1
|
Mut-Salud N, Guardia JJ, Fernández A, Blancas I, Zentar H, Garrido JM, Álvarez-Manzaneda E, Chahboun R, Rodríguez-Serrano F. Discovery of a synthetic taiwaniaquinoid with potent in vitro and in vivo antitumor activity against breast cancer cells. Biomed Pharmacother 2023; 168:115791. [PMID: 37924793 DOI: 10.1016/j.biopha.2023.115791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
Taiwaniaquinoids are a unique family of diterpenoids predominantly isolated from Taiwania cryptomerioides Hayata. Previously, we evaluated the antiproliferative effect of several synthetic taiwaniaquinoids against human lung (A-549), colon (T-84), and breast (MCF-7) tumor cell lines. Herein, we report the in vitro and in vivo antitumor activity of the most potent compounds. Their cytotoxic activity against healthy peripheral blood mononuclear cells (PBMCs) has also been examined. We underscore the limited toxicity of compound C36 in PBMCs and demonstrate that it exerts its antitumor effect in MCF-7 cells (IC50 = 1.8 µM) by triggering an increase in reactive oxygen species, increasing the cell population in the sub-G1 phase of the cell cycle (90 %), and ultimately activating apoptotic (49.6 %) rather than autophagic processes. Western blot results suggested that the underlying mechanism of the C36 apoptotic effects was linked to caspase 9 activation and a rise in the Bax/Bcl-2 ratio. In vivo analyses showed normal behavior and hematological parameters in C57BL/6 mice post C36 treatment. Moreover, no significant impact was observed on the biochemical parameters of these animals, indicating that C36 did not induce liver toxicity. Furthermore, C36 demonstrated a significant reduction in tumor growth in immune-competent C57BL/6 mice implanted with E0771 mouse mammary tumor cells, effectively improving survival rates. These findings position taiwaniaquinoids, particularly compound C36, as promising therapeutic candidates for human breast cancer.
Collapse
Affiliation(s)
- Nuria Mut-Salud
- Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada 18016, Spain
| | - Juan J Guardia
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Antonio Fernández
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Isabel Blancas
- Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada 18016, Spain; Department of Medicine, School of Medicine, University of Granada, Granada 18016, Spain; Department of Medical Oncology, San Cecilio University Hospital, Granada 18016, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada 18014, Spain
| | - Houda Zentar
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - José M Garrido
- Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada 18016, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada 18014, Spain; Department of Surgery and Surgical Specialties, University of Granada, Granada 18016, Spain
| | | | - Rachid Chahboun
- Department of Organic Chemistry, Faculty of Sciences, University of Granada, Granada 18071, Spain.
| | - Fernando Rodríguez-Serrano
- Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, Granada 18016, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada 18014, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18016, Spain.
| |
Collapse
|
2
|
Guillamón E, Mut-Salud N, Rodríguez-Sojo MJ, Ruiz-Malagón AJ, Cuberos-Escobar A, Martínez-Férez A, Rodríguez-Nogales A, Gálvez J, Baños A. In Vitro Antitumor and Anti-Inflammatory Activities of Allium-Derived Compounds Propyl Propane Thiosulfonate (PTSO) and Propyl Propane Thiosulfinate (PTS). Nutrients 2023; 15:nu15061363. [PMID: 36986093 PMCID: PMC10058678 DOI: 10.3390/nu15061363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Increasing rates of cancer incidence and the side-effects of current chemotherapeutic treatments have led to the research on novel anticancer products based on dietary compounds. The use of Allium metabolites and extracts has been proposed to reduce the proliferation of tumor cells by several mechanisms. In this study, we have shown the in vitro anti-proliferative and anti-inflammatory effect of two onion-derived metabolites propyl propane thiosulfinate (PTS) and propyl propane thiosulfonate (PTSO) on several human tumor lines (MCF-7, T-84, A-549, HT-29, Panc-1, Jurkat, PC-3, SW-837, and T1-73). We observed that this effect was related to their ability to induce apoptosis regulated by oxidative stress. In addition, both compounds were also able to reduce the levels of some pro-inflammatory cytokines, such as IL-8, IL-6, and IL-17. Therefore, PTS and PTSO may have a promising role in cancer prevention and/or treatment.
Collapse
Affiliation(s)
| | | | - María Jesús Rodríguez-Sojo
- Department of Pharmacology, Center for Biomedical Research (CIBM), Instituto de Investigacion Biosanitaria de Granada (ibs.GRANADA), University of Granada, 18071 Granada, Spain
| | - Antonio Jesús Ruiz-Malagón
- Department of Pharmacology, Center for Biomedical Research (CIBM), Instituto de Investigacion Biosanitaria de Granada (ibs.GRANADA), University of Granada, 18071 Granada, Spain
| | | | - Antonio Martínez-Férez
- Chemical Engineering Department, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM), Instituto de Investigacion Biosanitaria de Granada (ibs.GRANADA), University of Granada, 18071 Granada, Spain
- Correspondence: (A.R.-N.); (J.G.)
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), Instituto de Investigacion Biosanitaria de Granada (ibs.GRANADA), University of Granada, 18071 Granada, Spain
- CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (A.R.-N.); (J.G.)
| | | |
Collapse
|
3
|
Kang J, Quynh Le T, Oh CH. Recent advances in abietane/icetexane synthesis. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Laamari Y, Oubella A, Bimoussa A, El Mansouri AE, Ketatni EM, Mentre O, Ait Itto MY, Morjani H, Khouili M, Auhmani A. Design, Hemiysnthesis, crystal structure and anticancer activity of 1, 2, 3-triazoles derivatives of totarol. Bioorg Chem 2021; 115:105165. [PMID: 34298240 DOI: 10.1016/j.bioorg.2021.105165] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/15/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
A new series of diverse triazoles linked to the hydroxyl group of totarol were synthesized using click chemistry approach. The structures of these compounds were elucidated by HRMS, IR and NMR spectroscopy. The structure of compound 3 g was also confirmed by x-ray single crystal diffraction. The cytotoxicity of these compounds was evaluated by the MTT method against four cancer cell lines, including fibrosarcoma HT-1080, lung carcinoma A-549 and breast adenocarcinoma (MDA-MB-231 and MCF-7), and the results indicated that all compounds showed weak to moderate activities against all cancer cell lines with IC50 values ranging from 14.44 to 46.25 μM. On the basis of our research the structure-activity relationships (SAR) of these compounds were discussed. This work provides some important hints for further structural modification of totarol towards developing novel and highly effective anticancer drugs respectively. It is interesting to note that compound 3 g indicated a very significant cytotoxicity against HT-1080 and A-549 cell lines. The molecular docking showed that compound 3 g activated the caspase-3 and inhibited tubulin by forming stable protein-ligand complexes.
Collapse
Affiliation(s)
- Yassine Laamari
- Laboratoire de Synthèse Organique et Physico-Chimie Moléculaire, Département de Chimie, Faculté des Sciences, Semlalia, Université Cadi-Ayyad, B.P 2390, Marrakech 40001, Morocco
| | - Ali Oubella
- Laboratoire de Synthèse Organique et Physico-Chimie Moléculaire, Département de Chimie, Faculté des Sciences, Semlalia, Université Cadi-Ayyad, B.P 2390, Marrakech 40001, Morocco
| | - Abdoullah Bimoussa
- Laboratoire de Synthèse Organique et Physico-Chimie Moléculaire, Département de Chimie, Faculté des Sciences, Semlalia, Université Cadi-Ayyad, B.P 2390, Marrakech 40001, Morocco
| | - Az-Eddine El Mansouri
- Laboratory of Biomolecular and Medicinal Chemistry, Department of Chemistry, Faculty of Science Semlalia, BP 2390, Marrakech 40001, Morocco
| | - El Mostafa Ketatni
- Laboratory of Applied Spectro-Chemistry and the Environment, 10 University Sultan Moulay Slimane, Faculty of Sciences and Technology, PO Box 523, Beni-Mellal, Morocco
| | - Olivier Mentre
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS-Catalysis and Solid Chemistry Unit, F-59000 Lille, France
| | - My Youssef Ait Itto
- Laboratoire de Synthèse Organique et Physico-Chimie Moléculaire, Département de Chimie, Faculté des Sciences, Semlalia, Université Cadi-Ayyad, B.P 2390, Marrakech 40001, Morocco
| | - Hamid Morjani
- BioSpectroscopieTranslationnelle, BioSpecT - EA7506, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51 Rue Cognacq Jay, 51096 Reims Cedex, France
| | - Mostafa Khouili
- Laboratory of Applied Spectro-Chemistry and the Environment, 10 University Sultan Moulay Slimane, Faculty of Sciences and Technology, PO Box 523, Beni-Mellal, Morocco
| | - Aziz Auhmani
- Laboratoire de Synthèse Organique et Physico-Chimie Moléculaire, Département de Chimie, Faculté des Sciences, Semlalia, Université Cadi-Ayyad, B.P 2390, Marrakech 40001, Morocco.
| |
Collapse
|
5
|
Shen XB, Wang Y, Han XZ, Sheng LQ, Wu FF, Liu X. Design, synthesis and anticancer activity of naphthoquinone derivatives. J Enzyme Inhib Med Chem 2020; 35:773-785. [PMID: 32200656 PMCID: PMC7144209 DOI: 10.1080/14756366.2020.1740693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Basis on molecular docking and pharmacophore analysis of naphthoquinone moiety, a total of 23 compounds were designed and synthesised. With the help of reverse targets searching, anti-cancer activity was preliminarily evaluated, most of them are effective against some tumour cells, especially compound 12: 1-(5,8-dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-4-methylpent-3-en-1-yl-4-oxo-4-((4-phenoxyphenyl)amino) butanoate whose IC50 against SGC-7901 was 4.1 ± 2.6 μM. Meanwhile the anticancer mechanism of compound 12 had been investigated by AnnexinV/PI staining, immunofluorescence, Western blot assay and molecular docking. The results indicated that this compound might induce cell apoptosis and cell autophagy through regulating the PI3K signal pathway.
Collapse
Affiliation(s)
- Xiao-Bao Shen
- School of Pharmacy, Anhui Medical University, Hefei, PR China.,Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, PR China
| | - Yang Wang
- School of Pharmacy, Anhui Medical University, Hefei, PR China
| | - Xuan-Zhen Han
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, PR China
| | - Liang-Quan Sheng
- Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, PR China
| | - Fu-Fang Wu
- School of Pharmacy, Anhui Medical University, Hefei, PR China.,Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, PR China
| | - Xinhua Liu
- School of Pharmacy, Anhui Medical University, Hefei, PR China
| |
Collapse
|