
- Department of Chemistry, Vignan Degree College, Guntur, Andhra Pradesh, India
| | - Ch. Subramanyam
- Department of Chemistry, Bapatla Engineering College, Bapatla, Andhra Pradesh, India
| | - V. V. Hari Babu
- Department of Physics, Bapatla Engineering College, Bapatla, Andhra Pradesh, India
| |
Collapse
|
12
|
Nikolić AM, Stanić J, Zlatar M, Gruden M, And Elković B, Selaković Ž, Ajdačić V, Opsenica IM. Controlling Pd-Catalyzed N-Arylation and Dimroth Rearrangement in the Synthesis of N,1-Diaryl-1 H-tetrazol-5-amines. J Org Chem 2021; 86:4794-4803. [PMID: 33683905 DOI: 10.1021/acs.joc.1c00282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Pd-catalyzed N-arylation method for the synthesis of eighteen N,1-diaryl-1H-tetrazol-5-amine derivatives is reported. By running the reactions at 35 °C, compounds were isolated as single isomers since the undesired Dimroth rearrangement was completely suppressed. Furthermore, the Dimroth rearrangement of N,1-diaryl-1H-tetrazol-5-amines was rationalized by conducting comprehensive experiments and NMR analysis as well as density functional theory (DFT) calculations of thermodynamic stability of the compounds. It was established that the Dimroth rearrangement is thermodynamically controlled, and the equilibrium of the reaction is determined by the stability of the corresponding isomers. The mechanism was investigated by additional DFT calculations, and the opening of the tetrazole ring was shown to be the rate-determining step. By maneuvering Pd-catalyzed N-arylation and the subsequent Dimroth rearrangement, two more N,1-diaryl-1H-tetrazol-5-amine derivatives were acquired, which otherwise cannot be synthesized by employing the C-N cross-coupling reaction.
Collapse
Affiliation(s)
- Andrea M Nikolić
- Faculty of Chemistry, University of Belgrade, P.O. Box 51, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Jelena Stanić
- Faculty of Chemistry, University of Belgrade, P.O. Box 51, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Matija Zlatar
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Maja Gruden
- Faculty of Chemistry, University of Belgrade, P.O. Box 51, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Boban And Elković
- Faculty of Chemistry, University of Belgrade, P.O. Box 51, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Života Selaković
- Faculty of Chemistry, University of Belgrade, P.O. Box 51, Studentski Trg 16, 11158 Belgrade, Serbia
| | - Vladimir Ajdačić
- Innovative Centre, Faculty of Chemistry, Ltd., Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Igor M Opsenica
- Faculty of Chemistry, University of Belgrade, P.O. Box 51, Studentski Trg 16, 11158 Belgrade, Serbia
| |
Collapse
|
13
|
Bagherzadeh N, Sardarian AR, Eslahi H. Sustainable and recyclable magnetic nanocatalyst of 1,10-phenanthroline Pd(0) complex in green synthesis of biaryls and tetrazoles using arylboronic acids as versatile substrates. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Synthetic Transition from Thiourea-Based Compounds to Tetrazole Derivatives: Structure and Biological Evaluation of Synthesized New N-(Furan-2-ylmethyl)-1 H-tetrazol-5-amine Derivatives. Molecules 2021; 26:molecules26020323. [PMID: 33435194 PMCID: PMC7827014 DOI: 10.3390/molecules26020323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 11/16/2022] Open
Abstract
Twelve novel derivatives of N-(furan-2-ylmethyl)-1H-tetrazol-5-amine were synthesized. For obtained compound 8, its corresponding substrate single crystals were isolated and X-ray diffraction experiments were completed. In the initial stage of research, in silico structure-based pharmacological prediction was conducted. All compounds were screened for their antibacterial and antimycobacterial activities using standard and clinical strains. The cytotoxic activity was evaluated against a panel of human cancer cell lines, in contrast to normal (HaCaT) cell lines, by using the MTT method. All examined derivatives were found to be noncytotoxic against normal cell lines. Within the studied group, compound 6 showed the most promising results in antimicrobial studies. It inhibited four hospital S. epidermidis rods' growth, when applied at the amount of 4 µg/mL. However, the most susceptible to the presence of compound 6 was S. epidermidis T 5501 851/19 clinical strain, for which the MIC value was only 2 µg/mL. Finally, a pharmacophore model was established based on lead compounds from this and our previous work.
Collapse
|
15
|
Jaswal S, Nehra B, Kumar S, Monga V. Recent advancements in the medicinal chemistry of bacterial type II topoisomerase inhibitors. Bioorg Chem 2020; 104:104266. [PMID: 33142421 DOI: 10.1016/j.bioorg.2020.104266] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
Replication proteins are sought as a potential targets for antimicrobial agents. Despite their promising target characteristics, only topoisomerase II inhibitors targeting DNA gyrase and/or topoisomerase IV have reached clinical use. Topoisomerases are the enzymes that are essential for cellular functions and various biological activities. A wide range of natural and synthetic compounds have been identified as potential topoisomerase inhibitors but the resistance is most commonly found in these drugs. The emergence of FQ resistance has increased the need for the development of novel topoisomerase inhibitors with efficacy and high potency against FQ-resistant strains. Besides structural modifications of existing FQ scaffolds, novel non-quinolone topoisomerase II inhibitors, known as novel bacterial topoisomerase inhibitors, have been developed which showed remarkable inhibitory activity against DNA gyrase/topoisomerase IV or both with an improved spectrum of antibacterial potency including drug-resistant strains. This review aims to summarize various recent advancements in the medicinal chemistry of topoisomerase inhibitors with the following objectives: (1) To represent inclusive data on types of topoisomerases and various marketed topoisomerase inhibitors as drugs; (2) To discuss the recent advances in the medicinal chemistry of various topoisomerase inhibitors (DNA gyrase and topo IV) belonging to different structural classes as potential antibacterial agents; (3) To summarizes the structure activity relationship (SAR) including in silico and mechanistic studies to afford ideas and to provide focused direction for the development of new chemical entities which are effective against drug-resistant bacterial pathogens and biofilms.
Collapse
Affiliation(s)
- Shalini Jaswal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Bhupender Nehra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Shubham Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga 142001, Punjab, India.
| |
Collapse
|
16
|
Recent advances in DNA gyrase-targeted antimicrobial agents. Eur J Med Chem 2020; 199:112326. [DOI: 10.1016/j.ejmech.2020.112326] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
|
17
|
Szulczyk D, Bielenica A, Roszkowski P, Dobrowolski MA, Olejarz W, Napiórkowska M, Struga M. Cytotoxicity Evaluation of Novel bis(2-aminoethyl)amine Derivatives. Molecules 2020; 25:molecules25122816. [PMID: 32570862 PMCID: PMC7355942 DOI: 10.3390/molecules25122816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/04/2022] Open
Abstract
Seven novel derivatives of bis(2-aminoethyl)amine were synthesized. For compounds 1 and 7 single crystals were isolated and X-ray diffraction experiments were done. Lipophilicity and drug likeness were calculated in the initial stage of research. All compounds were screened for their in vitro cytotoxic activity against a panel of human cancer cell lines, which is contrary to normal (HaCaT) cell lines, by using the MTT method. Studies were followed by lactate dehydrogenase assay, apoptotic activity, and interleukin-6 assay. Within the studied group, compound 6 showed the most promising results in all biological studies. The strongest influence in A549 cells was denoted for derivative 4, which inhibited interleukin release almost tenfold, as compared to the control.
Collapse
Affiliation(s)
- Daniel Szulczyk
- Chair and Department of Biochemistry, Medical University, 02–097 Warszawa, Poland; (A.B.); (M.N.); (M.S.)
- Correspondence:
| | - Anna Bielenica
- Chair and Department of Biochemistry, Medical University, 02–097 Warszawa, Poland; (A.B.); (M.N.); (M.S.)
| | - Piotr Roszkowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (P.R.); (M.A.D.)
| | - Michał A. Dobrowolski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (P.R.); (M.A.D.)
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warszawa, Poland;
- Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Mariola Napiórkowska
- Chair and Department of Biochemistry, Medical University, 02–097 Warszawa, Poland; (A.B.); (M.N.); (M.S.)
| | - Marta Struga
- Chair and Department of Biochemistry, Medical University, 02–097 Warszawa, Poland; (A.B.); (M.N.); (M.S.)
| |
Collapse
|
18
|
Liao L, Jiang C, Chen J, Shi J, Li X, Wang Y, Wen J, Zhou S, Liang J, Lao Y, Zhang J. Synthesis and biological evaluation of 1,2,4-triazole derivatives as potential neuroprotectant against ischemic brain injury. Eur J Med Chem 2020; 190:112114. [PMID: 32061962 DOI: 10.1016/j.ejmech.2020.112114] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 02/07/2023]
Abstract
A series of 1,2,4-triazole derivatives 1-14 was synthesized to investigate their neuroprotective effects and mechanisms of action. Compounds 5-11 noticeably protected PC12 cells from the cytotoxicity of H2O2 or sodium nitroprusside (SNP). Compound 11 was the most effective derivative. Compound 11 chelated Fe (II) iron, scavenged reactive oxygen species (ROS), and restored the mitochondrial membrane potential (MMP). Moreover, it enhanced the activity of the antioxidant defense system by increasing the serum level of superoxide dismutase (SOD) and promoting the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). Compound 11 caused certain improvements in behavior, the cerebral infarction area, and serum levels of biochemical indicators (TNF-α, IL-1β, SOD and MDA) in a rat MCAO model. The lethal dose (LD50) of compound 11 in mice receiving intraperitoneal injections was greater than 400 mg/kg. Meanwhile, pharmacokinetic experiments revealed high bioavailability of this compound after both oral and intravenous administration (F = 60.76%, CL = 0.014 mg/kg/h) and a longer half-life (4.26 and 5.11 h after oral and intravenous administration, respectively). Based on these findings, compound 11 may be a promising neuroprotectant for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Liping Liao
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Caibao Jiang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jianwen Chen
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jinguo Shi
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Xinhua Li
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yang Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jin Wen
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Shujia Zhou
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jie Liang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yaoqiang Lao
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jingxia Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
19
|
Moulishankar A, Lakshmanan K. Data on molecular docking of naturally occurring flavonoids with biologically important targets. Data Brief 2020; 29:105243. [PMID: 32072001 PMCID: PMC7016233 DOI: 10.1016/j.dib.2020.105243] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/15/2020] [Accepted: 01/28/2020] [Indexed: 11/18/2022] Open
Abstract
Flavonoids in nature are known to possess various activities such as anti-inflammatory, antimicrobial, anticancer, antioxidant, neuroprotective, anti-HIV activities etc., The molecular docking was performed by 26 naturally occurring flavonoids with selected targets COX-2, hydroxyacyl-ACP dehydratase, tyrosinase from Agaricus bisporus, isomaltase from Saccharomyces cerevisiae, Human IkB kinase beta, Human ABC transporter, topoisomerase II, topoisomerase IV, N-myristoyltransferase from Candida albicans, Peptide deformylase from Pseudomonas aeruginosa, polypeptide deformylase from Streptococcus pneumoniae. The analysis was based on docking score, glide energy, interactions type (bond type and distance) and interaction with amino acids. The top 5 flavonoids with best docking score was reported. The in-silico results provided for 26 naturally occurring flavonoid shows that they reduce the risk of inflammation, cancer and infectious disease if people have taken in diet continuously. The provided docking data of flavonoids may be useful to synthesis novel drug candidate for the mentioned targets.
Collapse
|
20
|
Tang HJ, Xu YR, Wang XH, Zhao FL, Meng QG. The crystal structure of 5-bromo-2-(1-methyl-1 H-tetrazol-5-yl)pyridine, C 7H 6BrN 5. Z KRIST-NEW CRYST ST 2019. [DOI: 10.1515/ncrs-2019-0442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C7H6BrN5, orthorhombic, Acam (no. 64; unconventional setting of Cmce formerly known as Cmca), a = 12.3735(8) Å, b = 20.8690(11) Å, c = 6.8385(6) Å, V = 1765.9(2) Å3, Z = 8, R
gt(F) = 0.0471, wR
ref(F
2) = 0.1152, T = 293(2) K.
Collapse
Affiliation(s)
- Hang-Jun Tang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug, Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education , Yantai University , Yantai , P.R. China
| | - Yang-Rong Xu
- Laboratory of Computer-Aided Drug Design and Discovery , Beijing Institute of Pharmacology and Toxicology , Beijing 100850 , P.R. China
| | - Xiao-Hui Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug, Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education , Yantai University , Yantai , P.R. China
| | - Feng-Lan Zhao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug, Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education , Yantai University , Yantai , P.R. China
| | - Qing-Guo Meng
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug, Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education , Yantai University , Yantai , P.R. China
| |
Collapse
|
21
|
Gao F, Xiao J, Huang G. Current scenario of tetrazole hybrids for antibacterial activity. Eur J Med Chem 2019; 184:111744. [DOI: 10.1016/j.ejmech.2019.111744] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/05/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022]
|
22
|
Development of (4-methoxyphenyl)-1H-tetrazol-5-amine regioisomers as a new class of selective antitubercular agents. Eur J Med Chem 2019; 186:111882. [PMID: 31753514 DOI: 10.1016/j.ejmech.2019.111882] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 01/06/2023]
Abstract
A series of halogenated (4-methoxyphenyl)-1H-tetrazol-5-amine regioisomers (1a-9a, 1b-9b) were synthesized from their corresponding thiourea analogues (1-9). The synthesis pathway was confirmed by an X-ray crystallographic studies of 1a, 1b and 5a. Title derivatives were tested for their in vitro antitubercular activity against standard, "wild-type" and atypical mycobacteria. The highest therapeutic potential was attributed to isomeric N-(bromophenyl)tetrazoles 8a and 9a. Their growth-inhibitory effect against multidrug-resistant Mycobacterium tuberculosis Spec. 210 was 8-16-fold stronger than that of the first-line tuberculostatics. Other new tetrazole-derived compounds were also more or equally effective towards that pathogen comparing to the established pharmaceuticals. Among non-tuberculous strains, Mycobacterium scrofulaceum was the most susceptible to the presence of the majority of tetrazole derivatives. The synergistic interaction was found between 9a and streptomycin, as well as the additivity of both 8a and 9a in pairs with isoniazid, rifampicin and ethambutol. None of the studied compounds displayed antibacterial or cytotoxic properties against normal and cancer cell lines, which indicated their highly selective antimycobacterial effects.
Collapse
|
23
|
Zhang J, Wang S, Ba Y, Xu Z. Tetrazole hybrids with potential anticancer activity. Eur J Med Chem 2019; 178:341-351. [PMID: 31200236 DOI: 10.1016/j.ejmech.2019.05.071] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 12/15/2022]
Abstract
Cancer is one of the main causes of death throughout the world. The anticancer agents are indispensable for the treatment of various cancers, but most of them currently on the market are not specific, resulting in series of side effects of chemotherapy. Moreover, the emergency of drug-resistance towards cancers has already increased up to alarming level in the recent decades. Therefore, it's imperative to develop novel anticancer candidates with excellent activity against both drug-susceptible and drug-resistant cancers, and low toxicity as well. Tetrazole is the bioisoster of carboxylic acid, and its derivatives demonstrated promising anticancer activity. Hybridization of tetrazole with other anticancer pharmacophores may provide novel candidates with anticancer potency. The present review described the anticancer activity of tetrazole hybrids, and the structure-activity relationship (SAR) is also discussed to provide an insight for rational designs of tetrazole anticancer candidates with higher efficiency.
Collapse
Affiliation(s)
- Jingyu Zhang
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China.
| | - Su Wang
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Yanyan Ba
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Zhi Xu
- Huanghuai University, College of Chemistry and Pharmaceutical Engineering, Zhumadian, PR China.
| |
Collapse
|
24
|
Wang SQ, Wang YF, Xu Z. Tetrazole hybrids and their antifungal activities. Eur J Med Chem 2019; 170:225-234. [DOI: 10.1016/j.ejmech.2019.03.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023]
|