1
|
Vinogradova L, Lukin A, Komarova K, Zhuravlev M, Fadeev A, Chudinov M, Rogacheva E, Kraeva L, Gureev M, Porozov Y, Dogonadze M, Vinogradova T. Molecular Periphery Design Allows Control of the New Nitrofurans Antimicrobial Selectivity. Molecules 2024; 29:3364. [PMID: 39064943 PMCID: PMC11279955 DOI: 10.3390/molecules29143364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
A series of 13 new 3-substituted 5-(5-nitro-2-furyl)-1,2,4-oxadiazoles was synthesized from different aminonitriles. All compounds were screened in the disc diffusion test at a 100 μg/mL concentration to determine the bacterial growth inhibition zone presence and diameter, and then the minimum inhibitory concentrations (MICs) were determined for the most active compounds by serial dilution. The compounds showed antibacterial activity against ESKAPE bacteria, predominantly suppressing the growth of 5 species out of the panel. Some compounds had similar or lower MICs against ESKAPE pathogens compared to ciprofloxacin, nitrofurantoin, and furazidin. In particular, 3-azetidin-3-yl-5-(5-nitro-2-furyl)-1,2,4-oxadiazole (2h) inhibited S. aureus at a concentration lower than all comparators. Compound 2e (5-(5-nitro-2-furyl)-3-[4-(pyrrolidin-3-yloxy)phenyl]-1,2,4-oxadiazole) was active against Gram-positive ESKAPE pathogens as well as M. tuberculosis. Differences in the molecular periphery led to high selectivity for the compounds. The induced-fit docking (IFD) modeling technique was applied to in silico research. Molecular docking results indicated the targeting of compounds against various nitrofuran-associated biological targets.
Collapse
Affiliation(s)
- Lyubov Vinogradova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia (A.F.)
| | - Alexey Lukin
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia (A.F.)
| | - Kristina Komarova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia (A.F.)
| | - Maxim Zhuravlev
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia (A.F.)
| | - Artem Fadeev
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia (A.F.)
| | - Mikhail Chudinov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia (A.F.)
| | - Elizaveta Rogacheva
- Pasteur Institute of Epidemiology and Microbiology, 197101 Saint Petersburg, Russia
| | - Lyudmila Kraeva
- Pasteur Institute of Epidemiology and Microbiology, 197101 Saint Petersburg, Russia
| | - Maxim Gureev
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 Saint Petersburg, Russia
| | - Yuri Porozov
- Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia
- Advitam Laboratory, Mihaila Shushkaloviћа 13, 11030 Belgrade, Serbia
| | - Marine Dogonadze
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, 191036 Saint Petersburg, Russia
| | - Tatiana Vinogradova
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, 191036 Saint Petersburg, Russia
| |
Collapse
|
2
|
Komarova K, Vinogradova L, Lukin A, Zhuravlev M, Deniskin D, Chudinov M, Gureev M, Dogonadze M, Zabolotnykh N, Vinogradova T, Lavrova A, Yablonskiy P. The Nitrofuran-Warhead-Equipped Spirocyclic Azetidines Show Excellent Activity against Mycobacterium tuberculosis. Molecules 2024; 29:3071. [PMID: 38999023 PMCID: PMC11243650 DOI: 10.3390/molecules29133071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
A series of 21 new 7'H-spiro[azetidine-3,5'-furo [3,4-d]pyrimidine]s substituted at the pyrimidine ring second position were synthesized. The compounds showed high antibacterial in vitro activity against M. tuberculosis. Two compounds had lower minimum inhibitory concentrations against Mtb (H37Rv strain) compared with isoniazid. The novel spirocyclic scaffold shows excellent properties for anti-tuberculosis drug development.
Collapse
Affiliation(s)
- Kristina Komarova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia
| | - Lyubov Vinogradova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia
| | - Alexey Lukin
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia
| | - Maxim Zhuravlev
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia
| | - Dmitry Deniskin
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia
| | - Mikhail Chudinov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia
| | - Maxim Gureev
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave 4, 194064 Saint Petersburg, Russia
| | - Marine Dogonadze
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, 191036 Saint Petersburg, Russia
| | - Natalia Zabolotnykh
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, 191036 Saint Petersburg, Russia
| | - Tatiana Vinogradova
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, 191036 Saint Petersburg, Russia
| | - Anastasia Lavrova
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, 191036 Saint Petersburg, Russia
- Sophya Kovalevskaya North-West Mathematical Research Center, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Petr Yablonskiy
- Department of Hospital Surgery, Faculty of Medicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
3
|
Wang JX, Zhang PL, Gopala L, Lv JS, Lin JM, Zhou CH. A Unique Hybridization Route to Access Hydrazylnaphthalimidols as Novel Structural Scaffolds of Multitargeting Broad-Spectrum Antifungal Candidates. J Med Chem 2024; 67:8932-8961. [PMID: 38814290 DOI: 10.1021/acs.jmedchem.4c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
This study developed a class of novel structural antifungal hydrazylnaphthalimidols (HNs) with multitargeting broad-spectrum potential via multicomponent hybridization to confront increasingly severe fungal invasion. Some prepared HNs exhibited considerable antifungal potency; especially nitrofuryl HN 4a (MIC = 0.001 mM) exhibited a potent antifungal activity against Candida albicans, which is 13-fold higher than that of fluconazole. Furthermore, nitrofuryl HN 4a displayed low cytotoxicity, hemolysis and resistance, as well as a rapid fungicidal efficacy. Preliminary mechanistic investigations revealed that nitrofuryl HN 4a could inhibit lactate dehydrogenase to decrease metabolic activity and promote the accumulation of reactive oxygen species, leading to oxidative stress. Moreover, nitrofuryl HN 4a did not exhibit membrane-targeting ability; it could embed into DNA to block DNA replication but could not cleave DNA. These findings implied that HNs are promising as novel structural scaffolds of potential multitargeting broad-spectrum antifungal candidates for treating fungal infection.
Collapse
Affiliation(s)
- Jin-Xin Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Peng-Li Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Lavanya Gopala
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jing-Song Lv
- College of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, China
| | - Jian-Mei Lin
- Department of Infections, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
4
|
Berida T, McKee SR, Chatterjee S, Manning DL, Li W, Pandey P, Tripathi SK, Mreyoud Y, Smirnov A, Doerksen RJ, Jackson M, Ducho C, Stallings CL, Roy S. Discovery, Synthesis, and Optimization of 1,2,4-Triazolyl Pyridines Targeting Mycobacterium tuberculosis. ACS Infect Dis 2023; 9:2282-2298. [PMID: 37788674 PMCID: PMC10807233 DOI: 10.1021/acsinfecdis.3c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The rise in multidrug resistant tuberculosis cases underscores the urgent need to develop new treatment strategies for tuberculosis. Herein, we report the discovery and synthesis of a new series of compounds containing a 3-thio-1,2,4-triazole moiety that show inhibition of Mycobacterium tuberculosis (Mtb) growth and survival. Structure-activity relationship studies led us to identify several potent analogs displaying low micromolar to nanomolar inhibitory activity, specifically against Mtb. The potent analogs demonstrated no cytotoxicity in mammalian cells at over 100 times the effective concentration required in Mtb and were bactericidal against Mtb during infection of macrophages. In the exploratory ADME investigations, we observed suboptimal ADME characteristics, which prompted us to identify potential metabolic liabilities for further optimization. Our preliminary investigations into the mechanism of action suggest that this series is not engaging the promiscuous targets that arise from many phenotypic screens. We selected for resistant mutants with the nanomolar potent nitro-containing compound 20 and identified resistant isolates with mutations in genes required for coenzyme F420 biosynthesis and the nitroreductase Ddn. This suggests that the aromatic nitro-1,2,4-triazolyl pyridines are activated by F420-dependent Ddn activity, similar to the nitro-containing TB drug pretomanid. We were able to circumvent the requirement for F420-dependent Ddn activity using compounds that contained non-nitro groups, identifying a key feature to be modified to avoid this predominant resistance mechanism. These studies provide the foundation for the development of a new class of 1,2,4-triazole compounds for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Tomayo Berida
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Samuel R McKee
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Shamba Chatterjee
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Destinee L Manning
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Pankaj Pandey
- National Center for Natural Products Research, University of Mississippi, University, Mississippi 38677, United States
| | - Siddharth Kaushal Tripathi
- National Center for Natural Products Research, University of Mississippi, University, Mississippi 38677, United States
| | - Yassin Mreyoud
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Asya Smirnov
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Robert J Doerksen
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken 66123, Germany
| | - Christina L Stallings
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Sudeshna Roy
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
5
|
Khetmalis YM, Sangeetha GP, Chandu A, Swati, Murugesan S, Sharma V, Kumar MM, Kondapalli VG. Design, synthesis and biological evaluation of novel oxindole analogs as antitubercular agents. Future Med Chem 2023; 15:1323-1342. [PMID: 37610851 DOI: 10.4155/fmc-2023-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Aim: To design, synthesize and evaluate oxindole derivatives for antitubercular activity. Methodology: We synthesized the derivatives, confirmed their structures by 1H/13C NMR and mass spectrometry, and evaluated them for antitubercular activity against Mycobacterium tuberculosis H37Rv strain using the microplate alamarBlue™ assay. Results: Among all the synthesized derivatives, OXN-1, -3 and -7 exhibited excellent antitubercular activity (minimum inhibitory concentration [MIC]: 0.78 μg/ml). Compounds with a MIC ≤1.56 were tested for cytotoxicity against human embryonic kidney cells and were found to be relatively nontoxic. Molecular docking analysis of OXN-1, -3 and -7 was performed to determine their binding patterns at the active site of DNA topoisomerase II (PDB-5BS8). In drug combination studies, OXN-1, 3 and 7 showed synergism with isoniazid. Conclusion: The obtained results reveal that oxindole derivatives exhibit potent antitubercular activity.
Collapse
Affiliation(s)
- Yogesh M Khetmalis
- Department of Chemistry, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, Telangana, 500078, India
| | - Guruvelli Pv Sangeetha
- College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Ala Chandu
- Department of Pharmacy, Medicinal Chemistry Research Laboratory, Birla Institute of Technology & Science Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Swati
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana, 500078, India
| | - Sankaranarayanan Murugesan
- Department of Pharmacy, Medicinal Chemistry Research Laboratory, Birla Institute of Technology & Science Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana, 500078, India
| | - Muthyala Mk Kumar
- College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Venkata Gcs Kondapalli
- Department of Chemistry, Birla Institute of Technology & Science, Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, Telangana, 500078, India
| |
Collapse
|
6
|
Lukin A, Komarova K, Vinogradova L, Dogonadze M, Vinogradova T, Yablonsky P, Kazantsev A, Krasavin M. Periphery Exploration around 2,6-Diazaspiro[3.4]Octane Core Identifies a Potent Nitrofuran Antitubercular Lead. Molecules 2023; 28:molecules28062529. [PMID: 36985501 PMCID: PMC10056547 DOI: 10.3390/molecules28062529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
A small set of twelve compounds of a nitrofuran carboxamide chemotype was elaborated from a readily available 2,6-diazaspiro[3.4]octane building block, exploring diverse variants of the molecular periphery, including various azole substituents. The in vitro inhibitory activities of the synthesized compounds were assessed against Mycobacterium tuberculosis H37Rv. As a result, a remarkably potent antitubercular lead displaying a minimal inhibitory concentration of 0.016 μg/mL was identified.
Collapse
Affiliation(s)
- Alexei Lukin
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia
| | - Kristina Komarova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia
| | - Lyubov Vinogradova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia
| | - Marine Dogonadze
- Saint Petersburg Research Institute of Phthisiopulmonology, 2-4 Ligovsky Prospekt, 191036 Saint Petersburg, Russia
| | - Tatiana Vinogradova
- Saint Petersburg Research Institute of Phthisiopulmonology, 2-4 Ligovsky Prospekt, 191036 Saint Petersburg, Russia
| | - Piotr Yablonsky
- Saint Petersburg Research Institute of Phthisiopulmonology, 2-4 Ligovsky Prospekt, 191036 Saint Petersburg, Russia
| | - Alexander Kazantsev
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, 198504 Peterhof, Russia
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, 198504 Peterhof, Russia
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
- Correspondence:
| |
Collapse
|
7
|
Novel 5-Nitrofuran-Tagged Imidazo-Fused Azines and Azoles Amenable by the Groebke–Blackburn–Bienaymé Multicomponent Reaction: Activity Profile against ESKAPE Pathogens and Mycobacteria. Biomedicines 2022; 10:biomedicines10092203. [PMID: 36140307 PMCID: PMC9496245 DOI: 10.3390/biomedicines10092203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
A chemically diverse set of 13 5-nitrofuran-tagged heterocyclic compounds has been prepared via the Groebke–Blackburn–Bienaymé multicomponent reaction. The testing of these compounds against the so-called ESKAPE panel of pathogens identified an apparent lead compound—N-cyclohexyl-2-(5-nitrofuran-2-yl)imidazo[1,2-a]pyridine-3-amine (4a)—which showed an excellent profile against Enterobacter cloacae, Staphylococcus aureus, Klebsiella pneumoniae, and Enterococcus faecalis (MIC 0.25, 0.06, 0.25 and 0.25 µg/mL, respectively). Its antibacterial profile and practically convenient synthesis warrant further pre-clinical development. Certain structure-activity relationships were established in the course of this study which were rationalized by the flexible docking experiments in silico. The assessment of antitubercular potential of the compounds synthesized against drug sensitive H37v strain of Mycobacterium tuberculosis revealed little potential of the imidazo-fused products of the Groebke–Blackburn–Bienaymé multicomponent reaction as chemotherapeutic agents against this pathogen.
Collapse
|
8
|
Krasavin M, Shetnev A, Panova V, Ivanovskyi S, Kalinin S, Vinogradova T, Sharoyko V, Yablonsky P. Hetaryl- and heteroarylvinyl-substituted nitrofurans identified as non-cytotoxic selective antitubercular agents. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
9
|
Fernandes GFS, Thompson AM, Castagnolo D, Denny WA, Dos Santos JL. Tuberculosis Drug Discovery: Challenges and New Horizons. J Med Chem 2022; 65:7489-7531. [PMID: 35612311 DOI: 10.1021/acs.jmedchem.2c00227] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Over the past 2000 years, tuberculosis (TB) has claimed more lives than any other infectious disease. In 2020 alone, TB was responsible for 1.5 million deaths worldwide, comparable to the 1.8 million deaths caused by COVID-19. The World Health Organization has stated that new TB drugs must be developed to end this pandemic. After decades of neglect in this field, a renaissance era of TB drug discovery has arrived, in which many novel candidates have entered clinical trials. However, while hundreds of molecules are reported annually as promising anti-TB agents, very few successfully progress to clinical development. In this Perspective, we critically review those anti-TB compounds published in the last 6 years that demonstrate good in vivo efficacy against Mycobacterium tuberculosis. Additionally, we highlight the main challenges and strategies for developing new TB drugs and the current global pipeline of drug candidates in clinical studies to foment fresh research perspectives.
Collapse
Affiliation(s)
- Guilherme F S Fernandes
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Andrew M Thompson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Daniele Castagnolo
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - William A Denny
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jean L Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil
| |
Collapse
|
10
|
Łowicki D, Przybylski P. Cascade synthetic strategies opening access to medicinal-relevant aliphatic 3- and 4-membered N-heterocyclic scaffolds. Eur J Med Chem 2022; 238:114438. [PMID: 35567964 DOI: 10.1016/j.ejmech.2022.114438] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 12/23/2022]
Abstract
Cascade reactions are often 'employed' by nature to construct structurally diverse nitrogen-containing heterocycles in a highly stereoselective fashion, i.e., secondary metabolites important for pharmacy. Nitrogen-containing heterocycles of three- and four-membered rings, as standalone and bicyclic compounds, inhibit different enzymes and are pharmacophores of approved drugs or drug candidates considered in many therapies, e.g. anticancer, antibacterial or antiviral. Domino transformations are in most cases in line with modern green chemistry concepts due to atom economy, one-pot procedures often without use the protective groups, time-saving and at markedly lower costs than multistep transformations. The tandem approaches can help to obtain novel N-heterocyclic scaffolds, functionalized according to structural requirements of the target in cells, taking into account the nature of functional group and stereochemistry. On the other hand cascade strategies allow to modify small N-heterocyclic rings in a systematic way, which is beneficial for structure-activity relationship (SAR) analyses. This review is focused on the biological relevance of the N-heterocyclic scaffolds with smaller 3- and 4-membered rings among approved drugs and leading structures of drug candidates. The cascade synthetic strategies offering N-heterocyclic scaffolds, at relatively good yields and high stereoselectivity, are discussed here. The review covers mainly years from 2015 to 2021.
Collapse
Affiliation(s)
- Daniel Łowicki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland
| | - Piotr Przybylski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznan, Poland.
| |
Collapse
|
11
|
Kottapalle G, Deshmukh N, Shinde A. Synthesis of 2-Hydroxynaphthyl Pyrazolines Containing Isoniazid Moiety:
A Potential Antitubercular Agent. LETT ORG CHEM 2022. [DOI: 10.2174/1570178618666210427103249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The new series of pyrazolines derivatives containing isoniazid moiety were synthesized from
2-hydroxynaphthyl functionalized chalcones and isoniazid using sodium hydroxide as a base in 2-
ethoxy ethanol. We evaluated their antitubercular activity against Mycobacterium tuberculosis strain
(H37Rv) by Microplate Alamar Blue Assay (MABA). Some of the tested compounds 3a, 3b, and 3c,
were found to have higher antitubercular activity than the selected standard drugs, whereas compounds
3d, 3e, 3i and 3j were found to have higher antitubercular activity than Streptomycin and same as that
of Pyrazinamide and Ciprofloxacin, while remaining compound showed moderate activity. Whereas it
is found that the disubstituted halogen compound and electron-withdrawing group on the phenyl ring
are important substitutions for an increase in antitubercular activity.
Collapse
Affiliation(s)
- Gajanan Kottapalle
- PG Research Center & Department of Chemistry, N.E.S. Science College, Nanded, Dist-Nanded 431602, Maharashtra,
India
| | - Nagesh Deshmukh
- PG Research Center & Department of Chemistry, N.E.S. Science College, Nanded, Dist-Nanded 431602, Maharashtra,
India
| | - Avinash Shinde
- PG Research Center & Department of Chemistry, N.E.S. Science college, Nanded, Dist-Nanded 431602, Maharashtra, India
| |
Collapse
|
12
|
Novel propargylamine-based inhibitors of cholinesterases and monoamine oxidases: Synthesis, biological evaluation and docking study. Bioorg Chem 2021; 116:105301. [PMID: 34492558 DOI: 10.1016/j.bioorg.2021.105301] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023]
Abstract
A combination of several pharmacophores in one molecule has been successfully used for multi-target-directed ligands (MTDL) design. New propargylamine substituted derivatives combined with salicylic and cinnamic scaffolds were designed and synthesized as potential cholinesterases and monoamine oxidases (MAOs) inhibitors. They were evaluated invitro for inhibition of acetyl- (AChE) and butyrylcholinesterase (BuChE) using Ellman's method. All the compounds act as dual inhibitors. Most of the derivatives are stronger inhibitors of AChE, the best activity showed 5-bromo-N-(prop-2-yn-1-yl)salicylamide 1e (IC50 = 8.05 µM). Carbamates (4-bromo-2-[(prop-2-yn-1-yl)carbamoyl]phenyl ethyl(methyl)carbamate 2d and 2,4-dibromo-6-[(prop-2-yn-1-yl)carbamoyl]phenyl ethyl(methyl)carbamate 2e were selective and the most active for BuChE (25.10 and 26.09 µM). 4-Bromo-2-[(prop-2-yn-1-ylimino)methyl]phenol 4a was the most potent inhibitor of MAOs (IC50 of 3.95 and ≈10 µM for MAO-B and MAO-A, respectively) along with a balanced inhibition of both cholinesterases being a real MTDL. The mechanism of action was proposed, and binding modes of the hits were studied by molecular docking on human enzymes. Some of the derivatives also exhibited antioxidant properties. Insilico prediction of physicochemical parameters affirm that the molecules would be active after oral administration and able to reach brain tissue.
Collapse
|
13
|
Zampieri D, Mamolo MG. Hybridization Approach to Drug Discovery Inhibiting Mycobacterium tuberculosis-An Overview. Curr Top Med Chem 2021; 21:777-788. [PMID: 32814528 DOI: 10.2174/1568026620666200819151342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
Tuberculosis is one of the top 10 causes of death worldwide and the leading cause of death from a single infectious agent, mainly due to Mycobacterium tuberculosis (MTB). Recently, clinical prognoses have worsened due to the emergence of multi-drug resistant (MDR) and extensive-drug resistant (XDR) tuberculosis, which lead to the need for new, efficient and safe drugs. Among the several strategies, polypharmacology could be considered one of the best solutions, in particular, the multitarget directed ligands strategy (MTDLs), based on the synthesis of hybrid ligands acting against two targets of the pathogen. The framework strategy comprises linking, fusing and merging approaches to develop new chemical entities. With these premises, this review aims to provide an overview of the recent hybridization approach, in medicinal chemistry, of the most recent and promising multitargeting antimycobacterial candidates.
Collapse
Affiliation(s)
- Daniele Zampieri
- Department of Chemical and Pharmaceutical Sciences, P.le Europa 1, University of Trieste, Trieste 34127, Italy
| | - Maria G Mamolo
- Department of Chemical and Pharmaceutical Sciences, P.le Europa 1, University of Trieste, Trieste 34127, Italy
| |
Collapse
|
14
|
Bose P, Harit AK, Das R, Sau S, Iyer AK, Kashaw SK. Tuberculosis: current scenario, drug targets, and future prospects. Med Chem Res 2021. [DOI: 10.1007/s00044-020-02691-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Discovery of derivatives of 6(7)-amino-3-phenylquinoxaline-2-carbonitrile 1,4-dioxides: novel, hypoxia-selective HIF-1α inhibitors with strong antiestrogenic potency. Bioorg Chem 2020; 104:104324. [DOI: 10.1016/j.bioorg.2020.104324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022]
|
16
|
Chuprun S, Dar’in D, Rogacheva E, Kraeva L, Levin O, Manicheva O, Dogonadze M, Vinogradova T, Bakulina O, Krasavin M. Mutually Isomeric 2- and 4-(3-nitro-1,2,4-triazol-1-yl)pyrimidines Inspired by an Antimycobacterial Screening Hit: Synthesis and Biological Activity against the ESKAPE Panel of Pathogens. Antibiotics (Basel) 2020; 9:antibiotics9100666. [PMID: 33019787 PMCID: PMC7601023 DOI: 10.3390/antibiotics9100666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
Starting from the structure of antimycobacterial screening hit OTB-021 which was devoid of activity against ESKAPE pathogens, we designed, synthesized and tested two mutually isomeric series of novel simplified analogs, 2- and 4-(3-nitro-1,2,4-triazol-1-yl)pyrimidines, bearing various amino side chains. These compounds demonstrated a reverse bioactivity profile being inactive against M. tuberculosis while inhibiting the growth of all ESKAPE pathogens (with variable potency patterns) except for Gram-negative P. aeruginosa. Reduction potentials (E1/2, V) measured for selected compounds by cyclic voltammetry were tightly grouped in the -1.3--1.1 V range for a reversible single-electron reduction. No apparent correlation between the E1/2 values and the ESKAPE minimum inhibitory concentrations was established, suggesting possible significance of other factors, besides the compounds' reduction potential, which determine the observed antibacterial activity. Generally, more negative E1/2 values were displayed by 2-(3-nitro-1,2,4-triazol-1-yl)pyrimidines, which is in line with the frequently observed activity loss on moving the 3-nitro-1,2,4-triazol-1-yl moiety from position 4 to position 2 of the pyrimidine nucleus.
Collapse
Affiliation(s)
- Sergey Chuprun
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (S.C.); (D.D.); (O.L.); (O.B.)
| | - Dmitry Dar’in
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (S.C.); (D.D.); (O.L.); (O.B.)
| | - Elizaveta Rogacheva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101 Saint Petersburg, Russia; (E.R.); (L.K.)
| | - Liudmila Kraeva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101 Saint Petersburg, Russia; (E.R.); (L.K.)
| | - Oleg Levin
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (S.C.); (D.D.); (O.L.); (O.B.)
| | - Olga Manicheva
- Saint Petersburg Research Institute of Phthisiopulmonology, 2-4 Ligovsky Prospekt, 191036 Saint Petersburg, Russia; (O.M.); (M.D.); (T.V.)
| | - Marine Dogonadze
- Saint Petersburg Research Institute of Phthisiopulmonology, 2-4 Ligovsky Prospekt, 191036 Saint Petersburg, Russia; (O.M.); (M.D.); (T.V.)
| | - Tatiana Vinogradova
- Saint Petersburg Research Institute of Phthisiopulmonology, 2-4 Ligovsky Prospekt, 191036 Saint Petersburg, Russia; (O.M.); (M.D.); (T.V.)
| | - Olga Bakulina
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (S.C.); (D.D.); (O.L.); (O.B.)
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (S.C.); (D.D.); (O.L.); (O.B.)
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
- Correspondence: ; Tel.: +7-931-3617-872; Fax: +7-812-428-6939
| |
Collapse
|
17
|
Current development of 5-nitrofuran-2-yl derivatives as antitubercular agents. Bioorg Chem 2019; 88:102969. [PMID: 31077910 DOI: 10.1016/j.bioorg.2019.102969] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 11/22/2022]
Abstract
Pulmonary tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (MTB) and still remains one of the foremost fatal infectious diseases, infecting nearly a third of the worldwide population. The emergencies of multidrug-resistant and extensively drug-resistant tuberculosis (MDR and XDR-TB) prompt the efforts to deliver potent and novel anti-TB drugs. Research aimed at the development of new anti-TB drugs based on nitrofuran scaffold led to the identification of several candidates that were effective against actively growing as well as latent mycobacteria with unique modes of action. This review focuses on the recent advances in nitrofurans that could provide intriguing potential leads in the area of anti-TB drug discovery.
Collapse
|
18
|
Martínez R, Zamudio GJN, Pretelin-Castillo G, Torres-Ochoa RO, Medina-Franco JL, Espitia Pinzón CI, Miranda MS, Hernández E, Alanís-Garza B. Synthesis and antitubercular activity of new N-[5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl]-(nitroheteroaryl)carboxamides. HETEROCYCL COMMUN 2019. [DOI: 10.1515/hc-2019-0007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AbstractNitro-substituted heteroaromatic carboxamides 1a-e were synthesized and tested against three Mycobacterium tuberculosis cell lines. The activities can be explained in terms of the distribution of the electronic density across the nitro-substituted heteroaromatic ring attached to the amide group. 1,3,5-Oxadiazole derivatives 1c-e are candidates for the development of novel antitubercular agents. Ongoing studies are focused on exploring the mechanism by which these compounds inhibit M. tuberculosis cell growth.
Collapse
Affiliation(s)
- Roberto Martínez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Cd. México, México
| | - Gladys J. Nieves Zamudio
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Cd. México, México
| | - Gustavo Pretelin-Castillo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Cd. México, México
| | - Rubén O. Torres-Ochoa
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Cd. México, México
| | - José L. Medina-Franco
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad3000, 04510Cd. México, México
| | - Clara I. Espitia Pinzón
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Cd. México, México
| | - Mayra Silva Miranda
- Catedrática CONACYT adscrita al Insituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Cd. México, México
| | - Eugenio Hernández
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Pedro de Alba s/n, Ciudad Universitaria, 66400 San Nicolás de los Garza, Nuevo León, México
| | - Blanca Alanís-Garza
- Departamento de Química Analítica, Facultad de Medicina, Universidad Autónoma de Nuevo León, Madero s/n Col. Mitras Centro. Monterrey, N. L. MéxicoC. P. 64460
| |
Collapse
|