1
|
Peng H, Jiang Q, Mao W, Hu Z, Wang Q, Yu Z, Zhang L, Wang X, Zhuang C, Mai J, Wang Z, Sun T. Fe-HCOF-PEG 2000 as a Hypoxia-Tolerant Photosensitizer to Trigger Ferroptosis and Enhance ROS-Based Cancer Therapy. Int J Nanomedicine 2024; 19:10165-10183. [PMID: 39399828 PMCID: PMC11468433 DOI: 10.2147/ijn.s479848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/29/2024] [Indexed: 10/15/2024] Open
Abstract
Background The hypoxic tumor microenvironment and single mechanisms severely limit the photodynamic therapy (PDT) efficiency of covalent organic framework (COF) nanoparticles in cancer treatment. Purpose Here, we propose an iron-loaded, hydrophilic 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000)-modified hollow covalent organic framework (HCOF), Fe-HCOF-PEG2000, for use in hypoxic PDT and ferroptosis therapy owing to its type I and II photodynamic ability and iron nanoparticle loading property. Results Fe-HCOF-PEG2000 nanoparticles (Fe-HCOFs-PEG2000) with semiconducting polymers and microporous skeletons allow efficient photophysical properties. Moreover, the iron nanoparticles on Fe-HCOF-PEG2000 caused ferroptosis and further enhanced tumor elimination under normoxic and hypoxic conditions. DSPE-PEG2000 endowed Fe-HCOF-PEG2000 with hydrophilicity, allowing it to circulate and accumulate in organs rich in blood supply, especially tumors. 808 nm NIR activated Fe-HCOF-PEG2000 aggregated in tumors and significantly inhibited tumor growth under hypoxia. Conclusion To our knowledge, Fe-HCOF-PEG2000 is the leading combination of type I/II PDT and ferroptosis. The strong antitumor effects of this nanomaterial suggest prospects for clinical translation as a tumor nanotherapy drug.
Collapse
Affiliation(s)
- Hui Peng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
- Center for Clinical Laboratory, General Hospital of the Yangtze River Shipping Wuhan Brain Hospital, Wuhan, Hubei, 430010, People’s Republic of China
| | - Qian Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Wenhao Mao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Zhonglan Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Qi Wang
- Department of Pharmacy, Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, 475000, People’s Republic of China
| | - Zhuo Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Li Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Xinyan Wang
- Department of Obstetrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Chunbo Zhuang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| | - Jia Mai
- Department of Laboratory Medicine, West China Second Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Zhiyuan Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, People’s Republic of China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People’s Republic of China
| |
Collapse
|
2
|
Jin W, Fan B, Qin X, Liu Y, Qian C, Tang B, James TD, Chen G. Structure-activity of chlormethine fluorescent prodrugs: Witnessing the development of trackable drug delivery. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
3
|
Combining targeted chemotherapy of hydroxyethyl starch prodrug and photothermal therapy of MoS2 for treatment of bladder cancer. Colloid Polym Sci 2023. [DOI: 10.1007/s00396-023-05065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
4
|
Yu J, Cheng Y, Cui Y, Zhai Y, Zhang W, Zhang M, Xin W, Liang J, Pan X, Wang Q, Sun H. Anti-Seizure and Neuronal Protective Effects of Irisin in Kainic Acid-Induced Chronic Epilepsy Model with Spontaneous Seizures. Neurosci Bull 2022; 38:1347-1364. [PMID: 35821335 PMCID: PMC9672298 DOI: 10.1007/s12264-022-00914-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
An increased level of reactive oxygen species is a key factor in neuronal apoptosis and epileptic seizures. Irisin reportedly attenuates the apoptosis and injury induced by oxidative stress. Therefore, we evaluated the effects of exogenous irisin in a kainic acid (KA)-induced chronic spontaneous epilepsy rat model. The results indicated that exogenous irisin significantly attenuated the KA-induced neuronal injury, learning and memory defects, and seizures. Irisin treatment also increased the levels of brain-derived neurotrophic factor (BDNF) and uncoupling protein 2 (UCP2), which were initially reduced following KA administration. Furthermore, the specific inhibitor of UCP2 (genipin) was administered to evaluate the possible protective mechanism of irisin. The reduced apoptosis, neurodegeneration, and spontaneous seizures in rats treated with irisin were significantly reversed by genipin administration. Our findings indicated that neuronal injury in KA-induced chronic epilepsy might be related to reduced levels of BDNF and UCP2. Moreover, our results confirmed the inhibition of neuronal injury and epileptic seizures by exogenous irisin. The protective effects of irisin may be mediated through the BDNF-mediated UCP2 level. Our results thus highlight irisin as a valuable therapeutic strategy against neuronal injury and epileptic seizures.
Collapse
Affiliation(s)
- Jie Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wenshen Zhang
- The Sixth Scientific Research Department, Shandong Institute of Nonmetallic Materials, Jinan, 250031, China
| | - Mengdi Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wenyu Xin
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Jia Liang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xiaohong Pan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
5
|
Antina LA, Bumagina NA, Kalinkina VA, Lukanov MM, Ksenofontov AA, Kazak AV, Berezin MB, Antina EV. Aggregation behavior and spectroscopic properties of red-emitting distyryl-BODIPY in aqueous solution, Langmuir-Schaefer films and Pluoronic® F127 micelles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121366. [PMID: 35588603 DOI: 10.1016/j.saa.2022.121366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Red-emitting distyryl substituted BODIPY dyes are among the most promising luminophors for bioimaging and optics applications. However, the practical application of BODIPYs is limited due to their high hydrophobicity and tendency to aggregate in aqueous organic solutions and solid phase. In this article, we propose an elegant solution to this problem. To this end, we carried out the detailed experimental and quantum-chemical study of the structural and spectral features of BF2-ms-phenyl-5,5'-bis(4-dimethylaminostyryl)-3,3'-dimethyl-2,2'-dipyrromethene (distyryl-BDP). The particular attention was paid to analysis of high sensitivity of the distyryl-BDP spectral characteristics to the solvent properties, and also the aggregation behavior features both in water-organic media and in mono- and multilayer Langmuir-Schaefer films. We selected the best conditions to obtain the hydrophilic micellar structures of distyryl-BDP with Pluronic® F127 having a high efficiency of dye solubilization. This method increasing the solubility improves the distyryl-BDP transport efficiency in physiological aqueous media. The aqueous solutions of distyryl-BDP-Pl micelles show the intense fluorescence in the phototherapy window region (λfl = 739 nm).
Collapse
Affiliation(s)
- Lubov A Antina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russia.
| | - Natalia A Bumagina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russia
| | - Valeria A Kalinkina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russia; Ivanovo State University of Chemistry and Technology, 7 Sheremetievskiy Av., 153000 Ivanovo, Russia
| | - Michail M Lukanov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russia; Ivanovo State University of Chemistry and Technology, 7 Sheremetievskiy Av., 153000 Ivanovo, Russia
| | - Alexander A Ksenofontov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russia
| | - Alexander V Kazak
- Nanomaterials Research Institute, Ivanovo State University, Ermak Str., 39, 153025 Ivanovo, Russia; Moscow Region State University, Very Voloshinoy St., 24, 141014, Mytishchi, Russia
| | - Mikhail B Berezin
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russia
| | - Elena V Antina
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya Str., 153045 Ivanovo, Russia
| |
Collapse
|
6
|
Prieto-Montero R, Prieto-Castañeda A, Katsumiti A, Cajaraville MP, Agarrabeitia AR, Ortiz MJ, Martínez-Martínez V. Functionalization of Photosensitized Silica Nanoparticles for Advanced Photodynamic Therapy of Cancer. Int J Mol Sci 2021; 22:6618. [PMID: 34205599 PMCID: PMC8234454 DOI: 10.3390/ijms22126618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/10/2023] Open
Abstract
BODIPY dyes have recently attracted attention as potential photosensitizers. In this work, commercial and novel photosensitizers (PSs) based on BODIPY chromophores (haloBODIPYs and orthogonal dimers strategically designed with intense bands in the blue, green or red region of the visible spectra and high singlet oxygen production) were covalently linked to mesoporous silica nanoparticles (MSNs) further functionalized with PEG and folic acid (FA). MSNs approximately 50 nm in size with different functional groups were synthesized to allow multiple alternatives of PS-PEG-FA decoration of their external surface. Different combinations varying the type of PS (commercial Rose Bengal, Thionine and Chlorine e6 or custom-made BODIPY-based), the linkage design, and the length of PEG are detailed. All the nanosystems were physicochemically characterized (morphology, diameter, size distribution and PS loaded amount) and photophysically studied (absorption capacity, fluorescence efficiency, and singlet oxygen production) in suspension. For the most promising PS-PEG-FA silica nanoplatforms, the biocompatibility in dark conditions and the phototoxicity under suitable irradiation wavelengths (blue, green, or red) at regulated light doses (10-15 J/cm2) were compared with PSs free in solution in HeLa cells in vitro.
Collapse
Affiliation(s)
- Ruth Prieto-Montero
- Departamento de Química Física, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48080 Bilbao, Spain;
| | - Alejandro Prieto-Castañeda
- Departamento de Química Orgánica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.P.-C.); (A.R.A.)
| | - Alberto Katsumiti
- CBET Research Group, Department Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country UPV/EHU, 48620 Basque Country, Spain; (M.P.C.)
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (A.K.)
| | - Miren P. Cajaraville
- CBET Research Group, Department Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PiE, University of the Basque Country UPV/EHU, 48620 Basque Country, Spain; (M.P.C.)
| | - Antonia R. Agarrabeitia
- Departamento de Química Orgánica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.P.-C.); (A.R.A.)
| | - María J. Ortiz
- Departamento de Química Orgánica, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.P.-C.); (A.R.A.)
| | - Virginia Martínez-Martínez
- Departamento de Química Física, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48080 Bilbao, Spain;
| |
Collapse
|
7
|
Qi F, Yuan H, Chen Y, Guo Y, Zhang S, Liu Z, He W, Guo Z. BODIPY-based monofunctional Pt (II) complexes for specific photocytotoxicity against cancer cells. J Inorg Biochem 2021; 218:111394. [PMID: 33647541 DOI: 10.1016/j.jinorgbio.2021.111394] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023]
Abstract
Photodynamic therapy (PDT) has attracted extensive attention in cancer treatment because of its minimum trauma, less side effects, and so on. Photosensitizers, as one of the core elements of PDT, usually have to face problems such as poor water solubility and light stability, lack of targeting, and other problems, which seriously affect the therapeutic effect. In this work, two BODIPY (boron-dipyrromethene)-based monofunctional Pt (II) complexes, 1a and 2a, were designed and synthesized, and their PDT effect was studied. The Pt atom improved the singlet oxygen quantum yield (0.19 for 1a and 0.14 for 2a, respectively), which effectively improves the efficiency of PDT. MTT assay confirmed that the short time photo-irradiation distinctly promoted antitumor cytotoxicity of Pt (II) compounds against different cell lines. For 1a under irradiation, the IC50 value of cancer cell lines were 13.1 μM for HeLa cells and 7.6 μM for MCF-7 cells, while those of normal cell lines were 32.4 μM for HBL-100 cells and 48.6 μM for L02 cells. The results demonstrated that 1a showed specific phototoxicity to cancer cells. This specific selectivity could be attributed to the synergistic effect of increased cellular uptake (determined by ICP-MS) and higher ROS generation (detected by Cell ROX Deep Red) in cancer cells after irradiation. This study laid the foundation for the future design and synthesis of effective PDT photosensitizers.
Collapse
Affiliation(s)
- Fen Qi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hao Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.
| | - Yan Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuren Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhipeng Liu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210073, China.
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
8
|
Hoenke S, Serbian I, Deigner HP, Csuk R. Mitocanic Di- and Triterpenoid Rhodamine B Conjugates. Molecules 2020; 25:molecules25225443. [PMID: 33233650 PMCID: PMC7699795 DOI: 10.3390/molecules25225443] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
The combination of the “correct” triterpenoid, the “correct” spacer and rhodamine B (RhoB) seems to be decisive for the ability of the conjugate to accumulate in mitochondria. So far, several triterpenoid rhodamine B conjugates have been prepared and screened for their cytotoxic activity. To obtain cytotoxic compounds with EC50 values in a low nano-molar range combined with good tumor/non-tumor selectivity, the Rho B unit has to be attached via an amine spacer to the terpenoid skeleton. To avoid spirolactamization, secondary amines have to be used. First results indicate that a homopiperazinyl spacer is superior to a piperazinyl spacer. Hybrids derived from maslinic acid or tormentic acid are superior to those from oleanolic, ursolic, glycyrrhetinic or euscaphic acid. Thus, a tormentic acid-derived RhoB conjugate 32, holding a homopiperazinyl spacer can be regarded, at present, as the most promising candidate for further biological studies.
Collapse
Affiliation(s)
- Sophie Hoenke
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Street 2, D-06120 Halle, Germany; (S.H.); (I.S.)
| | - Immo Serbian
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Street 2, D-06120 Halle, Germany; (S.H.); (I.S.)
| | - Hans-Peter Deigner
- Medical and Life Science Faculty, Institute of Precision Medicine, Furtwangen University, Jakob–Kienzle–Street 17, D-78054 Villigen–Schwenningen, Germany;
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Street 2, D-06120 Halle, Germany; (S.H.); (I.S.)
- Correspondence: ; Tel.: +49-345-5525660
| |
Collapse
|
9
|
Dual-acidity-labile polysaccharide-di-drugs conjugate for targeted cancer chemotherapy. Eur J Med Chem 2020; 199:112367. [PMID: 32474350 DOI: 10.1016/j.ejmech.2020.112367] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 11/23/2022]
Abstract
Polymer-drug conjugates synthesized by binding therapeutic agents to functional polymers have long been a mainstay of prodrugs, while the slow drug release, insufficient efficacy of a single drug, and low selectivity hamper the clinical translation. By rational prodrug design, a targeted dual-acidity-labile polysaccharide-di-drugs conjugate was synthesized by one-pot simultaneous Schiff base and boronic esterification reactions between oxidized dextran (Dex-CHO) and cyclo-(Arg-Gly-Asp-D-Phe-Lys) (c(RGDfK)), doxorubicin (DOX), and bortezomib (BTZ). The polysaccharide-di-drugs conjugate (Dex-g-(DOX+BTZ)/cRGD) self-assembled into micelle with a diameter at around 80 nm and released the drugs simultaneously triggered by the acidic conditions. Dex-g-(DOX+BTZ)/cRGD specifically recognized and entered the cancer cells through the RGD-αvβ3 integrin interplay, selectively released DOX and BTZ in the acidic intracellular microenvironment, and efficiently inhibited the cell proliferation in vitro. More importantly, Dex-DOX/BTZ/cRGD showed higher intratumoral accumulation and better antitumor efficacy in vivo compared with free drugs and non-targeted control prodrug Dex-g-(DOX+BTZ). The findings indicated that this study provided a facile strategy to develop smart polymer-multi-drugs conjugates for targeted cancer chemotherapy.
Collapse
|
10
|
Peng N, Yu H, Yu W, Yang M, Chen H, Zou T, Deng K, Huang S, Liu Y. Sequential-targeting nanocarriers with pH-controlled charge reversal for enhanced mitochondria-located photodynamic-immunotherapy of cancer. Acta Biomater 2020; 105:223-238. [PMID: 31926335 DOI: 10.1016/j.actbio.2020.01.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/08/2019] [Accepted: 01/06/2020] [Indexed: 01/28/2023]
Abstract
Targeting delivery of photosensitizers to mitochondria as the most sensitive cellular organelles to reactive oxygen species (ROS) by positively charged polymeric nanocarriers (NCs) is one of the useful methods for efficient photodynamic therapy (PDT). However, the NCs with positively charged mitochondria-targeting moieties are easily cleaned during circulation, restricting their in vivo applications. Herein, to address this issue and enhance in vivo PDT efficacy, we developed a sequential-targeting delivery system consisting of mitochondria-targeting micelles as the core prepared from the cationic amphiphilic copolymer for loading chlorin e6 (Ce6) and a tumor-targeting pH-dependent charge transformational layer as the shell obtained from 2,3-dimethylmaleic anhydride modified Biotin-PEG4000-NH2 (BioPEGDMA) via electrostatic interaction. Concealed by the anionic shell, the as-prepared NCs showed longer retention within the first stage of tumor-targeting. Then, the accumulated NCs conversed to positive charge in tumor extracellular microenvironment (pH ∼ 6.5), which could be more effectively internalized by tumor cells, and the re-exposed triphenylphosphonium (TPP) groups endowed their second-stage targetability to the mitochondria. In vivo experiments revealed that the Ce6-loaded NCs exhibited remarkable tumor inhibition rates of 84.1% and 93.2% on BALB/c nude mice and Kunming mice, respectively, under 660 nm NIR irradiation, and stimulated immune responses with upregulated expression of IFN-γ, TNF-α and CD3+ in tumor tissues, and enhanced activation of CD3+/CD4+, CD3+/CD8+ T lymphocytes and DCs in both tumor tissues and lymph glands. This work provided a new pathway for the development of smart drug delivery system with advanced PDT efficacy. STATEMENT OF SIGNIFICANCE: Although the existing targeting delivery of photosensitizers to mitochondria by positively charged nanocarriers (NCs) have efficiently enhanced photodynamic therapy (PDT), their positive charges caused rapid clearance during circulation, which has restricted their in vivo applications. Therefore, we fabricated a novel sequential-targeting NC to solve the problem. The tumor accumulated NCs conversed to positive charge in tumor extracellular microenvironment, and the re-exposed triphenylphosphonium groups initiated second-stage targetability to mitochondria. This system exhibited remarkable tumor inhibition efficiency both in vitro and in vivo. Moreover, as we hypothesized, mitochondria-located PDT could promote immune response, resulting in improvement of PDT. The strategy of sequential targeting-based PDT in combination with augmented immune response showed a novel pathway for the development of smart drug delivery system with advanced PDT.
Collapse
|
11
|
Yuan P, Ruan Z, Yan L. Tetraphenylporphine-Modified Polymeric Nanoparticles Containing NIR Photosensitizer for Mitochondria-Targeting and Imaging-Guided Photodynamic Therapy. ACS Biomater Sci Eng 2020; 6:1043-1051. [PMID: 33464862 DOI: 10.1021/acsbiomaterials.9b01662] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Near-infrared (NIR) photodynamic therapy (PDT) is a promising antitumor strategy under NIR light irradiation to kill cancer cells. Mitochondria has a critical function in sustaining cellular viability and death, which is the ideal organelle for PDT. Here, we reported a tetraphenylporphine (TPP)-conjugated amphiphilic copolymer and an iodinated boron dipyrromethene photosensitizer (BDPI) with high singlet oxygen yield to form nanoparticles (PBDPI-TPP), which could realize mitochondria-targeting and improve the NIR imaging-guided PDT. The as-prepared mitochondria-targeting nanoplatform could show effective subcellular localization and bring about significant irreversible mitochondrial injury for enhanced PDT. Both in vitro and in vivo experiments revealed that the mitochondria-targeting PDT system could achieve a remarkable therapeutic effect, indicating that it is a promising nanoplatform for NIR imaging-guided PDT in cancer therapeutics.
Collapse
Affiliation(s)
- Pan Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, Anhui, P. R. China
| | - Zheng Ruan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, Anhui, P. R. China
| | - Lifeng Yan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
12
|
Brandes B, Hoenke S, Fischer L, Csuk R. Design, synthesis and cytotoxicity of BODIPY FL labelled triterpenoids. Eur J Med Chem 2020; 185:111858. [DOI: 10.1016/j.ejmech.2019.111858] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022]
|
13
|
Jeena M, Kim S, Jin S, Ryu JH. Recent Progress in Mitochondria-Targeted Drug and Drug-Free Agents for Cancer Therapy. Cancers (Basel) 2019; 12:cancers12010004. [PMID: 31861339 PMCID: PMC7016936 DOI: 10.3390/cancers12010004] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/06/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
The mitochondrion is a dynamic eukaryotic organelle that controls lethal and vital functions of the cell. Being a critical center of metabolic activities and involved in many diseases, mitochondria have been attracting attention as a potential target for therapeutics, especially for cancer treatment. Structural and functional differences between healthy and cancerous mitochondria, such as membrane potential, respiratory rate, energy production pathway, and gene mutations, could be employed for the design of selective targeting systems for cancer mitochondria. A number of mitochondria-targeting compounds, including mitochondria-directed conventional drugs, mitochondrial proteins/metabolism-inhibiting agents, and mitochondria-targeted photosensitizers, have been discussed. Recently, certain drug-free approaches have been introduced as an alternative to induce selective cancer mitochondria dysfunction, such as intramitochondrial aggregation, self-assembly, and biomineralization. In this review, we discuss the recent progress in mitochondria-targeted cancer therapy from the conventional approach of drug/cytotoxic agent conjugates to advanced drug-free approaches.
Collapse
|
14
|
Gao W, Li M, Xu G, Wang R, Shi B, Zhu T, Gao J, Gu X, Shi P, Zhao C. Tumor microenvironment-activated nanosystems with selenophenol substituted BODIPYs as photosensitizers for photodynamic therapy. Bioorg Med Chem Lett 2019; 30:126854. [PMID: 31859157 DOI: 10.1016/j.bmcl.2019.126854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/08/2019] [Accepted: 11/21/2019] [Indexed: 11/30/2022]
Abstract
NIR-light-absorbing photosensitizers with the capability of selective localization and activation in tumor regions are of great importance for practical photodynamic therapy (PDT). Here, selenophenol substituted BODIPYs were designed and synthesized as new photosensitizers for PDT. One of these obtained BODIPYs, IBSeOV, possesses an intense and low energy absorption with a high singlet oxygen quantum yield (ΦΔ = 60%). Considering manganese dioxide (MnO2) nanosheets as versatile nanocarriers in cancer theranostics, nanosystem IBSeOV/MnO2 was then fabricated to furnish tumor environment selective activation. Such designed nanoplatform allowed for GSH-controllable 1O2 production and exhibited low cytotoxicity in dark but good photocytotoxicity to cancer cells. The in vivo antitumor outcome suggested the high treatment efficiency of IBSeOV/MnO2 for tumor therapy.
Collapse
Affiliation(s)
- Wei Gao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Ming Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Ge Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Rongchen Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Ben Shi
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Tianli Zhu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jie Gao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
15
|
Karaman O, Almammadov T, Emre Gedik M, Gunaydin G, Kolemen S, Gunbas G. Mitochondria-Targeting Selenophene-Modified BODIPY-Based Photosensitizers for the Treatment of Hypoxic Cancer Cells. ChemMedChem 2019; 14:1879-1886. [PMID: 31663667 DOI: 10.1002/cmdc.201900380] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/06/2019] [Indexed: 01/01/2023]
Abstract
Two red-absorbing, water-soluble and mitochondria (MT)-targeting selenophene-substituted BODIPY-based photosensitizers (PSs) were realized (BOD-Se, BOD-Se-I), and their potential as photodynamic therapy (PDT) agents were evaluated. BOD-Se-I showed higher 1 O2 generation yield thanks to the enhanced heavy-atom effect, and this derivative was further tested in detail in cell culture studies under both normoxic and hypoxic conditions. BOD-Se-I not only effectively functioned under hypoxic conditions, but also showed highly selective photocytotoxicity towards cancer cells. The selectivity is believed to arise from differences in mitochondrial membrane potentials of healthy and cancerous cells. To the best of our knowledge, this marks the first example of a MT-targeted BODIPY PS that functions under hypoxic conditions. Remarkably, thanks to the design strategy, all these properties where realized by a compound that was synthesized in only five steps with 32 % overall yield. Hence, this material holds great promise for the realization of next-generation PDT drugs for the treatment of hypoxic solid tumors.
Collapse
Affiliation(s)
- Osman Karaman
- Department of Chemistry, Middle East Technical University (METU), 06800, Ankara, Turkey
| | | | - M Emre Gedik
- Department of Basic Oncology, Hacettepe University, 06100, Ankara, Turkey
| | - Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University, 06100, Ankara, Turkey
| | - Safacan Kolemen
- Department of Chemistry, Koc University, 34450, Istanbul, Turkey.,Koc University (KU), Surface Science and Technology Center (KUYTAM), 34450, Istanbul, Turkey
| | - Gorkem Gunbas
- Department of Chemistry, Middle East Technical University (METU), 06800, Ankara, Turkey
| |
Collapse
|
16
|
Wang R, Dong K, Xu G, Shi B, Zhu T, Shi P, Guo Z, Zhu WH, Zhao C. Activatable near-infrared emission-guided on-demand administration of photodynamic anticancer therapy with a theranostic nanoprobe. Chem Sci 2019; 10:2785-2790. [PMID: 30996998 PMCID: PMC6419941 DOI: 10.1039/c8sc04854a] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/03/2019] [Indexed: 12/30/2022] Open
Abstract
Development of theranostic probes that can be used to identify tumors and direct the on-demand drug administration to cancers is ongoing but remains challenging. Herein, we report a theranostic platform composed of a H2S-activated imaging probe and a light-sensitive drug. The designed probe affords advantages of H2S-activated NIR emission light-up and efficient 1O2 generation, enabling the selective visualization of H2S-rich cancers and the subsequent imaging-directed on-demand light exposure to the detected cancers while leaving normal tissues untouched. Such controllable administration of photodynamic anticancer therapy maximizes the therapeutic efficiency and minimizes side effects. This work should facilitate significant advances toward precise diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Rongchen Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science & Technology , Shanghai 200237 , P. R. China .
| | - Kaikai Dong
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China .
| | - Ge Xu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science & Technology , Shanghai 200237 , P. R. China .
| | - Ben Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science & Technology , Shanghai 200237 , P. R. China .
| | - Tianli Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science & Technology , Shanghai 200237 , P. R. China .
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China .
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science & Technology , Shanghai 200237 , P. R. China .
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science & Technology , Shanghai 200237 , P. R. China .
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science & Technology , Shanghai 200237 , P. R. China .
| |
Collapse
|
17
|
Ucar E, Seven O, Lee D, Kim G, Yoon J, Akkaya EU. Selectivity in Photodynamic Action: Higher Activity of Mitochondria Targeting Photosensitizers in Cancer Cells. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201800231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Esma Ucar
- Department of ChemistryBilkent University Ankara 06800 Turkey
| | - Ozlem Seven
- UNAM – National Nanotechnology Research CenterBilkent University Ankara 06800 Turkey
| | - Dayoung Lee
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 03760 Korea
| | - Gyoungmi Kim
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 03760 Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano ScienceEwha Womans University Seoul 03760 Korea
| | - Engin U. Akkaya
- Department of ChemistryBilkent University Ankara 06800 Turkey
- UNAM – National Nanotechnology Research CenterBilkent University Ankara 06800 Turkey
- State Key Laboratory of Fine Chemicals School of Pharmaceutical Science and TechnologyDalian University of Technology Dalian 116024 China
| |
Collapse
|