1
|
Goleij P, Tabari MAK, Rezaee A, Sanaye PM, Daglia M, Alijanzadeh D, Alsharif KF, Kumar AP, Khan H. Translating molecular insights into clinical success: alkaloid-based therapies for leukemia. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2547-2568. [PMID: 39476244 DOI: 10.1007/s00210-024-03540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/11/2024] [Indexed: 03/19/2025]
Abstract
Alkaloids, a diverse class of naturally occurring compounds, have shown significant potential in the treatment of leukemia by targeting key molecular pathways and cellular mechanisms. This review discusses several potent alkaloids, such as homoharringtonine, chaetominine, matrine, and jerantinine B, which induce apoptosis, cell cycle arrest, and autophagy and inhibit signaling pathways including PI3K/Akt/mTOR, MAPK, and NF-κB. For instance, homoharringtonine induces apoptosis in acute myeloid leukemia (AML) cells via the SP1/TET1/5hmC/FLT3/MYC axis, while chaetominine enhances chemosensitivity by inhibiting the PI3K/Akt/Nrf2 pathway. In addition, targeting leukemia stem cells (LSCs) with alkaloids such as zalypsis offers promise due to its ability to induce apoptosis without significantly affecting normal hematopoietic stem cells. The modulation of the immune response, such as the inhibition of NF-κB activation by noscapine, further underscores the potential of alkaloids in overcoming treatment resistance. Various studies have demonstrated the efficacy of alkaloids across different leukemia types. For example, jerantinine B targets AML cells, while vincristine has shown success in lymphocytic leukemia. Clinical trials have also highlighted the benefits of alkaloids, including homoharringtonine, which achieved a 79.9% complete remission rate in AML patients. However, adverse effects such as neutropenia and hepatotoxicity necessitate careful management. Collectively, these findings emphasize the need for further research into alkaloid-based combination therapies to enhance efficacy and minimize toxicity, providing a promising avenue for innovative leukemia treatments.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- PhytoPharmacology Interest Group (PPIG), Network (USERN), Universal Scientific Education and Research, Tehran, Iran.
- Department of Genetics, Sana Institute of Higher Education, Sari, Iran.
| | - Mohammad Amin Khazeei Tabari
- PhytoPharmacology Interest Group (PPIG), Network (USERN), Universal Scientific Education and Research, Tehran, Iran
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Aryan Rezaee
- Medical Doctor, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pantea Majma Sanaye
- PhytoPharmacology Interest Group (PPIG), Network (USERN), Universal Scientific Education and Research, Tehran, Iran
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
| | - Dorsa Alijanzadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Science, College of Applied Medical Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
- Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| |
Collapse
|
2
|
Toson EA, El-Fallal AA, Oransa MA, El-Gharabawy HM. In vitro antitumor effects of methanolic extracts of three Ganoderema mushrooms. Sci Rep 2025; 15:2274. [PMID: 39824924 PMCID: PMC11748650 DOI: 10.1038/s41598-025-86162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/08/2025] [Indexed: 01/20/2025] Open
Abstract
Ganoderma mushrooms have a variety of pharmacological activities and may have antitumor effects. Therefore, the antitumor activity of the methanolic fruiting body extracts of three Ganoderma spp. will be evaluated by estimating cell viability, cell cycle parameters and the mode of cellular death. In this regard, Sulfo-rhodamine B staining and flow cytometry were used. Hepatocellular carcinoma (HepG2) and breast ductal carcinoma (T-47D) cell lines were used as cancer models, while mouse normal liver (BNL) and oral epithelial cell (OEC) lines were used as respective controls. The results revealed that Ganoderma resinaceum extract decreased the viability of BNL at an IC50 > 100 µg/mL but not that of HepG2 at an IC50 of 72.32 µg/mL. Additionally, Ganoderma australe and Ganoderma mbrekobenum decreased the viability of OEC cell line at an IC50 of 328.29 and 271.56 µg/ mL, respectively. On the other hand, the IC50 of T-47D were 221.95 and 236.45 µg/mL, respectively. The three extracts arrested the cell life cycle at the G1 phase in each case. G. resinaceum extract stimulated total apoptosis (Q2 + Q4) of 19.99% with low necrosis (Q1). However, the percentages of total cell necrosis in the T-47D cell line treated with the other two extracts were 31.10% and 18.28%, respectively while the percentages of total cell apoptosis were 6.83% and 1.78%, respectively. Thus, G. resinaceum significantly inhibited the viability of the HepG2 cell line, while both the G. australe and G. mbrekobenum extracts significantly decreased the viability of the T-47D cell line. These results may encourage speculation about their possible use for the therapeutic management of hepatocellular carcinoma and breast ductal carcinoma after further investigation.
Collapse
Affiliation(s)
- Elshahat A Toson
- Chemistry Department, Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
| | - Amira A El-Fallal
- Botany and Microbiology Department, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Marwa A Oransa
- Botany and Microbiology Department, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Hoda M El-Gharabawy
- Botany and Microbiology Department, Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
| |
Collapse
|
3
|
Diao H, Liu K, Yu R, Chen J, Liu Y, Yang BM, Zhao Y. Iridium-Catalyzed Enantioconvergent Construction of Piperidines and Tetrahydroisoquinolines from Racemic 1,5-Diols. J Am Chem Soc 2025; 147:610-618. [PMID: 39688857 DOI: 10.1021/jacs.4c12466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
We report herein a one-step synthesis of valuable enantioenriched piperidines and tetrahydroisoquinolines from readily available racemic 1,5-diols. Key to the success is the development of new iridacycle catalysts that enable efficient redox-neutral construction of two C-N bonds between diols and amines in an enantioconvergent fashion. Mechanistic studies identified an intriguing preferential oxidation of secondary versus primary alcohol in the diol substrate by the iridacycle catalyst, which set a challenging intermolecular amination of aryl-alkyl-substituted alcohol as the enantiodetermining step for this catalytic N-heterocycle synthesis. Application of this catalytic method to the preparation of important drugs and bioactive compounds is also demonstrated.
Collapse
Affiliation(s)
- Huanlin Diao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, 117544, Republic of Singapore
| | - Kexin Liu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, 117544, Republic of Singapore
| | - Rong Yu
- Department of Chemistry, National University of Singapore, 117544, Republic of Singapore
| | - Jilin Chen
- Department of Chemistry, National University of Singapore, 117544, Republic of Singapore
| | - Yongbing Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Yu Zhao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemistry, National University of Singapore, 117544, Republic of Singapore
| |
Collapse
|
4
|
He J, Yokoi K, Wixted B, Zhang B, Kawamata Y, Renata H, Baran PS. Biocatalytic C-H oxidation meets radical cross-coupling: Simplifying complex piperidine synthesis. Science 2024; 386:1421-1427. [PMID: 39700271 PMCID: PMC11760214 DOI: 10.1126/science.adr9368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024]
Abstract
Modern medicinal chemists are targeting more complex molecules to address challenging biological targets, which leads to synthesizing structures with higher sp3 character (Fsp3) to enhance specificity as well as physiochemical properties. Although traditional flat, high-fraction sp2 molecules, such as pyridine, can be decorated through electrophilic aromatic substitution and palladium (Pd)-based cross-couplings, general strategies to derivatize three-dimensional (3D) saturated molecules are far less developed. In this work, we present an approach for the rapid, modular, enantiospecific, and diastereoselective functionalization of piperidine (saturated analog of pyridine), combining robust biocatalytic carbon-hydrogen oxidation with radical cross-coupling. This combination is directly analogous to electrophilic aromatic substitution followed by Pd-couplings for flat molecules, streamlining synthesis of 3D molecules. This study offers a generalizable strategy for accessing complex architectures, appealing to both medicinal and process chemists.
Collapse
Affiliation(s)
- Jiayan He
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Kenta Yokoi
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX, 77005, United States
| | - Breanna Wixted
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX, 77005, United States
| | - Benxiang Zhang
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Yu Kawamata
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| | - Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX, 77005, United States
| | - Phil S. Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, United States
| |
Collapse
|
5
|
Zhu YS, Guo YL, Zhu YY, Su B. Enantioselective 1,4-Borylamination via Copper-Catalyzed Cascade Hydroborylation and Hydroamination of Arylidenecyclopropanes. J Am Chem Soc 2024; 146:32283-32291. [PMID: 39535431 DOI: 10.1021/jacs.4c12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Compounds bearing both boryl and amino groups at distal positions are invaluable synthons for synthesizing pharmaceuticals, drug candidates, and natural products, but their catalytic enantioselective synthesis remains rarely explored. We report the first enantioselective 1,4-borylamination reaction through a copper-catalyzed cascade hydroborylation and hydroamination of arylidenecyclopropanes. This reaction combines four readily available components in a highly chemo-, site-, and enantioselective fashion (>20:1 r.r. and up to 99% ee), yielding a diverse array of synthetically valuable enantioenriched 4-amino alkylboronates. The versatile utility of these products is highlighted by their diverse transformations and wide applications in pharmaceutical synthesis and drug discovery. Preliminary mechanistic studies were conducted to elucidate the operative reaction pathway, intermediates, and origins of its high chemo- and site-selectivity.
Collapse
Affiliation(s)
- Yu-Shen Zhu
- State Key Laboratory of Medical Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Ya-Lin Guo
- State Key Laboratory of Medical Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Ying-Ying Zhu
- State Key Laboratory of Medical Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Bo Su
- State Key Laboratory of Medical Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
6
|
Zhumakova S, Tokusheva A, Zharkynbek T, Balabekova M, Koks S, Seilkhanov T, Dembitsky V, Zazybin A, Aydemir M, Kemelbekov U, Kairanbayeva G, Yu V. Enhancing Aseptic Inflammation Resolution with 1-(2-Ethoxyethyl)-4-(pent-1-yn-1-yl)piperidin-4-yl Propionate: A Novel β-Cyclodextrin Complex as a Therapeutic Agent. Molecules 2024; 29:5135. [PMID: 39519778 PMCID: PMC11547506 DOI: 10.3390/molecules29215135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The synthesized compound, 1-(2-ethoxyethyl)-4-(pent-1-yn-1-yl)piperidin-4-yl propionate (EPPP), and its 1:1 complex with β-cyclodextrin (EPPPβCD) have been characterized for the first time through a comprehensive suite of analytical methods. This study explores the therapeutic potential of EPPPβCD in modulating immune responses and accelerating the resolution of septic inflammation induced by chromium and vanadium ions in outbred male rats. The research highlights the significant impact of EPPPβCD on the dynamics of regulatory T lymphocytes (Tregs), notably causing a reduction in the CD4+CD25+ fractions at the onset of inflammation. This effect is attributed to the inhibition of Treg proliferation, which is crucial in hastening the resolution of inflammation. These findings underscore the potential of EPPPβCD as a promising therapeutic agent in controlling and mitigating inflammation mediated by heavy metal exposure, thereby offering a new avenue for the development of anti-inflammatory treatments.
Collapse
Affiliation(s)
- Symbat Zhumakova
- Laboratory of Synthetic and Natural Medicinal Compounds Chemistry, A.B. Bekturov Institute of Chemical Sciences, 106 Sh. Ualikhanov St., Almaty 050010, Kazakhstan; (S.Z.); (U.K.); (V.Y.)
- School of Chemical Engineering, Kazakh-British Technical University, 59 Tole bi St., Almaty 050000, Kazakhstan;
| | - Aliya Tokusheva
- Department of Pathological Physiology, Asfendiyarov Kazakh National Medical University, 94 Tole-bi St., Almaty 050000, Kazakhstan; (A.T.); (M.B.); (G.K.)
| | - Tolganay Zharkynbek
- Laboratory of Synthetic and Natural Medicinal Compounds Chemistry, A.B. Bekturov Institute of Chemical Sciences, 106 Sh. Ualikhanov St., Almaty 050010, Kazakhstan; (S.Z.); (U.K.); (V.Y.)
| | - Marina Balabekova
- Department of Pathological Physiology, Asfendiyarov Kazakh National Medical University, 94 Tole-bi St., Almaty 050000, Kazakhstan; (A.T.); (M.B.); (G.K.)
| | - Sulev Koks
- Health Futures Institute, Murdoch University, 90 South St., Perth, WA 6150, Australia;
| | - Tulegen Seilkhanov
- Laboratory of Engineering Profile of NMR Spectroscopy, Sh. Ualikhanov Kokshetau State University, 76 Abai St., Kokshetau 020000, Kazakhstan;
| | - Valery Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada;
| | - Alexey Zazybin
- School of Chemical Engineering, Kazakh-British Technical University, 59 Tole bi St., Almaty 050000, Kazakhstan;
| | - Murat Aydemir
- Department of Chemistry, Faculty of Science, Dicle University, Diyarbakir 21280, Turkey;
| | - Ulan Kemelbekov
- Laboratory of Synthetic and Natural Medicinal Compounds Chemistry, A.B. Bekturov Institute of Chemical Sciences, 106 Sh. Ualikhanov St., Almaty 050010, Kazakhstan; (S.Z.); (U.K.); (V.Y.)
- South Kazakhstan Medical Academy, 1 Al-Farabi Square, Shymkent 160019, Kazakhstan
| | - Gulgul Kairanbayeva
- Department of Pathological Physiology, Asfendiyarov Kazakh National Medical University, 94 Tole-bi St., Almaty 050000, Kazakhstan; (A.T.); (M.B.); (G.K.)
| | - Valentina Yu
- Laboratory of Synthetic and Natural Medicinal Compounds Chemistry, A.B. Bekturov Institute of Chemical Sciences, 106 Sh. Ualikhanov St., Almaty 050010, Kazakhstan; (S.Z.); (U.K.); (V.Y.)
| |
Collapse
|
7
|
Sharma A, Sharma M, Bharate SB. N-Benzyl piperidine Fragment in Drug Discovery. ChemMedChem 2024; 19:e202400384. [PMID: 38924676 DOI: 10.1002/cmdc.202400384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
The N-benzyl piperidine (N-BP) structural motif is commonly employed in drug discovery due to its structural flexibility and three-dimensional nature. Medicinal chemists frequently utilize the N-BP motif as a versatile tool to fine-tune both efficacy and physicochemical properties in drug development. It provides crucial cation-π interactions with the target protein and also serves as a platform for optimizing stereochemical aspects of potency and toxicity. This motif is found in numerous approved drugs and clinical/preclinical candidates. This review focuses on the applications of the N-BP motif in drug discovery campaigns, emphasizing its role in imparting medicinally relevant properties. The review also provides an overview of approved drugs, the clinical and preclinical pipeline, and discusses its utility for specific therapeutic targets and indications, along with potential challenges.
Collapse
Affiliation(s)
- Ankita Sharma
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohit Sharma
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sandip B Bharate
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, India
| |
Collapse
|
8
|
Aftab H, Ullah S, Khan A, Al-Rashida M, Islam T, Dahlous KA, Mohammad S, Kashtoh H, Al-Harrasi A, Shafiq Z. Design, synthesis, in vitro and in silico studies of novel piperidine derived thiosemicarbazones as inhibitors of dihydrofolate reductase. Sci Rep 2024; 14:22645. [PMID: 39349528 PMCID: PMC11442999 DOI: 10.1038/s41598-024-72858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/11/2024] [Indexed: 10/02/2024] Open
Abstract
Dihydrofolate reductase (DHFR), an essential enzyme in folate metabolism, presents a promising target for drug development against various diseases, including cancer and tuberculosis. Herein, we present an integrated approach combining in vitro biochemical assays with in silico molecular docking analysis to evaluate the inhibitory potential of 4-piperidine-based thiosemicarbazones 5(a-s) against DHFR. In our in vitro study, a novel series of 4-piperidine-based thiosemicarbazones 5(a-s) were assessed for their inhibitory activity against DHFR enzyme. The synthesized compounds 5(a-s) exhibited potent inhibition with IC50 values in the range of 13.70 ± 0.25 µM to 47.30 ± 0.86 µM. Among all the derivatives 5p displayed highest inhibitory activity. Simultaneously, in silico analysis were performed and compared with standard drug (Methotrexate) to predict the binding affinity and interaction pattern of synthesized compounds with DHFR active site. SAR analysis was done to elucidate how structural modifications impact compound's biological activity, guiding the rational design of potent and selective drug candidates for targeted diseases. These findings may provide a comprehensive assessment of 4-piperdine-based thiosemicarbazones as DHFR inhibitors and contribute to the development of novel therapeutics targeting DHFR-associated diseases.
Collapse
Affiliation(s)
- Hina Aftab
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa, 616, Sultanate of Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa, 616, Sultanate of Oman
- Department of Chemical and Biological Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, 02841, Seoul, Republic of Korea
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University, Lahore, Pakistan
| | - Talha Islam
- Department of Chemistry, Forman Christian College (A Chartered University, Lahore, Pakistan
| | - Kholood A Dahlous
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saikh Mohammad
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hamdy Kashtoh
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa, 616, Sultanate of Oman.
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
9
|
Nawaz Z, Riaz N, Saleem M, Iqbal A, Ejaz SA, Muzaffar S, Bashir B, Ashraf M, Rehman AU, Bilal MS, Prabhala BK, Sajid S. Probing N-substituted 4-(5-mercapto-4-ethyl-4H-1,2,4-triazol-3-yl)- N-phenylpiperdine-1-carboxamides as potent 15-LOX inhibitors supported with ADME, DFT calculations and molecular docking studies. Heliyon 2024; 10:e35278. [PMID: 39281606 PMCID: PMC11401107 DOI: 10.1016/j.heliyon.2024.e35278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 09/18/2024] Open
Abstract
In our continuous efforts to find out leads against the enzyme 15-lipoxygenase (15-LOX), the current study deals with the synthesis of a series of new N-alkyl/aralkyl/aryl derivatives of 2-(4-ethyl-5-(1-phenylcarbamoyl)piperidine-4H-1,2,4-triazol-3-ylthio)methylacetamide (7a-n) with anti-LOX activities. The synthesis was started by reacting phenylisocyanate with isonipecotate that sequentially converted into N-substituted ester (1), hydrazide (2), semicarbazide (3) and N-ethylated 5-(1-phenylcarbamoyl)piperidine-1,2,4-triazole (4). The final compounds, 7a-n, were obtained by reacting 4 with various N-alkyl/aralkyl/aryl electrophiles. Both the intermediates and target compounds were characterized by FTIR, 1H, 13C NMR spectroscopy, EI-MS and HR-EI-MS spectrometry and screened against soybean 15-LOX by chemiluminescence method. The eight compounds 7e, 7j, 7h, 7a, 7g, 7b, 7n, 7c showed potent inhibitory activities against 15-LOX with values ranging from IC50 0.36 ± 0.15 μM (7e) to IC50 6.75 ± 0.17 μM (7c) compared with the reference quercetin (IC50 4.86 ± 0.14 μM) and baicalein (IC50 2.24 ± 0.13 μM). Two analogues (7l, 7f) had significantly outstanding inhibitory potential with IC50 values 12.15 ± 0.23 μM and 15.54 ± 0.26 μM, whereas, the derivatives 7i, and 7d displayed IC50 values of 21.56 ± 0.27 μM, 23.59 ± 0.24 μM and the compounds 7k, 7m were found inactive. All analogues exhibited blood mononuclear cells (MNCs) viability >75 % at 0.25 mM concentration as determined by MTT method. Calculated pharmacokinetic properties projected good lipophilicity, bioavailability and drug-likeness properties and did not violate Lipinski's/Veber rule. Molecular docking studies revealed lower binding free energies of all the derivatives than the reference compounds. The binding free energies were -9.8 kcal/mol, -9.70 k/mol and -9.20 kcal/mol for 7j, 7h and 7e, respectively, compared with the standard quercetin (-8.47 kcal/mol) and baicalein (-8.98 kcal/mol). The docked ligands formed hydrogen bonds with the amino acid residues Gln598 (7e), Arg260, Val 126 (7h), Gln762, Gln574, Thr443, Arg580 (7j) while other hydrophobic interactions observed therein further stabilized the complexes. The results of density functional theory (DFT) revealed that analogues with more stabilized lower unoccupied molecular orbital (LUMO) had significant enzyme inhibitory activity. The data collectively supports these molecules as leads against 15-LOX and demand further investigations as anti-inflammatory agents.
Collapse
Affiliation(s)
- Zahid Nawaz
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Naheed Riaz
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Saleem
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Ambar Iqbal
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics (IBBB), Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Khawaja Fareed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Saima Muzaffar
- Department of Chemistry, Division of Sceience and Technology, University of Education, 54770, Lahore, Vehari Campus, Pakistan
| | - Bushra Bashir
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Ashraf
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Aziz-Ur Rehman
- Department of Chemistry, Government College University Lahore, Lahore, 54000, Pakistan
| | - Muhammad Sajjad Bilal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Khawaja Fareed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Bala Krishna Prabhala
- Institute of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230M, Denmark
| | - Salvia Sajid
- Department of Drug Design and Pharmacology, University of Copenhagen 2, DK-2100, Kobenhavn O, Denmark
| |
Collapse
|
10
|
Abdel-Motaal M, Aldakhili DA, Farag AB, Elmaaty AA, Sharaky M, Mohamed NA, Shaaban S, Alzahrani AYA, Al-Karmalawy AA. Design and synthesis of novel multi-target tetrabromophthalimides as CBS and Topo-II inhibitors and DNA intercalators. RSC Med Chem 2024:d4md00585f. [PMID: 39290384 PMCID: PMC11403875 DOI: 10.1039/d4md00585f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
Microtubules are highly dynamic structures and constitute a crucial component of the cellular cytoskeleton. Besides, topoisomerases (Topo) play a fundamental role in maintaining the appropriate structure and organization of DNA. On the other hand, dual mechanism drug candidates for cancer treatment primarily aim to enhance the efficacy of cancer treatment and potentially overcome drug resistance. Hence, this work was tailored to design and synthesize new multi-target tetrabromophthalimide derivatives (2a-2k) that are capable of inhibiting the colchicine binding site (CBS) and topoisomerase II (Topo-II). The conducted in vitro studies showed that compound 2f showed the lowest IC50 value (6.7 μg mL-1) against the MDA-MB-468 cancer cell line. Additionally, compound 2f prompted upregulation of pro-apoptotic markers (caspases 3, 7, 8, and 9, Bax and p53). Moreover, some anti-apoptotic proteins (MMP2, MMP9, and BCL-2) were downregulated by compound 2f treatment. Besides, the colchicine binding assay showed that compounds 2f and 2k displayed promising inhibitory potential with IC50 values of 1.92 and 4.84 μg mL-1, respectively, in comparison with colchicine (1.55 μg mL-1). Furthermore, the Topo-II inhibition assay displayed the prominent inhibitory potential of compound 2f with an IC50 value of 15.75 μg mL-1, surpassing the IC50 of etoposide (20.82 μg mL-1). Cell cycle analysis revealed that compound 2f induced cell cycle arrest at both the G0-G1 and G2-M phases. The new candidates were docked against both the CBS (PDB ID: 5XIW) and Topo-II (PDB ID: 5CDP) targets to investigate their binding interactions and affinities as well. Accordingly, the synthesized compounds could serve as promising multi-target anticancer candidates with eligible apoptotic activity.
Collapse
Affiliation(s)
- Marwa Abdel-Motaal
- Department of Chemistry, College of Science, Qassim University Buraydah 51452 Qassim Saudi Arabia
- Organic Chemistry Division, Department of Chemistry, College of Science, Mansoura University Mansoura Egypt
| | - Dalal Ali Aldakhili
- Department of Chemistry, College of Science, Qassim University Buraydah 51452 Qassim Saudi Arabia
| | - Ayman B Farag
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University 6th of October City Giza 12566 Egypt
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University Port Said 42511 Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University Cairo Egypt
| | - Nadia A Mohamed
- Department of Chemistry, College of Science, Qassim University Buraydah 51452 Qassim Saudi Arabia
| | - Saad Shaaban
- Organic Chemistry Division, Department of Chemistry, College of Science, Mansoura University Mansoura Egypt
- Department of Chemistry, College of Science, King Faisal University P.O. Box 380 Al-Ahsa 31982 Saudi Arabia
| | | | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Mashreq Baghdad 10023 Iraq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt New Damietta 34518 Egypt
| |
Collapse
|
11
|
Beng TK, Anosike IS, Kaur J. Stereocontrolled and time-honored access to piperidine- and pyrrolidine-fused 3-methylenetetrahydropyrans using lactam-tethered alkenols. RSC Adv 2024; 14:26913-26919. [PMID: 39193285 PMCID: PMC11347980 DOI: 10.1039/d4ra04916k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Polycyclic oxygen-heterocycles bearing the 3-methylenetetrahydropyran (i.e., 3-MeTHP) motif are resident in bioactive molecules such as hodgsonox and iridoid. Meanwhile, the δ- and γ-lactam topologies as well as their reduced variants (i.e., piperidines and pyrrolidines) are at the core of several pharmaceuticals and fragrances. A stereocontrolled, time-honored, and cost-effective strategy that merges a 3-MeTHP motif with the aforementioned azaheterocyclic scaffolds could exponentially expand the 3D-structural space for the discovery of new small molecules with medicinal value. In these studies, readily affordable lactam-tethered alkenols have been interrogated in two complementary cascade approaches, leading to the regioselective and stereocontrolled synthesis of lactam-fused 3-MeTHPs. The first approach hinges on regioselective 6-endo-trig bromoetherification of the alkenols and concomitant elimination to arrive at the desired 3-MeTHPs. The methylene portion of the 3-MeTHP is unveiled at a late stage, which is noteworthy since all existing approaches to 3-MeTHPs rely on early-stage introduction of the methylene group. The second strategy involves transition metal-catalyzed alkoxylation of the tethered alkenol followed by base-induced double bond isomerization. The lactam-fused 3-MeTHPs are obtained in high site- and diastereo-selectivities. Post-modification of the bicycles has led to the construction of 3-MeTHP-fused saturated piperidines and pyrrolidines as well as 3-MeTHPs bearing four contiguous stereocenters.
Collapse
Affiliation(s)
- Timothy K Beng
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Ifeyinwa S Anosike
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Jasleen Kaur
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| |
Collapse
|
12
|
Satbayeva E, Zhumakova S, Khaiitova M, Kemelbekov U, Tursunkhodzhaeva F, Azamatov A, Tursymbek S, Sabirov V, Nurgozhin T, Yu V, Seilkhanov T. Experimental study of local anesthetic and antiarrhythmic activities of fluorinated ethynylpiperidine derivatives. Braz J Med Biol Res 2024; 57:e13429. [PMID: 39082579 PMCID: PMC11290815 DOI: 10.1590/1414-431x2024e13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 06/02/2024] [Indexed: 08/02/2024] Open
Abstract
The chemical structure of piperidine has a unique ability to combine with other molecular fragments. This fact makes it possible to actively use it as an effective basis for the creation of new drug-like substances. Thus, the aim of the current investigation was to study the acute toxicity, local anesthetic potency, and antiarrhythmic activity of the two new synthesized piperidine derivatives under laboratory codes LAS-286 and LAS-294 (local anesthetic substances). The Bulbring & Wajda animal model and method of determining the nociception threshold during electrical stimulation was used to investigate the action of the substance during infiltration anesthesia. An antiarrhythmic activity was observed by the aconitine-induced rat arrhythmia model. Additionally, these compounds were studied in relation to molecular docking to delineate the structure-activity relationships. The tested piperidine derivatives had a low toxicity in the subcutaneous and intravenous administration routes. The experimental results showed a higher prolonged and pronounced local anesthetic activity for LAS-286 at a 0.5% concentration, compared to the reference preparations. The low dosage of 0.1 mg/kg of LAS-294 demonstrated a pronounced preventive antiarrhythmic effect in 90% of cases on the development of mixed arrhythmia, caused by aconitine. The results of molecular docking confirmed a higher binding affinity of the tested piperidines with the Nav1.4 and Nav1.5 macromolecules. The results of the present study are very promising, because these piperidines have shown a high biological activity, which can suggest a potential therapeutic application in the future.
Collapse
Affiliation(s)
- E.M. Satbayeva
- Department of Pharmacology, School of General Medicine-1, Asfendiyarov Kazakh National Medical University, Almaty, Republic of Kazakhstan
| | - S.S. Zhumakova
- Laboratory of Synthetic and Natural Medicinal Compounds Chemistry, A.B. Bekturov Institute of Chemical Sciences, Almaty, Republic of Kazakhstan
| | - M.D. Khaiitova
- Department of Pharmacology, School of General Medicine-1, Asfendiyarov Kazakh National Medical University, Almaty, Republic of Kazakhstan
| | - U.S. Kemelbekov
- Laboratory of Synthetic and Natural Medicinal Compounds Chemistry, A.B. Bekturov Institute of Chemical Sciences, Almaty, Republic of Kazakhstan
- Research Laboratory of Medicinal Plants, South Kazakhstan Medical Academy, Shymkent, Republic of Kazakhstan
| | - F.M. Tursunkhodzhaeva
- Department of Pharmacology and Toxicology, S.Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - A.A. Azamatov
- Department of Pharmacology and Toxicology, S.Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Republic of Uzbekistan
| | - Sh.N. Tursymbek
- Department of Pharmacology, School of General Medicine-1, Asfendiyarov Kazakh National Medical University, Almaty, Republic of Kazakhstan
| | - V.Kh. Sabirov
- Laboratory of Structural Chemistry, Tashkent State Technical University, Tashkent, Republic of Uzbekistan
| | - T.S. Nurgozhin
- Department of Pharmacology, School of General Medicine-1, Asfendiyarov Kazakh National Medical University, Almaty, Republic of Kazakhstan
| | - V.K. Yu
- Laboratory of Synthetic and Natural Medicinal Compounds Chemistry, A.B. Bekturov Institute of Chemical Sciences, Almaty, Republic of Kazakhstan
| | - T.M. Seilkhanov
- Laboratory of Engineering Profile NMR Spectroscopy, Shokan Ualikhanov Kokshetau University, Kokshetau, Republic of Kazakhstan
| |
Collapse
|
13
|
Mughal EU, Hawsawi MB, Naeem N, Hassan A, Alluhaibi MS, Ali Shah SW, Nazir Y, Sadiq A, Alrafai HA, Ahmed SA. Exploring fluorine-substituted piperidines as potential therapeutics for diabetes mellitus and Alzheimer's diseases. Eur J Med Chem 2024; 273:116523. [PMID: 38795518 DOI: 10.1016/j.ejmech.2024.116523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
In the current study, a series of fluorine-substituted piperidine derivatives (1-8) has been synthesized and characterized by various spectroscopic techniques. In vitro and in vivo enzyme inhibitory studies were conducted to elucidate the efficacy of these compounds, shedding light on their potential therapeutic applications. To the best of our knowledge, for the first time, these heterocyclic structures have been investigated against α-glucosidase and cholinesterase enzymes. The antioxidant activity of the synthesized compounds was also assessed. Evaluation of synthesized compounds revealed notable inhibitory effects on α-glucosidase and cholinesterases. Remarkably, the target compounds (1-8) exhibited extraordinary α-glucosidase inhibitory activity as compared to the standard acarbose by several-fold. Subsequently, the potential antidiabetic effects of compounds 2, 4, 5, and 6 were validated using a STZ-induced diabetic rat model. Kinetic studies were also performed to understand the mechanism of inhibition, while structure-activity relationship analyses provided valuable insights into the structural features governing enzyme inhibition. Kinetic investigations revealed that compound 4 displayed a competitive mode of inhibition against α-glucosidase, whereas compound 2 demonstrated mixed-type behavior against AChE. To delve deeper into the binding interactions between the synthesized compounds and their respective enzyme targets, molecular docking studies were conducted. Overall, our findings highlight the promising potential of these densely substituted piperidines as multifunctional agents for the treatment of diseases associated with dysregulated glucose metabolism and cholinergic dysfunction.
Collapse
Affiliation(s)
| | - Mohammed B Hawsawi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Ali Hassan
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Mustafa S Alluhaibi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Syed Wadood Ali Shah
- Department of Pharmacy, University of Malakand, Chakdara, Dir, 18800, Khyber Pakhtunkhwa, Pakistan
| | - Yasir Nazir
- Department of Chemistry, University of Sialkot, 51300, Pakistan
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University, Sialkot, 51300, Pakistan
| | - H A Alrafai
- Department of Chemistry, Faculty of Science, King Khalid University, PO Box 9004, Abha, 61413, Saudi Arabia
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, 21955, Saudi Arabia; Department of Chemistry, Faculty of Science, Assiut University, 71516, Assiut, Egypt.
| |
Collapse
|
14
|
Chen Z, Song G, Qi L, Gunasekar R, Aïssa C, Robertson C, Steiner A, Xue D, Xiao J. Reductive Transamination of Pyridinium Salts to N-Aryl Piperidines. J Org Chem 2024; 89:9352-9359. [PMID: 38872240 PMCID: PMC11232014 DOI: 10.1021/acs.joc.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Saturated N-heterocycles are found in numerous bioactive natural products and are prevalent in pharmaceuticals and agrochemicals. While there are many methods for their synthesis, each has its limitations, such as scope and functional group tolerance. Herein, we describe a rhodium-catalyzed transfer hydrogenation of pyridinium salts to access N-(hetero)aryl piperidines. The reaction proceeds via a reductive transamination process, involving the initial formation of a dihydropyridine intermediate via reduction of the pyridinium ion with HCOOH, which is intercepted by water and then hydrolyzed. Subsequent reductive amination with an exogenous (hetero)aryl amine affords an N-(hetero)aryl piperidine. This reductive transamination method thus allows for access of N-(hetero)aryl piperidines from readily available pyridine derivatives, expanding the toolbox of dearomatization and skeletal editing.
Collapse
Affiliation(s)
- Zhenyu Chen
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Geyang Song
- Key
Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education
and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Leiming Qi
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | | | - Christophe Aïssa
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Craig Robertson
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Alexander Steiner
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Dong Xue
- Key
Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education
and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Jianliang Xiao
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| |
Collapse
|
15
|
Yang X, Zhang B, Ruan J, Duanmu K, Chen W. Palladium-Catalyzed Allylation of Endocyclic 1-Azaallyl Anions. J Org Chem 2024; 89:8896-8905. [PMID: 38856706 DOI: 10.1021/acs.joc.4c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Endocyclic 1-azaallyl anions engage allyl acetates in a palladium-catalyzed allylation followed by reduction to give unprotected 2-(hetero)aryl-3-allylpiperidines and 2-allyl-3-arylmorpholines, products not easily accessible by other means. The allyl group is then readily transformed into a variety of functional groups. Preliminary studies on the asymmetric variant of the reaction using an enantiomerically pure BI-DIME-type ligand provide the product with moderate enantioselectivity. Computational studies suggest that energy barriers of inner-sphere reductive elimination and outer-sphere nucleophilic substitution are almost the same, which makes both of them possible reaction pathways. In addition, the inner-sphere mechanism displays an enantiodiscriminating C-C bond forming step, while the outer-sphere mechanism is much less selective, which combined to give the asymmetric variant of the reaction moderate enantioselectivity.
Collapse
Affiliation(s)
- Xiaoyu Yang
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. China
| | - Biao Zhang
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. China
| | - Junhao Ruan
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. China
| | - Kaining Duanmu
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. China
| | - Weijie Chen
- School of Chemical Science and Engineering, Institute for Advanced Studies, Tongji University, 1239 Siping Rd, Shanghai 200092, P. R. China
| |
Collapse
|
16
|
Zheng Y, Zhang R, Chen M, Zhou Q, Wu Y, Xue W. Design, Synthesis, and Antibacterial Evaluation of Novel Isoindolin-1-ones Derivatives Containing Piperidine Fragments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12434-12444. [PMID: 38775141 DOI: 10.1021/acs.jafc.3c09928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A series of novel isoindoline-1-one derivatives containing piperidine moiety were designed and synthesized using natural compounds as raw materials, and their biological activities were tested for three bacterial and three fungal pathogens. These derivatives exhibited good against phytopathogenic bacteria activities against Pseudomonas syringae pv actinidiae (Psa) and Xanthomonas axonopodis pv.citri (Xac). Some compounds exhibited excellent antibacterial activities against Xanthomonas oryzae pv oryzae (Xoo). The dose of Y8 against Xoo (the maximum half lethal effective concentration (EC50) = 21.3 μg/mL) was better than that of the thiediazole copper dose (EC50 = 53.3 μg/mL). Excitingly, further studies have shown that the molecular docking of Y8 with 2FBW indicates that it can fully locate the interior of the binding pocket through hydrogen bonding and hydrophobic interactions, thereby enhancing its anti-Xoo activity. Scanning electron microscopy (SEM) studies revealed that Y8 induced the Xoo cell membrane collapse. Moreover, the proteomic results also indicate that Y8 may be a multifunctional candidate as it affects the formation of bacterial Xoo biofilms, thereby exerting antibacterial effects.
Collapse
Affiliation(s)
- Yuguo Zheng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemical of Guizhou University, Huaxi District Guiyang 550025, China
- The Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Xingyi Normal University for Nationalities, Xingyi 562400, China
| | - Renfeng Zhang
- The Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Xingyi Normal University for Nationalities, Xingyi 562400, China
| | - Mei Chen
- The Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, Xingyi Normal University for Nationalities, Xingyi 562400, China
| | - Qing Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemical of Guizhou University, Huaxi District Guiyang 550025, China
| | - Yongjun Wu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemical of Guizhou University, Huaxi District Guiyang 550025, China
| | - Wei Xue
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemical of Guizhou University, Huaxi District Guiyang 550025, China
| |
Collapse
|
17
|
Thapliyal S, Vishnoi R, Murti Y, Kumar R, Chavan N, Rawat P, Joshi G, Dwivedi AR, Goel KK. Exploring anticancer properties of the phytoconstituents and comparative analysis of their chemical space parameters with USFDA-approved synthetic anticancer agents. Chem Biol Drug Des 2024; 103:e14561. [PMID: 38862268 DOI: 10.1111/cbdd.14561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024]
Abstract
The present review article thoroughly analyses natural products and their derived phytoconstituents as a rich source of plausible anticancer drugs. The study thoroughly explores the chemical components derived from various natural sources, thus emphasizing their unique structural characteristics and therapeutic potential as an anticancer agent. The review contains the critical chemical constituents' in-depth molecular mechanisms, their source's chemical structures and the categories. The review also comprises an exhaustive and comprehensive analysis of different chemical spacing parameters of the anticancer agents derived from natural products. It compares them with USFDA-approved synthetic anticancer drugs up to 2020, thus providing a meaningful understanding of the relationship between natural and synthetic compounds portraying the anticancer assets. The review also delves more deeply into the chemical analysis of the heterocyclic moieties from the natural product arena, illustrating the anticancer mechanisms. The present article is, therefore, expected to serve as a valuable resource for natural product and medicinal chemists, encouraging and promoting an integrated approach to exploit the potential of natural products in drug discovery development and translational research, which have a prerequisite of bench to bedside approach. The work could guide researchers toward innovative approaches for the ever-evolving field of anticancer drug discovery.
Collapse
Affiliation(s)
- Somesh Thapliyal
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (Central University), Srinagar, India
| | - Ritu Vishnoi
- Department of Botany, Hariom Saraswati PG College, Dhanauri, Haridwar, Uttarakhand, India
| | - Yogesh Murti
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Roshan Kumar
- Department of Microbiology, Central University of Punjab, Ghudda, Bathinda, India
| | - Nirja Chavan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Pramod Rawat
- Graphic Era (Deemed to be University) Clement Town Dehradun, Dehradun, India
- Graphic Era Hill University Clement Town Dehradun, Dehradun, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (Central University), Srinagar, India
| | - Ashish Ranjan Dwivedi
- Department of Medicinal Chemistry, GITAM School of Pharmacy, GITAM (Deemed to be) University, Hyderabad, India
| | - Kapil Kumar Goel
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar, Uttarakhand, India
| |
Collapse
|
18
|
Lyu P, Li H, Wan J, Chen Y, Zhang Z, Wu P, Wan Y, Seeram NP, Chamcheu JC, Liu C, Ma H. Bipiperidinyl Derivatives of Cannabidiol Enhance Its Antiproliferative Effects in Melanoma Cells. Antioxidants (Basel) 2024; 13:478. [PMID: 38671925 PMCID: PMC11047683 DOI: 10.3390/antiox13040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Cannabis and its major cannabinoid cannabidiol (CBD) are reported to exhibit anticancer activity against skin tumors. However, the cytotoxic effects of other minor cannabinoids and synthetic CBD derivatives in melanoma are not fully elucidated. Herein, the antiproliferative activity of a panel of phytocannabinoids was screened against murine (B16F10) and human (A375) melanoma cells. CBD was the most cytotoxic natural cannabinoid with respective IC50 of 28.6 and 51.6 μM. Further assessment of the cytotoxicity of synthetic CBD derivatives in B16F10 cells identified two bipiperidinyl group-bearing derivatives (22 and 34) with enhanced cytotoxicity (IC50 = 3.1 and 8.5 μM, respectively). Furthermore, several cell death assays including flow cytometric (for apoptosis and ferroptosis) and lactate dehydrogenase (for pyroptosis) assays were used to characterize the antiproliferative activity of CBD and its bipiperidinyl derivatives. The augmented cytotoxicity of 22 and 34 in B16F10 cells was attributed to their capacity to promote apoptosis (as evidenced by increased apoptotic population). Taken together, this study supports the notion that CBD and its derivatives are promising lead compounds for cannabinoid-based interventions for melanoma management.
Collapse
Affiliation(s)
- Peihong Lyu
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (P.L.); (H.L.)
- Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
| | - Huifang Li
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (P.L.); (H.L.)
| | - Junzhao Wan
- School of Pharmacy, Guizhou Medical University, Guiyang 550001, China
| | - Ying Chen
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (P.L.); (H.L.)
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Zhen Zhang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Panpan Wu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Yinsheng Wan
- Department of Biology, Providence College, Providence, RI 02918, USA
| | - Navindra P. Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (P.L.); (H.L.)
| | - Jean Christopher Chamcheu
- Department of Biological Sciences and Chemistry, College of Sciences and Engineering, Southern University and A&M College, Baton Rouge, LA 70813, USA
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Chang Liu
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (P.L.); (H.L.)
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA; (P.L.); (H.L.)
| |
Collapse
|
19
|
Rejinthala S, Endoori S, Thumma V, Mondal T. Design, Synthesis and In-Silico Studies of Piperidine-Dihydropyridine Hybrids as Anticancer Agents. Chem Biodivers 2024; 21:e202301456. [PMID: 38366873 DOI: 10.1002/cbdv.202301456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/10/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
In this study, we designed, synthesized and characterized a novel series of piperidine-dihydropyridine hybrid compounds and characterized them by 1H-NMR, 13C NMR, mass spectrometry (MS), and elemental analysis. Subsequently, we assessed their in vitro anticancer potentials against the human breast adenocarcinoma cell line MCF-7 and the lung cancer cell line A-549. Several of these compounds demonstrated significant activity, with IC50 values ranging from 15.94 μM to 48.04 μM for A-549 and 24.68 μM to 59.12 μM for MCF-7, when compared to the reference drug Cisplatin.Notably, a compound featuring a 3-fluoro substitution in the carboxamide series exhibited robust inhibitory effects, with an IC50 of 15.94±0.201 μM against A-549 cells and an IC50 of 22.12±0.213 μM against MCF-7 cells, respectively. Additionally, a compound containing a cyclobutyl ring displayed potent activity, with an IC50 of 16.56±0.125 μM against A-549 and an IC50 of 24.68±0.217 μM against MCF-7 cells, respectively. Furthermore, molecular docking studies against the Epidermal Growth Factor Receptor (EGFR) (PDB ID: 2J6M) revealed favourable binding scores and interactions, suggesting their potential as promising candidates for further investigation in the context of anticancer drug development.
Collapse
Affiliation(s)
- Swathi Rejinthala
- Department of Engineering Chemistry, Koneru Lakshmaiah Education Foundation, Aziznagar, Hyderabad, 500075, Telangana, India
| | - Srinivas Endoori
- Department of Engineering Chemistry, College of Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522302
| | - Vishnu Thumma
- Department of Sciences and Humanities, Matrusri Engineering College, Hyderabad, Telangana, India, 500059
| | - T Mondal
- Department of Engineering Chemistry, Koneru Lakshmaiah Education Foundation, Aziznagar, Hyderabad, 500075, Telangana, India
| |
Collapse
|
20
|
Tariq S, Rahim F, Ullah H, Sarfraz M, Hussain R, Khan S, Khan MU, Rehman W, Hussain A, Bhat MA, Farooqi MK, Shah SAA, Iqbal N. Synthesis, In Vitro Biological Evaluation and Molecular Modeling of Benzimidazole-Based Pyrrole/Piperidine Hybrids Derivatives as Potential Anti-Alzheimer Agents. Pharmaceuticals (Basel) 2024; 17:410. [PMID: 38675373 PMCID: PMC11053857 DOI: 10.3390/ph17040410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Benzimidazole-based pyrrole/piperidine analogs (1-26) were synthesized and then screened for their acetylcholinesterase and butyrylcholinesterase activities. All the analogs showed good to moderate cholinesterase activities. Synthesized compounds (1-13) were screened in cholinesterase enzyme inhibition assays and showed AChE activities in the range of IC50 = 19.44 ± 0.60 µM to 36.05 ± 0.4 µM against allanzanthane (IC50 = 16.11 ± 0.33 µM) and galantamine (IC50 = 19.34 ± 0.62 µM) and varied BuChE inhibitory activities, with IC50 values in the range of 21.57 ± 0.61 µM to 39.55 ± 0.03 µM as compared with standard allanzanthane (IC50 = 18.14 ± 0.05 µM) and galantamine (IC50 = 21.45 ± 0.21 µM). Similarly, synthesized compounds (14-26) were also subjected to tests to determine their in vitro AChE inhibitory activities, and the results obtained corroborated that all the compounds showed varied activities in the range of IC50 = 22.07 ± 0.13 to 42.01 ± 0.02 µM as compared to allanzanthane (IC50 = 20.01 ± 0.12 µM) and galantamine (IC50 = 18.05 ± 0.31 µM) and varied BuChE inhibitory activities, with IC50 values in the range of 26.32 ± 0.13 to 47.03 ± 0.15 µM as compared to standard allanzanthane (IC50 = 18.14 ± 0.05 µM) and galantamine (IC50 = 21.45 ± 0.21 µM). Binding interactions of the most potent analogs were confirmed through molecular docking studies. The active analogs 2, 4, 10 and 13 established numerous interactions with the active sites of targeted enzymes, with docking scores of -10.50, -9.3, -7.73 and -7.8 for AChE and -8.97, -8.2, -8.20 and -7.6 for BuChE, respectively.
Collapse
Affiliation(s)
- Sundas Tariq
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan; (S.T.); (R.H.); (W.R.)
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan; (S.T.); (R.H.); (W.R.)
| | - Hayat Ullah
- Institute of Chemistry, University of Okara, Okara 56130, Pakistan;
| | - Maliha Sarfraz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Sub-Campus Toba Tek Singh, Toba Tek Singh 36080, Pakistan;
| | - Rafaqat Hussain
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan; (S.T.); (R.H.); (W.R.)
| | - Shoaib Khan
- Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad 22500, Pakistan;
| | - Misbah Ullah Khan
- Center for Nanosciences, University of Okara, Okara 56130, Pakistan;
| | - Wajid Rehman
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan; (S.T.); (R.H.); (W.R.)
| | - Amjad Hussain
- Institute of Chemistry, University of Okara, Okara 56130, Pakistan;
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Muhammad Kamran Farooqi
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, China;
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor, Malaysia;
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam 42300, Selangor, Malaysia
| | - Naveed Iqbal
- Department of Chemistry, University of Poonch, Rawalakot 12350, Pakistan;
| |
Collapse
|
21
|
Hadj Mohamed A, Pinon A, Lagarde N, Ricco C, Goya-Jorge E, Mouhsine H, Msaddek M, Liagre B, Veitía MSI. Colorectal anticancer activity of a novel class of triazolic triarylmethane derivatives. RSC Med Chem 2024; 15:660-676. [PMID: 38389891 PMCID: PMC10880923 DOI: 10.1039/d3md00467h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/30/2023] [Indexed: 02/24/2024] Open
Abstract
Triarylmethanes and triazoles constitute privileged structures extensively used in drug discovery programs. In this work, 12 novel triarylmethanes linked to a triazole ring were designed, synthesized, and chemically characterized aiming to target colorectal cancer. The synthetic strategy for triarylmethanes mono- and bi-substituted by a functionalized triazole ring involved a 1,3-dipolar cycloaddition. A preliminary screening in human colorectal cancer cells (HT-29 and HCT116) and murine primary fibroblasts (L929) allowed the selection of the best candidate 9b based on its high inhibition of cancer cell proliferation with an IC50 of 11 μM on HT-29 and 14 μM on HCT116 and its non-cytotoxic effects on murine fibroblasts (<100 μM). A deep mechanistic study on various pathways showed that compound 9b induces caspase-3 cleavage, and its inhibitory effect on PARP activity is correlated with the increase of DNA fragmentation in cancer cells. Moreover, 9b induced apoptosis promoted by the inhibition of anti-apoptotic cell survival signaling pathways demonstrated via the downregulation of phosphorylated Akt and ERK proteins. Finally, the predicted binding modes of compounds 8c and 9b to five potential biological targets (i.e., AKT, ERK-1 and ERK-2, PARP and caspase-3) was evaluated using molecular modeling, and the predictions of the SuperPred webserver identified ERK2 as the most remarkable target. Also predicted in silico, 9b displayed appropriate drug-likeness and good absorption, distribution, metabolism and excretion (ADME) profiles.
Collapse
Affiliation(s)
- Ameni Hadj Mohamed
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (GBCM, EA 7528), Conservatoire national des arts et métiers, HESAM Université 2 rue Conté 75003 Paris France
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11ES39) Université de Monastir Avenue de l'environnement 5019 Monastir Tunisie
| | - Aline Pinon
- Université de Limoges, LABCiS, UR 22722, Faculté de Pharmacie F-87000 Limoges France
| | - Nathalie Lagarde
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (GBCM, EA 7528), Conservatoire national des arts et métiers, HESAM Université 2 rue Conté 75003 Paris France
| | - Christophe Ricco
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (GBCM, EA 7528), Conservatoire national des arts et métiers, HESAM Université 2 rue Conté 75003 Paris France
| | - Elizabeth Goya-Jorge
- Laboratory of Immunology-Vaccinology, Faculty of Veterinary Medicine - FARAH, University of Liège Av. Cureghem 10 4000 Liège Belgium
| | - Hadley Mouhsine
- Peptinov, Pépinière Paris Santé Cochin, Hôpital Cochin 29 rue du Faubourg Saint Jacques Paris 75014 France
| | - Moncef Msaddek
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11ES39) Université de Monastir Avenue de l'environnement 5019 Monastir Tunisie
| | - Bertrand Liagre
- Université de Limoges, LABCiS, UR 22722, Faculté de Pharmacie F-87000 Limoges France
| | - Maité Sylla-Iyarreta Veitía
- Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (GBCM, EA 7528), Conservatoire national des arts et métiers, HESAM Université 2 rue Conté 75003 Paris France
| |
Collapse
|
22
|
Williams S, Qi L, Cox RJ, Kumar P, Xiao J. Hydrogenation of functionalised pyridines with a rhodium oxide catalyst under mild conditions. Org Biomol Chem 2024; 22:1010-1017. [PMID: 38186335 DOI: 10.1039/d3ob01860a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Piperidines are one of the most widely used building blocks in the synthesis of pharmaceutical and agrochemical compounds. The hydrogenation of pyridines is a convenient method to synthesise such compounds as it only requires reactant, catalyst, and a hydrogen source. However, this reaction still remains difficult for the reduction of functionalised and multi-substituted pyridines. Here we report the use of a stable, commercially available rhodium compound, Rh2O3, for the reduction of various unprotected pyridines. The reaction only requires mild conditions, and the substrate scope is broad, making it practically useful.
Collapse
Affiliation(s)
- Sydney Williams
- Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD, Liverpool, UK.
| | - Leiming Qi
- Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD, Liverpool, UK.
| | - Robert J Cox
- Chemical Development, AstraZeneca, Silk Road Business Park, SK10 2NA, Macclesfield, UK
| | - Prashant Kumar
- Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD, Liverpool, UK.
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Crown Street, L69 7ZD, Liverpool, UK.
| |
Collapse
|
23
|
Pereira THR, de Moura TR, Santos MRM, Zamarioli LDS, Erustes AG, Smaili SS, Pereira GJS, Godoy Netto AVD, Bincoletto C. Palladium (II) compounds containing oximes as promising antitumor agents for the treatment of osteosarcoma: An in vitro and in vivo comparative study with cisplatin. Eur J Med Chem 2024; 264:116034. [PMID: 38103541 DOI: 10.1016/j.ejmech.2023.116034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/24/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Drug resistance, evasion of cell death and metastasis are factors that contribute to the low cure rate and disease-free survival in osteosarcomas (OS). In this study, we demonstrated that a new class of oxime-containing organometallic complexes called Pd-BPO (O3) and Pd-BMO (O4) are more cytotoxic than cisplatin (CDDP) for SaOS-2 and U2OS cells using the MTT assay. Annexin-FITC/7-AAD staining demonstrated a greater potential for palladium-oxime complexes to induce death in SaOS-2 cells than CDDP, an event confirmed using the pan-caspase inhibitor Z-VAD-FMK. Compared to CDDP, only palladium-oxime complexes eradicated the clonogenicity of SaOS-2 cells after 7 days of treatment. The involvement of the lysosome-mitochondria axis in the cell death-inducing properties of the complexes was also evaluated. Using LysoTracker Red to label the acidic organelles of SaOS-2 cells treated with the O3 and O4 complexes, a decrease in the fluorescence intensity of this probe was observed in relation to CDDP and the control. Lysosomal membrane permeabilization (LMP) was also induced by the O3 and O4 complexes in an assay using acridine orange (A/O). The greater efficiency of the complexes in depolarizing the mitochondrial membrane compared to SaOS-2 cells treated with CDDP was also observed using TMRE (tetramethyl rhodamine, ethyl ester). For in vivo studies, C. elegans was used and demonstrated that both complexes reduce body bends and pharyngeal pumping after 24 h of treatment to the same extent as CDDP. We conclude that both palladium-oxime complexes are more effective than CDDP in inducing tumor cell death. The toxicity of these complexes to C. elegans was like that induced by CDDP. These results encourage preclinical studies aimed at developing more effective drugs for the treatment of osteosarcoma (OS). Furthermore, we propose palladium-oxime complexes as a new class of antineoplastic agents.
Collapse
Affiliation(s)
- Thales Hebert Regiani Pereira
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Michele Rosana Maia Santos
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Lucas Dos Santos Zamarioli
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Adolfo G Erustes
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Soraya S Smaili
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Gustavo J S Pereira
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Claudia Bincoletto
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
24
|
Jin YZ, Xin YB, Li Y, Chen XY, Man DA, Tian YS. Synthesis and Selective Anticancer Activity Evaluation of 2-phenylacrylonitrile Derivatives as Tubulin Inhibitors. Curr Med Chem 2024; 31:2090-2106. [PMID: 38384112 PMCID: PMC11071649 DOI: 10.2174/0109298673263854231009063053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/17/2023] [Accepted: 09/01/2023] [Indexed: 02/23/2024]
Abstract
OBJECTIVE This study aimed at synthesizing 13 series of novel derivatives with 2-phenylacrylonitrile, evaluating antitumor activity both in vivo and in vitro, and obtaining novel tubulin inhibitors. METHOD The 13 series of 2-phenylacrylonitrile derivatives were synthesized by Knoevenagel condensation and the anti-proliferative activities were determined by MTT assay. The cell cycle and apoptosis were analyzed by flow cytometer. Quantitative cell migration was performed using 24-well Boyden chambers. The proteins were detected by western blotting. in vitro kinetics of microtubule assembly was measured using ELISA kit for Human β-tubulin (TUBB). Molecular docking was done by Discovery Studio (DS) 2017 Client online tool. RESULTS Among the derivatives, compound 1g2a possessed strong inhibitory activity against HCT116 (IC50 = 5.9 nM) and BEL-7402 (IC50 = 7.8 nM) cells. Compound 1g2a exhibited better selective antiproliferative activities and specificities than all the positive control drugs, including taxol. Compound 1g2a inhibited proliferation of HCT116 and BEL-7402 cells by arresting them in the G2/M phase of the cell cycle, inhibited the migration of HCT116 and BEL-7402 cells and the formation of cell colonies. Compound 1g2a showed excellent tubulin polymerization inhibitory activity on HCT116 and BEL-7402 cells. The results of molecular docking analyses showed that 1g2a may inhibit tubulin to exert anticancer effects. CONCLUSION Compound 1g2a shows outstanding antitumor activity both in vivo and in vitro and has the potential to be further developed into a highly effective antitumor agent with little toxicity to normal tissues.
Collapse
Affiliation(s)
- Ye-Zhi Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Department of Medicinal Chemistry, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, P.R. China
| | - Ya-Bing Xin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Department of Medicinal Chemistry, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, P.R. China
| | - Yuan Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Department of Medicinal Chemistry, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, P.R. China
| | - Xin-Yuan Chen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Department of Medicinal Chemistry, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, P.R. China
| | - De-Ao Man
- Key Laboratory of Natural Medicines of the Changbai Mountain, Department of Medicinal Chemistry, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, P.R. China
| | - Yu-Shun Tian
- Key Laboratory of Natural Medicines of the Changbai Mountain, Department of Medicinal Chemistry, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, P.R. China
| |
Collapse
|
25
|
Shome A, Chahat, Chawla V, Chawla PA. Neuroprotective Effect of Natural Indole and β-carboline Alkaloids against Parkinson's Disease: An Overview. Curr Med Chem 2024; 31:6251-6271. [PMID: 37702172 DOI: 10.2174/0929867331666230913100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/02/2023] [Accepted: 07/21/2023] [Indexed: 09/14/2023]
Abstract
Parkinson's disease (PD) is a devastating neurodegenerative condition that mostly damages dopaminergic neurons in the substantia nigra and impairs human motor function. Males are more likely than females to have PD. There are two main pathways associated with PD: one involves the misfolding of α-synuclein, which causes neurodegeneration, and the other is the catalytic oxidation of dopamine via MAO-B, which produces hydrogen peroxide that can cause mitochondrial damage. Parkin (PRKN), α- synuclein (SNCA), heat shock protein (HSP), and leucine-rich repeat kinase-2 (LRRK2) are some of the target areas for genetic alterations that cause neurodegeneration in Parkinson's disease (PD). Under the impact of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which is also important in Parkinson's disease (PD), inhibition of mitochondrial complex 1 results in enhanced ROS generation in neuronal cells. Natural products are still a superior option in the age of synthetic pharmaceuticals because of their lower toxicity and moderate side effects. A promising treatment for PD has been discovered using betacarboline (also known as "β-carboline") and indole alkaloids. However, there are not many studies done on this particular topic. In the herbs containing β-carbolines and indoles, the secondary metabolites and alkaloids, β-carbolines and indoles, have shown neuroprotective and cognitive-enhancing properties. In this review, we have presented results from 18 years of research on the effects of indole and β-carboline alkaloids against oxidative stress and MAO inhibition, two key targets in PD. In the SAR analysis, the activity has been correlated with their unique structural characteristics. This study will undoubtedly aid researchers in looking for new PD treatment options.
Collapse
Affiliation(s)
- Abhimannu Shome
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Chahat
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Viney Chawla
- University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| |
Collapse
|
26
|
Jayan J, Chandran N, Thekkantavida AC, Abdelgawad MA, Ghoneim MM, Shaker ME, Uniyal P, Benny F, Zachariah SM, Kumar S, Kim H, Mathew B. Piperidine: A Versatile Heterocyclic Ring for Developing Monoamine Oxidase Inhibitors. ACS OMEGA 2023; 8:37731-37751. [PMID: 37867639 PMCID: PMC10586023 DOI: 10.1021/acsomega.3c05883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 10/24/2023]
Abstract
The monoamine oxidase enzyme (MAO), which is bound on the membrane of mitochondria, catalyzes the oxidative deamination of endogenous and exogenous monoamines, including monoamine neurotransmitters such as serotonin, adrenaline, and dopamine. These enzymes have been proven to play a significant role in neurodegeneration; thus, they have recently been researched as prospective therapeutic targets for neurodegenerative illness treatment and management. MAO inhibitors have already been marketed as neurodegeneration illness treatments despite their substantial side effects. Hence, researchers are concentrating on developing novel molecules with selective and reversible inhibitory properties. Piperine, which is a phytochemical component present in black pepper, has been established as a potent MAO inhibitor. Piperine encompasses a piperidine nucleus with antibacterial, anti-inflammatory, antihypertensive, anticonvulsant, antimalarial, antiviral, and anticancer properties. The current Review focuses on the structural changes and structure-activity relationships of piperidine derivatives as MAO inhibitors.
Collapse
Affiliation(s)
- Jayalakshmi Jayan
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala 682 041 India
| | - Namitha Chandran
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala 682 041 India
| | - Amrutha Chandran Thekkantavida
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala 682 041 India
| | - Mohamed A. Abdelgawad
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
- Department
of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni Suef University, Beni Suef 2722165, Egypt
| | - Mohammed M. Ghoneim
- Department
of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Mohamed E. Shaker
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Sakaka 72341, Aljouf Saudi Arabia
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Prerna Uniyal
- School
of Pharmacy, Graphic Era Hill University, Dehradun 248002, Uttarakhand, India
| | - Feba Benny
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala 682 041 India
| | - Subin Mary Zachariah
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala 682 041 India
| | - Sunil Kumar
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala 682 041 India
| | - Hoon Kim
- Department
of Pharmacy, Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Bijo Mathew
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa
Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala 682 041 India
| |
Collapse
|
27
|
El-Sayed Ebead E, Aboelnaga A, Nassar E, Naguib MM, Ismail MF. Ultrasonic-induced synthesis of novel diverse arylidenes via Knoevenagel condensation reaction. Antitumor, QSAR, docking and DFT assessment. RSC Adv 2023; 13:29749-29767. [PMID: 37822658 PMCID: PMC10563797 DOI: 10.1039/d3ra05799b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023] Open
Abstract
A series of arylidenes derivatives was synthesized under ultrasonic methodology via Knoevenagel condensation reaction of cyanoacetohydrazide derivative with the appropriate aldehydes and/or ketone. The anticancer properties of the newly synthesized compounds were tested against four different human cancer cell lines (HEPG-2, MCF-7, HCT-116, and PC-3); compounds 5d and 6 demonstrated the greatest anticancer activity against all cancer cell lines. The MLR technique was used to create the QSAR model using five molecular descriptors (AATS6p, AATS7p, AATS8p, AATS0i, and SpMax4_Bhv). The examination of the constructed QSAR model equations revealed that the selected descriptors influence the tested compound's anti-proliferative activity. The descriptors identified in this work by QSAR models can be utilized to predict the anticancer activity levels of novel arylidenes derivatives. This will allow for significant cost savings in the drug development process and synthesis at pharmaceutical chemistry laboratories. According to the physicochemical properties, the results revealed that all of these compounds comply with Lipinski's Rule of Five, indicating that they may have high permeability across biological membranes and reveal drug-relevant properties. The Swiss Target Prediction webtool was used to assess the probable cellular mechanism for the promising candidate compounds (5d and 6), and the results revealed that adenosine A1 receptor (ADORA1) was a common target for both compounds. ADORA1 is involved in the regulation of cell metabolism and gene transcription. ADORA1 overexpression has been linked to a variety of cancers, including colon cancer, breast cancer, leukemia, and melanoma. The docking study of tested compounds 5d and 6 revealed that their binding scores to ADORA1 are more favorable than those of its co-crystalized ligand (DU172, selective ADORA1 antagonist) and adenosine (ADORA1 endogenous agonist), implying that they may hold great promise as an anti-cancer therapy. Density functional theory (DFT) with a (B3LYP)/6-31G (d,p) basis set was used to calculate the physicochemical parameters of these compounds. The theoretical data from the DFT computation was found to be in good agreement with the experimental values.
Collapse
Affiliation(s)
- Eman El-Sayed Ebead
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University Heliopolis Egypt
| | - Asmaa Aboelnaga
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University Heliopolis Egypt
| | - Ekhlass Nassar
- Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University Heliopolis Egypt
| | - Mohamed M Naguib
- Department of Biochemistry, Faculty of Science, Ain Shams University 11566 Abbassia Cairo Egypt
| | - Mahmoud F Ismail
- Department of Chemistry, Faculty of Science, Ain Shams University 11566 Abbassia Cairo Egypt
| |
Collapse
|
28
|
Bhoite SP, Suryavanshi G. Enantioselective synthesis of (+)-Sedridine, (-)-Allosedridine and their N-Methyl analogs via Maruoka -Keck allylation and CBS reduction. Nat Prod Res 2023; 37:3388-3394. [PMID: 35638235 DOI: 10.1080/14786419.2022.2076229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
A simple synthetic approach has been developed for the enantioselective total synthesis of (+)-Sedridine, (-)-Allosedridine and their analogs such as (+)-N- Methyl Sedridine and (-)-N-Methylallosedridine. The synthesis was achieved by using commercially available starting materials via Maruoka-Keck allylation, Wacker oxidation, and CBS reduction. The synthetic root provides a good diastereomeric ratio and high yields.
Collapse
Affiliation(s)
- Shubhangi P Bhoite
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Gurunath Suryavanshi
- Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
29
|
Rafique A, Muhammad S, Iqbal J, Al-Sehemi AG, Alshahrani MY, Ayub K, Gilani MA. Exploring the inhibitory potential of novel piperidine-derivatives against main protease (M pro) of SARS-CoV-2: A hybrid approach consisting of molecular docking, MD simulations and MMPBSA analysis. J Mol Liq 2023; 382:121904. [PMID: 37151376 PMCID: PMC10131809 DOI: 10.1016/j.molliq.2023.121904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/08/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023]
Abstract
In the current study, a hybrid computational approach consisting of different computational methods to explore the molecular electronic structures, bioactivity and therapeutic potential of piperidine compounds against SARS-CoV-2. The quantum chemical methods are used to study electronic structures of designed derivatives, molecular docking methods are used to see the most potential docking interactions for main protease (MPro) of SARS-CoV-2 while molecular dynamic and MMPBSA analyses are performed in bulk water solvation process to mimic real protein like aqueous environment and effectiveness of docked complexes. We designed and optimized piperidine derivatives from experimentally known precursor using quantum chemical methods. The UV-Visible, IR, molecular orbitals, molecular electrostatic plots, and global chemical reactivity descriptors are carried out which illustrate that the designed compounds are kinetically stable and reactive. The results of MD simulations and binding free energy revealed that all the complex systems possess adequate dynamic stability, and flexibility based on their RMSD, RMSF, radius of gyration, and hydrogen bond analysis. The computed net binding free energy ( Δ G b i n d ) as calculated by MMPBSA method for the complexes showed the values of -4.29 kcal.mol-1 for P1, -5.52 kcal.mol-1 for P2, -6.12 kcal.mol-1 for P3, -6.35 kcal.mol-1 for P4, -5.19 kcal.mol-1 for P5, 3.09 kcal.mol-1 for P6, -6.78 kcal.mol-1 for P7, and -6.29 kcal.mol-1 for P8.The ADMET analysis further confirmed that none of among the designed ligands violates the Lipinski rule of five (RO5). The current comprehensive investigation predicts that all our designed compounds are recommended as prospective therapeutic drugs against Mpro of SARS-CoV-2 and it provokes the scientific community to further perform their in-vitro analysis.
Collapse
Affiliation(s)
- Amina Rafique
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shabbir Muhammad
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Abdullah G Al-Sehemi
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, KPK 22060, Pakistan
| | - Mazhar Amjad Gilani
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
30
|
Munir R, Zaib S, Zia-ur-Rehman M, Hussain N, Chaudhry F, Younas MT, Zahra FT, Tajammul Z, Javid N, Dera AA, Ogaly HA, Khan I. Ultrasound-Assisted Synthesis of Piperidinyl-Quinoline Acylhydrazones as New Anti-Alzheimer's Agents: Assessment of Cholinesterase Inhibitory Profile, Molecular Docking Analysis, and Drug-like Properties. Molecules 2023; 28:molecules28052131. [PMID: 36903376 PMCID: PMC10004187 DOI: 10.3390/molecules28052131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Alzheimer's disease (AD) is one of the progressive neurological disorders and the main cause of dementia all over the world. The multifactorial nature of Alzheimer's disease is a reason for the lack of effective drugs as well as a basis for the development of new structural leads. In addition, the appalling side effects such as nausea, vomiting, loss of appetite, muscle cramps, and headaches associated with the marketed treatment modalities and many failed clinical trials significantly limit the use of drugs and alarm for a detailed understanding of disease heterogeneity and the development of preventive and multifaceted remedial approach desperately. With this motivation, we herein report a diverse series of piperidinyl-quinoline acylhydrazone therapeutics as selective as well as potent inhibitors of cholinesterase enzymes. Ultrasound-assisted conjugation of 6/8-methyl-2-(piperidin-1-yl)quinoline-3-carbaldehydes (4a,b) and (un)substituted aromatic acid hydrazides (7a-m) provided facile access to target compounds (8a-m and 9a-j) in 4-6 min in excellent yields. The structures were fully established using spectroscopic techniques such as FTIR, 1H- and 13C NMR, and purity was estimated using elemental analysis. The synthesized compounds were investigated for their cholinesterase inhibitory potential. In vitro enzymatic studies revealed potent and selective inhibitors of AChE and BuChE. Compound 8c showed remarkable results and emerged as a lead candidate for the inhibition of AChE with an IC50 value of 5.3 ± 0.51 µM. The inhibitory strength of the optimal compound was 3-fold higher compared to neostigmine (IC50 = 16.3 ± 1.12 µM). Compound 8g exhibited the highest potency and inhibited the BuChE selectively with an IC50 value of 1.31 ± 0.05 µM. Several compounds, such as 8a-c, also displayed dual inhibitory strength, and acquired data were superior to the standard drugs. In vitro results were further supported by molecular docking analysis, where potent compounds revealed various important interactions with the key amino acid residues in the active site of both enzymes. Molecular dynamics simulation data, as well as physicochemical properties of the lead compounds, supported the identified class of hybrid compounds as a promising avenue for the discovery and development of new molecules for multifactorial diseases, such as Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Rubina Munir
- School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan
- Correspondence: (R.M.); (S.Z.); (I.K.)
| | - Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
- Correspondence: (R.M.); (S.Z.); (I.K.)
| | | | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi P.O. Box 144534, United Arab Emirates
| | - Faryal Chaudhry
- Department of Chemistry, Kinnaird College for Women, Lahore 54000, Pakistan
| | - Muhammad Tayyab Younas
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Fatima Tuz Zahra
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Zainab Tajammul
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Noman Javid
- Chemistry Department (C-Block), Forman Christian College, Ferozepur Road, Lahore 54600, Pakistan
| | - Ayed A. Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia
| | - Hanan A. Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Correspondence: (R.M.); (S.Z.); (I.K.)
| |
Collapse
|
31
|
Frolov NA, Vereshchagin AN. Piperidine Derivatives: Recent Advances in Synthesis and Pharmacological Applications. Int J Mol Sci 2023; 24:2937. [PMID: 36769260 PMCID: PMC9917539 DOI: 10.3390/ijms24032937] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Piperidines are among the most important synthetic fragments for designing drugs and play a significant role in the pharmaceutical industry. Their derivatives are present in more than twenty classes of pharmaceuticals, as well as alkaloids. The current review summarizes recent scientific literature on intra- and intermolecular reactions leading to the formation of various piperidine derivatives: substituted piperidines, spiropiperidines, condensed piperidines, and piperidinones. Moreover, the pharmaceutical applications of synthetic and natural piperidines were covered, as well as the latest scientific advances in the discovery and biological evaluation of potential drugs containing piperidine moiety. This review is designed to help both novice researchers taking their first steps in this field and experienced scientists looking for suitable substrates for the synthesis of biologically active piperidines.
Collapse
Affiliation(s)
| | - Anatoly N. Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| |
Collapse
|
32
|
Dongare G, Aswar A. Synthesis of new heterocyclic N'-(2-hydroxy-3-methoxybenzylidene)-4-oxopiperidine-1-carbohydrazide and its mononuclear metal (II) complexes: spectroscopic characterization, fluorescence, DFT, thermo-kinetic, and antimicrobial studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
33
|
Kishore PS, Gujjarappa R, Putta VPRK, Polina S, Singh V, Malakar CC, Pujar PP. Potassium
tert
‐Butoxide‐Mediated Synthesis of 2‐Aminoquinolines from Alkylnitriles and 2‐Aminobenzaldehyde Derivatives. ChemistrySelect 2022. [DOI: 10.1002/slct.202204238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Raghuram Gujjarappa
- Department of Chemistry National Institute of Technology Manipur, Langol Imphal 795004 Manipur India
| | | | - Saibabu Polina
- Department of Chemistry CHRIST (Deemed to be University) Bangalore 560029 India
| | - Virender Singh
- Department of Chemistry Central University of Punjab Bathinda 151001 Punjab India
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur, Langol Imphal 795004 Manipur India
| | | |
Collapse
|
34
|
Kecel Gunduz S, Budama Kilinc Y, Bicak B, Gok B, Belmen B, Aydogan F, Yolacan C. New Coumarin Derivative with Potential Antioxidant Activity: Synthesis, DNA Binding and In Silico Studies (Docking, MD, ADMET). ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
35
|
Li S, Luo X, Zhang Z, Raza MA, Jin Z, Yao C, Yan H. Differences between novel hybrid mode flaps and traditional perforator flaps at the level of metabolites using LC-MS. Biomed Chromatogr 2022; 36:e5466. [PMID: 35902233 DOI: 10.1002/bmc.5466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022]
Abstract
The multi-territory perforator flaps are widely used in plastic surgery. However, partial necrosis flap in the potential territory remains a challenge to plastic surgeons. We raised a novel "hybrid nourished mode" (HNM) flap based on the multi-territory deep inferior epigastric perforator (DIEP) flap to improve flap survival. Thirty-two rabbits were randomly divided into DIEP and HNM groups. Untargeted metabolic mechanisms between the DIEP and HNM groups were performed using LC-MS under the filter criteria of fold change >20.0 times or <0.05, and variable importance in projection (VIP) value was set at ≥1, P < 0.05. Between the two groups, flap survival, perfusion, microvasculature, histopathology, and immunohistochemistry of CD31 were assessed on post-operative day 7. We screened 16 different metabolites that mainly participated in biosynthesis of secondary metabolites, aminoacyl transfer RNA biosynthesis, phenylalanine metabolism, arginine and proline metabolism, among others. The results of the HNM flaps were higher than those of the DIEP flaps (P < 0.05) in the aspects of flap survival, flap perfusion, and microvasculature. Compared with the DIEP flaps, HNM has a stronger advantage in tissue metabolism. This study provided us with a better understanding and strong evidence in terms of metabolites on how HNM achieves the survival of large multi-territory perforator flaps.
Collapse
Affiliation(s)
- Shi Li
- Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaobin Luo
- Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhe Zhang
- Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mazhar Ali Raza
- Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zeyuan Jin
- Department of Orthopaedics, Jiaxing Second Hospital, Second Affiliated Hospital of Jiaxing Medical College, Jiaxing, China
| | - Chenglun Yao
- Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hede Yan
- Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
36
|
Molecular structure, electronic properties, ESP map (polar aprotic and polar protic solvents), and topology investigations on 1-(tert‑Butoxycarbonyl)-3-piperidinecarboxylic acid- Anticancer therapeutic agent. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Mamedov VA, Zhukova NA, Voloshina AD, Syakaev VV, Beschastnova T, Lyubina AP, Amerhanova SK, Samigullina AI, Gubaidullin AT, Buzyurova DN, Rizvanov I, Sinyashin OG. Synthesis of Morpholine-, Piperidine-, and N-Substituted Piperazine-Coupled 2-(Benzimidazol-2-yl)-3-arylquinoxalines as Novel Potent Antitumor Agents. ACS Pharmacol Transl Sci 2022; 5:945-962. [PMID: 36268120 PMCID: PMC9578144 DOI: 10.1021/acsptsci.2c00118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 11/29/2022]
Abstract
A novel series of 2-(benzimidazol-2-yl)quinoxalines with three types of pharmacophore groups, namely, piperazine, piperidine, and morpholine moieties, which are part of known antitumor drugs, was designed and synthesized. The compounds have been characterized by NMR and IR spectroscopy, high- and low-resolution mass spectrometry, and X-ray crystallography. 2-(Benzimidazol-2-yl)quinoxalines with N-methylpiperazine substituents showed promising activity against a wide range of cancer lines, without causing hemolysis and showing little cytotoxicity against normal human Wi-38 cells (human fetal lung). A mixture of regioisomers 2-(benzimidazol-2-yl)-3-(4-fluorophenyl)-6(and 7)-(4-methylpiperazin-1-yl)quinoxalines (mri BIQ 13da/14da) showed a highly selective cytotoxic effect against human lung adenocarcinoma (cell line A549) with a half-maximal inhibitory concentration at the level of doxorubicin with a selectivity index of 12. The data obtained by flow cytometry, fluorescence microscopy, and multiparametric fluorescence analysis suggested that the mechanism of the cytotoxic effect of the mri BIQ 13da/14da on A549 cells may be associated with the stopping of the cell cycle in phase S and inhibition of DNA synthesis as well as with the induction of mithochondrial apoptosis. Thus, mri BIQ 13da/14da can be considered as a leading compound deserving further study, optimization, and development as a new anticancer agent.
Collapse
Affiliation(s)
- Vakhid A. Mamedov
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Nataliya A. Zhukova
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Alexandra D. Voloshina
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Victor V. Syakaev
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Tat’yana
N. Beschastnova
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Anna P. Lyubina
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Syumbelya K. Amerhanova
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Aida I. Samigullina
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Aidar T. Gubaidullin
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Daina N. Buzyurova
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Il′dar
Kh. Rizvanov
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| | - Oleg G. Sinyashin
- A.E. Arbuzov Institute of
Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088Kazan, Russian Federation
| |
Collapse
|
38
|
Kumari S, Maddeboina K, Bachu RD, Boddu SHS, Trippier PC, Tiwari AK. Pivotal role of nitrogen heterocycles in Alzheimer's disease drug discovery. Drug Discov Today 2022; 27:103322. [PMID: 35868626 DOI: 10.1016/j.drudis.2022.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/21/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a detrimental neurodegenerative disease that progressively worsens with time. Clinical options are limited and only provide symptomatic relief to AD patients. The search for effective anti-AD compounds is ongoing with a few already in Phase III clinical trials, yet to be approved. Heterocycles containing nitrogen are important to biological processes owing to their abundance in nature, their function as subunits of biological molecules and/or macromolecular structures, and their biological activities. The present review discusses previously used strategies, SAR, relevant in vitro and in vivo studies, and success stories of nitrogen-containing heterocyclic compounds in AD drug discovery. Also, we propose strategies for designing and developing novel potent anti-AD small molecules that can be used as treatments for AD.
Collapse
Affiliation(s)
- Shikha Kumari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA.
| | - Krishnaiah Maddeboina
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA
| | - Rinda Devi Bachu
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Sai H S Boddu
- College of Pharmacy and Health Sciences, Ajman University, UAE; Center of Medical and Bio-allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, UAE
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, UNMC Center for Drug Discovery, Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA; Center of Medical and Bio-allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, UAE; Department of Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
39
|
Kim JH, Choi J, Kim J, Kim J. Enhanced near-infrared electrochemiluminescence of Au nanoclusters treated with piperidine. Bioelectrochemistry 2022; 147:108192. [DOI: 10.1016/j.bioelechem.2022.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/02/2022]
|
40
|
Nasiriani T, Javanbakht S, Nazeri MT, Farhid H, Khodkari V, Shaabani A. Isocyanide-Based Multicomponent Reactions in Water: Advanced Green Tools for the Synthesis of Heterocyclic Compounds. Top Curr Chem (Cham) 2022; 380:50. [PMID: 36136281 DOI: 10.1007/s41061-022-00403-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/12/2022] [Indexed: 12/01/2022]
Abstract
Reaction rate acceleration using green methods is an intriguing area of research for chemists. In this regard, water as a "green solvent" plays a crucial role in the acceleration of some organic transformations and reveals exclusive selectivity and reactivity in comparison with conventional organic solvents. In particular, multicomponent reactions (MCRs) as sustainable tools lead to the rapid generation of small-molecule libraries in water and aqueous media due to the prominent role of the hydrophobic effect. MCRs, as diversity-oriented synthesis (DOS) methods, have great efficiency with simple operations, atom, pot, and step economy synthesis, and mechanistic beauty. Among diverse classes of MCRs, isocyanide-based multicomponent reactions (I-MCRs), as sustainable and versatile reactions, have gained considerable attention in the synthesis of diverse heterocycle rings, especially in drug design because of the peculiar nature of isocyanide as a particular active reactant. I-MCRs that are performed in water are mild, environmentally friendly, and easily controlled, and have a reduced number of workup, purification, and extraction steps, which fit well with the advantages of "green" chemistry. Performing these powerful organic transformations in water and aqueous media is accompanied by acceleration owing to negative activation volumes, which originate from connecting several reactants together to generate a single product. It should be noted that the combination of MCR strategy and aqueous phase reaction is of growing interest for the development of sustainable synthetic techniques in organic conversions. However, an exclusive account focusing on the recent progress in eco-friendly I-MCRs for the construction of heterocycles in water and aqueous media is particularly lacking. This review highlights the progress of various kinds of I-MCRs in water and aqueous media as benign methods for the efficient construction of vital heterocyclic scaffolds, with a critical discussion of the subject in the period 2000-2021. We hope that this themed collection will be of interest and beneficial for organic and pharmaceutical chemists and will inspire more reaction development in this fascinating field.
Collapse
Affiliation(s)
- Tahereh Nasiriani
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran
| | - Siamak Javanbakht
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran
| | - Mohammad Taghi Nazeri
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran
| | - Hassan Farhid
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran
| | - Vida Khodkari
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran
| | - Ahmad Shaabani
- Department of Organic Chemistry, Shahid Beheshti University, Daneshjou Boulevard Street, Tehran, 1983969411, Iran. .,Peoples' Friendship University of Russia, RUDN University, 6, Miklukho-Maklaya Street, Moscow, 117198, Russian Federation.
| |
Collapse
|
41
|
Ramalingam A, Mustafa N, Chng WJ, Medimagh M, Sambandam S, Issaoui N. 3-Chloro-3-methyl-2,6-diarylpiperidin-4-ones as Anti-Cancer Agents: Synthesis, Biological Evaluation, Molecular Docking, and In Silico ADMET Prediction. Biomolecules 2022; 12:1093. [PMID: 36008987 PMCID: PMC9406097 DOI: 10.3390/biom12081093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 01/18/2023] Open
Abstract
Piperidine pharmacophore-containing compounds have demonstrated therapeutic efficacy against a range of diseases and are now being investigated in cancer. A series of 3-chloro-3-methyl-2,6-diarylpiperidin-4-ones, compounds (I-V) were designed and synthesized for their evaluation as a potential anti-cancer agent. Compounds II and IV reduced the growth of numerous hematological cancer cell lines while simultaneously increasing the mRNA expression of apoptosis-promoting genes, p53 and Bax. Molecular docking analyses confirmed that compounds can bind to 6FS1, 6FSO (myeloma), 6TJU (leukemia), 5N21, and 1OLL (NKTL). Computational ADMET research confirmed the essential physicochemical, pharmacokinetic, and drug-like characteristics of compounds (I-V). The results revealed that these compounds interact efficiently with active site residues and that compounds (II) and (V) can be further evaluated as potential therapeutic candidates.
Collapse
Affiliation(s)
- Arulraj Ramalingam
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Nurulhuda Mustafa
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Wee Joo Chng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore 119228, Singapore
| | - Mouna Medimagh
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia
| | - Sivakumar Sambandam
- Research and Development Centre, Bharathiar University, Coimbatore 641046, India
- BPJ College of Arts and Science, Kozhai, Srimushnam 608703, India
| | - Noureddine Issaoui
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia
| |
Collapse
|
42
|
Ramalingam A, Mustafa N, Chng WJ, Medimagh M, Sambandam S, Issaoui N. 3-Chloro-3-methyl-2,6-diarylpiperidin-4-ones as Anti-Cancer Agents: Synthesis, Biological Evaluation, Molecular Docking, and In Silico ADMET Prediction. Biomolecules 2022. [DOI: doi.org/10.3390/biom12081093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Piperidine pharmacophore-containing compounds have demonstrated therapeutic efficacy against a range of diseases and are now being investigated in cancer. A series of 3-chloro-3-methyl-2,6-diarylpiperidin-4-ones, compounds (I–V) were designed and synthesized for their evaluation as a potential anti-cancer agent. Compounds II and IV reduced the growth of numerous hematological cancer cell lines while simultaneously increasing the mRNA expression of apoptosis-promoting genes, p53 and Bax. Molecular docking analyses confirmed that compounds can bind to 6FS1, 6FSO (myeloma), 6TJU (leukemia), 5N21, and 1OLL (NKTL). Computational ADMET research confirmed the essential physicochemical, pharmacokinetic, and drug-like characteristics of compounds (I–V). The results revealed that these compounds interact efficiently with active site residues and that compounds (II) and (V) can be further evaluated as potential therapeutic candidates.
Collapse
|
43
|
Cauley AN, Ramirez A, Barhate CL, Donnell AF, Khandelwal P, Sezen-Edmonds M, Sherwood TC, Sloane JL, Cavallaro CL, Simmons EM. Ni/Photoredox-Catalyzed C(sp 2)-C(sp 3) Cross-Coupling of Alkyl Pinacolboronates and (Hetero)Aryl Bromides. Org Lett 2022; 24:5663-5668. [PMID: 35920644 DOI: 10.1021/acs.orglett.2c01942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Utilizing quinoline as a mild, catalytic additive, broadly applicable conditions for the Ni/photoredox-catalyzed C(sp2)-C(sp3) cross-coupling of (hetero)aryl bromides and alkyl pinacolboronate esters were developed, which can be applied to both batch and flow reactions. In addition to primary benzylic nucleophiles, both stabilized and nonstabilized secondary alkyl boronic esters are effective coupling partners. Density functional theory calculations suggest that alkyl radical generation occurs from an alkyl-B(pin)-quinoline complex, which may proceed via an energy transfer process.
Collapse
Affiliation(s)
- Anthony N Cauley
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States.,Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Antonio Ramirez
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Chandan L Barhate
- Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Andrew F Donnell
- Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Purnima Khandelwal
- Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Melda Sezen-Edmonds
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Trevor C Sherwood
- Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Jack L Sloane
- Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Cullen L Cavallaro
- Small Molecule Drug Discovery, Bristol Myers Squibb, Princeton, New Jersey 08543, United States
| | - Eric M Simmons
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
44
|
Zheng Y, Lu W, Xie Z, Chen K, Xiang H, Yang H. Visible-Light-Induced, Palladium-Catalyzed Annulation of 1,3-Dienes to Construct Vinyl N-Heterocycles. Org Lett 2022; 24:5407-5411. [PMID: 35848222 DOI: 10.1021/acs.orglett.2c02101] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, a photoinduced palladium-catalyzed annulation of 1,3-dienes with bifunctional halognated alkylamines has been developed, offering a facile route to access a broad range of vinylpyrrolidines. The reactivity profile of this protocol was able to be readily manipulated to assemble vinylpyrrolidine and vinlysilaazacycle. Remarkably, the utility of this strategy was further illustrated in the construction of complex and biologically important molecules as well as the diversity-oriented transformations of the resulting product.
Collapse
Affiliation(s)
- Yu Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Weidong Lu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Zhenzhen Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Haoyue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| |
Collapse
|
45
|
Song Q, Wang S, Lei X, Liu Y, Wen X, Wang Z. One-Pot Route from Halogenated Amides to Piperidines and Pyrrolidines. Molecules 2022; 27:molecules27154698. [PMID: 35897866 PMCID: PMC9331508 DOI: 10.3390/molecules27154698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Piperidine and pyrrolidine derivatives are important nitrogen heterocyclic structures with a wide range of biological activities. However, reported methods for their construction often face problems of requiring the use of expensive metal catalysts, highly toxic reaction reagents or hazardous reaction conditions. Herein, an efficient route from halogenated amides to piperidines and pyrrolidines was disclosed. In this method, amide activation, reduction of nitrile ions, and intramolecular nucleophilic substitution were integrated in a one-pot reaction. The reaction conditions were mild and no metal catalysts were used. The synthesis of a variety of N-substituted and some C-substituted piperidines and pyrrolidines became convenient, and good yields were obtained.
Collapse
Affiliation(s)
- Qiao Song
- Department of Chemistry, Xihua University, Chengdu 610039, China; (S.W.); (X.L.); (Y.L.); (X.W.)
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Yibin 644000, China
- Correspondence: (Q.S.); (Z.W.)
| | - Sheng Wang
- Department of Chemistry, Xihua University, Chengdu 610039, China; (S.W.); (X.L.); (Y.L.); (X.W.)
| | - Xiangui Lei
- Department of Chemistry, Xihua University, Chengdu 610039, China; (S.W.); (X.L.); (Y.L.); (X.W.)
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Yibin 644000, China
| | - Yan Liu
- Department of Chemistry, Xihua University, Chengdu 610039, China; (S.W.); (X.L.); (Y.L.); (X.W.)
| | - Xin Wen
- Department of Chemistry, Xihua University, Chengdu 610039, China; (S.W.); (X.L.); (Y.L.); (X.W.)
| | - Zhouyu Wang
- Department of Chemistry, Xihua University, Chengdu 610039, China; (S.W.); (X.L.); (Y.L.); (X.W.)
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Yibin 644000, China
- Correspondence: (Q.S.); (Z.W.)
| |
Collapse
|
46
|
Niu B, Sachidanandan K, Cooke MV, Casey TE, Laulhé S. Photoinduced C(sp 3)-H Chalcogenation of Amide Derivatives and Ethers via Ligand-to-Metal Charge-Transfer. Org Lett 2022; 24:4524-4529. [PMID: 35729078 PMCID: PMC9650966 DOI: 10.1021/acs.orglett.2c01505] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A photoinduced, iron(III) chloride-catalyzed C-H activation of N-methyl amides and ethers leads to the formation of C-S and C-Se bonds via a ligand-to-metal charge transfer (LMCT) process. This methodology converts secondary and tertiary amides, sulfonamides, and carbamates into the corresponding amido-N,S-acetal derivatives in good yields. Mechanistic work revealed that this transformation proceeds through a hydrogen atom transfer (HAT) involving chlorine radical intermediates.
Collapse
Affiliation(s)
- Ben Niu
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Krishnakumar Sachidanandan
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Maria Victoria Cooke
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Taylor E Casey
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Sébastien Laulhé
- Department of Chemistry & Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
47
|
Borsari C, Keles E, McPhail JA, Schaefer A, Sriramaratnam R, Goch W, Schaefer T, De Pascale M, Bal W, Gstaiger M, Burke JE, Wymann MP. Covalent Proximity Scanning of a Distal Cysteine to Target PI3Kα. J Am Chem Soc 2022; 144:6326-6342. [PMID: 35353516 PMCID: PMC9011356 DOI: 10.1021/jacs.1c13568] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
Covalent protein
kinase inhibitors exploit currently noncatalytic
cysteines in the adenosine 5′-triphosphate (ATP)-binding site
via electrophiles directly appended to a reversible-inhibitor scaffold.
Here, we delineate a path to target solvent-exposed cysteines at a
distance >10 Å from an ATP-site-directed core module and produce
potent covalent phosphoinositide 3-kinase α (PI3Kα) inhibitors.
First, reactive warheads are used to reach out to Cys862 on PI3Kα,
and second, enones are replaced with druglike warheads while linkers
are optimized. The systematic investigation of intrinsic warhead reactivity
(kchem), rate of covalent bond formation
and proximity (kinact and reaction space
volume Vr), and integration of structure
data, kinetic and structural modeling, led to the guided identification
of high-quality, covalent chemical probes. A novel stochastic approach
provided direct access to the calculation of overall reaction rates
as a function of kchem, kinact, Ki, and Vr, which was validated with compounds with varied linker
lengths. X-ray crystallography, protein mass spectrometry (MS), and
NanoBRET assays confirmed covalent bond formation of the acrylamide
warhead and Cys862. In rat liver microsomes, compounds 19 and 22 outperformed the rapidly metabolized CNX-1351,
the only known PI3Kα irreversible inhibitor. Washout experiments
in cancer cell lines with mutated, constitutively activated PI3Kα
showed a long-lasting inhibition of PI3Kα. In SKOV3 cells, compounds 19 and 22 revealed PI3Kβ-dependent signaling,
which was sensitive to TGX221. Compounds 19 and 22 thus qualify as specific chemical probes to explore PI3Kα-selective
signaling branches. The proposed approach is generally suited to develop
covalent tools targeting distal, unexplored Cys residues in biologically
active enzymes.
Collapse
Affiliation(s)
- Chiara Borsari
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Erhan Keles
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Jacob A McPhail
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Alexander Schaefer
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Rohitha Sriramaratnam
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Wojciech Goch
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Thorsten Schaefer
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Martina De Pascale
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Matthias P Wymann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| |
Collapse
|
48
|
Vujatović TB, Vitorović-Todorović MD, Cvijetić I, Vasović T, Nikolić MR, Novaković I, Bjelogrlić S. Novel derivatives of aroylacrylic acid phenylamides as inducers of apoptosis through the ROS-mediated pathway in several cancer cell lines. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Asha RN, Sankarganesh M, Bhuvanesh N, Nayagam BRD. Synthesis, structural, spectral, antidiabetic, DNA interactions and molecular docking investigations of a piperidine derivative. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Niu B, Sachidanandan K, Blackburn BG, Cooke MV, Laulhé S. Photoredox Polyfluoroarylation of Alkyl Halides via Halogen Atom Transfer. Org Lett 2022; 24:916-920. [PMID: 35023751 PMCID: PMC9650968 DOI: 10.1021/acs.orglett.1c04267] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Polyfluoroarene moieties are of interest in medicinal chemistry, agrochemicals, and material sciences. Herein, we present the first polyfluoroarylation of unactivated alkyl halides via a halogen atom transfer process. This method converts primary, secondary, and tertiary alkyl halides into the respective polyfluoroaryl compounds in good yields in the presence of amide, carbamate, ester, aromatic, and sulfonamide moieties, including derivatives of complex bioactive molecules. Mechanistic work revealed that this transformation proceeds through an alkyl radical generated after the halogen atom transfer.
Collapse
Affiliation(s)
- Ben Niu
- Department of Chemistry and Chemical Biology, Indiana University—Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Krishnakumar Sachidanandan
- Department of Chemistry and Chemical Biology, Indiana University—Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Bryan G. Blackburn
- Department of Chemistry and Chemical Biology, Indiana University—Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Maria Victoria Cooke
- Department of Chemistry and Chemical Biology, Indiana University—Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Sébastien Laulhé
- Department of Chemistry and Chemical Biology, Indiana University—Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|