1
|
Chen C, Hao Z, Chen J, Li S, Su Y, Jiang S, Ma L, Lv H, Pei X, Zhang P, Wang H, Yang G. Design, synthesis, and biological evaluation of C-12 modified ocotillol-type derivatives as novel P-glycoprotein modulators for overcoming multidrug resistance. Eur J Med Chem 2025; 294:117757. [PMID: 40382839 DOI: 10.1016/j.ejmech.2025.117757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 05/05/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
Ocotillol-type ginsenoside derivatives exhibit significant potential as modulators of P-glycoprotein (Pgp). To date, structural investigations of Ocotillol-type saponins have predominantly focused on modifications at the C-3 position of the A-ring, with limited exploration of the C-12 position on the C-ring. In this study, we designed and synthesized a series of C-12 modified ocotillol-type derivatives and assessed their efficacy in reversing multidrug resistance (MDR) in KBV cells. Most of the newly synthesized derivatives exhibited minimal cytotoxicity and potent MDR reversal capabilities. Notably, compound 9e emerged as the most effective agent in reversing tumor MDR in vitro, showing more than twice the potency of verapamil. Furthermore, 9e displayed high selectivity for Pgp, being 40- and 20-fold more effective than verapamil in inhibiting Rh123 efflux and enhancing doxorubicin sensitivity, respectively. Molecular docking analysis revealed that 9e possesses a unique T-shaped configuration that occupies the access channel of Pgp, obstructing the peristaltic extrusion mechanism of TM12 and TM9, thereby inhibiting the efflux function of Pgp. Overall, 9e represents a promising lead compound for the development of novel Pgp modulators to overcome MDR in cancer therapy.
Collapse
Affiliation(s)
- Cheng Chen
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Ziqian Hao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Jiaxuan Chen
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Shuang Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Yongyuan Su
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Suwei Jiang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Lin Ma
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Hanqi Lv
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Xinjie Pei
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Peng Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Hongbo Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China.
| |
Collapse
|
2
|
Geng Z, Wang Y, Ma M, Wei Y, Xie W, Cheng J, Chen Y, Fang X, Wang H, Bi Y. Discovery and biological evaluation of hederagenin derivatives as non-substrate inhibitors of P-glycoprotein-mediated multidrug resistance. Eur J Med Chem 2025; 289:117428. [PMID: 40010272 DOI: 10.1016/j.ejmech.2025.117428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Multidrug Resistance (MDR) is an essential cause of failure of tumor chemotherapy, and P-glycoprotein (P-gp) overexpression is one of the major causes of MDR in tumor cells. Hederagenin (HRG) derivatives showed significant inhibitory effects in P-gp-mediated tumor MDR. Herein, we designed and synthesized 30 HRG derivatives and evaluated these compounds' tumor MDR reversal ability. For the first time, we identified a potential P-gp non-substrate inhibitor of the HRG derivatives 15, which binds to non-substrate active sites in transmembrane structural domains (TMDs) with high binding affinity. Subsequent assays confirmed that 15 exerted significant tumor MDR reversal activity by binding to P-gp and inhibiting P-gp function rather than affecting its expression. It could not be pumped out of the cell by P-gp. In addition, 15 inhibited Rhodamine123 efflux, rendered the KBV cells sensitive to paclitaxel (Ptx), blocked the cells in the G2/M phase, and induced apoptosis. Notably, 15 increased Ptx sensitivity in vivo, significantly inhibited the growth of KBV cell-derived xenograft tumors in nude mice, with a tumor suppression rate as high as 63.71 %.
Collapse
MESH Headings
- Humans
- Drug Resistance, Multiple/drug effects
- Oleanolic Acid/pharmacology
- Oleanolic Acid/chemistry
- Oleanolic Acid/chemical synthesis
- Oleanolic Acid/analogs & derivatives
- Drug Resistance, Neoplasm/drug effects
- Animals
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Structure-Activity Relationship
- Mice
- Cell Proliferation/drug effects
- Apoptosis/drug effects
- Molecular Structure
- Drug Screening Assays, Antitumor
- Drug Discovery
- Dose-Response Relationship, Drug
- Mice, Nude
- Paclitaxel/pharmacology
- Paclitaxel/chemistry
- Cell Line, Tumor
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Zhiyuan Geng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Yingjie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Mingyu Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Yan Wei
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Wenbin Xie
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Jie Cheng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Yutong Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Xianhe Fang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Yi Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
3
|
Yu L, Ren R, Li S, Zhang C, Chen C, Lv H, Zou Z, Pei X, Song Z, Zhang P, Wang H, Yang G. Novel pyxinol amide derivatives bearing an aliphatic heterocycle as P-glycoprotein modulators for overcoming multidrug resistance. Eur J Med Chem 2024; 272:116466. [PMID: 38704938 DOI: 10.1016/j.ejmech.2024.116466] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
P-glycoprotein (Pgp) modulators are promising agents for overcoming multidrug resistance (MDR) in cancer chemotherapy. In this study, via structural optimization of our lead compound S54 (nonsubstrate allosteric inhibitor of Pgp), 29 novel pyxinol amide derivatives bearing an aliphatic heterocycle were designed, synthesized, and screened for MDR reversal activity in KBV cells. Unlike S54, these active derivatives were shown to transport substrates of Pgp. The most potent derivative 4c exhibited promising MDR reversal activity (IC50 of paclitaxel = 8.80 ± 0.56 nM, reversal fold = 211.8), which was slightly better than that of third-generation Pgp modulator tariquidar (IC50 of paclitaxel = 9.02 ± 0.35 nM, reversal fold = 206.6). Moreover, the cytotoxicity of this derivative was 8-fold lower than that of tariquidar in human normal HK-2 cells. Furthermore, 4c blocked the efflux function of Pgp and displayed high selectivity for Pgp but had no effect on its expression and distribution. Molecular docking revealed that 4c bound preferentially to the drug-binding domain of Pgp. Overall, 4c is a promising lead compound for developing Pgp modulators.
Collapse
Affiliation(s)
- Liping Yu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Ruiyin Ren
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Shuang Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Chen Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Cheng Chen
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Hanqi Lv
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Zongji Zou
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Xinjie Pei
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Peng Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Hongbo Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China.
| |
Collapse
|
4
|
Li Z, Wang C, Liu J, Li P, Feng H. In Vitro Investigations into the Potential Drug Interactions of Pseudoginsenoside DQ Mediated by Cytochrome P450 and Human Drug Transporters. Molecules 2024; 29:2482. [PMID: 38893358 PMCID: PMC11173382 DOI: 10.3390/molecules29112482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Pseudoginsenoside DQ (PDQ), an ocotillol-type ginsenoside, is synthesized with protopanaxadiol through oxidative cyclization. PDQ exhibits good anti-arrhythmia activity. However, the inhibitory effect of PDQ on the cytochrome 450 (CYP450) enzymes and major drug transporters is still unclear. Inhibition of CYP450 and drug transporters may affect the efficacy of the drugs being used together with PDQ. These potential drug-drug interactions (DDIs) are essential for the clinical usage of drugs. In this study, we investigated the inhibitory effect of PDQ on seven CYP450 enzymes and seven drug transporters with in vitro models. PDQ has a significant inhibitory effect on CYP2C19 and P-glycoprotein (P-gp) with a half-inhibitory concentration (IC50) of 0.698 and 0.41 μM, respectively. The inhibition of CYP3A4 and breast cancer-resistant protein (BCRP) is less potent, with IC50 equal to 2.02-6.79 and 1.08 μM, respectively.
Collapse
Affiliation(s)
- Zhuo Li
- School of Pharmaceutical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (Z.L.); (C.W.); (J.L.); (P.L.)
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (Z.L.); (C.W.); (J.L.); (P.L.)
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (Z.L.); (C.W.); (J.L.); (P.L.)
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China; (Z.L.); (C.W.); (J.L.); (P.L.)
| | - Hao Feng
- Department of Human Anatomy, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130021, China
| |
Collapse
|
5
|
Tan S, Zou Z, Luan X, Chen C, Li S, Zhang Z, Quan M, Li X, Zhu W, Yang G. Synthesis, Anti-Inflammatory Activities, and Molecular Docking Study of Novel Pyxinol Derivatives as Inhibitors of NF-κB Activation. Molecules 2024; 29:1711. [PMID: 38675532 PMCID: PMC11052049 DOI: 10.3390/molecules29081711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Pyxinol, an active metabolite of ginsenosides in human hepatocytes, exhibits various pharmacological activities. Here, a series of C-3 modified pyxinol derivatives was designed and virtually screened by molecular docking with the key inflammation-related proteins of the nuclear factor kappa B (NF-κB) pathway. Some of the novel derivatives were synthesized to assess their effects in inhibiting the production of nitric oxide (NO) and mitochondrial reactive oxygen species (MtROS) in lipopolysaccharide-triggered RAW264.7 cells. Derivative 2c exhibited the highest NO and MtROS inhibitory activities with low cytotoxicity. Furthermore, 2c decreased the protein levels of interleukin 1β, tumor necrosis factor α, inducible nitric oxide synthase, and cyclooxygenase 2 and suppressed the activation of NF-κB signaling. Cellular thermal shift assays indicated that 2c could directly bind with p65 and p50 in situ. Molecular docking revealed that 2c's binding to the p65-p50 heterodimer and p50 homodimer was close to their DNA binding sites. In summary, pyxinol derivatives possess potential for development as NF-κB inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wei Zhu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China; (S.T.); (Z.Z.); (X.L.); (C.C.); (S.L.); (Z.Z.); (M.Q.); (X.L.)
| | - Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China; (S.T.); (Z.Z.); (X.L.); (C.C.); (S.L.); (Z.Z.); (M.Q.); (X.L.)
| |
Collapse
|
6
|
Wang Y, Li C, Chen J, Cui X, Wang B, Wang Y, Wang D, Liu J, Li J. Pyxinol Fatty Acid Ester Derivatives J16 against AKI by Selectively Promoting M1 Transition to M2c Macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7074-7088. [PMID: 38525502 DOI: 10.1021/acs.jafc.3c06979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Acute kidney injury (AKI) is a common, multicause clinical condition that, if ignored, often progresses to chronic kidney disease (CKD) and end-stage kidney disease, with a mortality rate of 40-50%. However, there is a lack of universal treatment for AKI. Inflammation is the basic pathological change of early kidney injury, and inflammation can exacerbate AKI. Macrophages are the primary immune cells involved in the inflammatory microenvironment of kidney disease. Therefore, regulating the function of macrophages is a crucial breakthrough for the AKI intervention. Our team chemically modified pyxinol, an ocotillol-type ginsenoside, to prepare PJ16 with higher solubility and bioavailability. In vitro, using a model of macrophages stimulated by LPS, it was found that PJ16 could regulate macrophage function, including inhibiting the secretion of inflammatory factors, promoting phagocytosis, inhibiting M1 macrophages, and promoting M1 transition to the M2c macrophage. Further investigation revealed that PJ16 may shield renal tubular epithelial cells (HK-2) damaged by LPS in vitro. Based on this, PJ16 was validated in the animal model of unilateral ureteral obstruction, which showed that it improves renal function and inhibits renal tissue fibrosis by decreasing inflammatory responses, reducing macrophage inflammatory infiltration, and preferentially upregulating M2c macrophages. In conclusion, our study is the first to show that PJ16 resists AKI and fibrosis by mechanistically regulating macrophage function by modulating the phenotypic transition from M1 to M2 macrophages, mainly M2c macrophages.
Collapse
Affiliation(s)
- Yaru Wang
- Department of Pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Changcheng Li
- Department of Pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Jingyi Chen
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130022, China
| | - Xiaoli Cui
- Department of Pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Binghuan Wang
- Department of Pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Yuezeng Wang
- Department of Pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| | - Dayu Wang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130022, China
| | - Jinping Liu
- Research Center of Natural Drug, School of Pharmaceutical Sciences of Jilin University, Changchun, Jilin 130012, China
| | - Jing Li
- Department of Pharmacology, College of Basic Medicine of Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
7
|
Zhao X, Di J, Luo D, Vaishnav Y, Kamal, Nuralieva N, Verma D, Verma P, Verma S. Recent developments of P-glycoprotein inhibitors and its structure-activity relationship (SAR) studies. Bioorg Chem 2024; 143:106997. [PMID: 38029569 DOI: 10.1016/j.bioorg.2023.106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
P-glycoprotein (P-gp) over-expression is a key factor in multi-drug resistance (MDR), which is a major factor in the failure of cancer treatment. P-gp inhibitors have been demonstrated to have powerful pharmacological properties and may be used as a therapeutic approach to overcome the MDR in cancer cells. Combining clinical investigations with biochemical and computational research may potentially lead to a clearer understanding of the pharmacological properties and the mechanisms of action of these P-gp inhibitors. The task of turning these discoveries into effective therapeutic candidates for a variety of malignancies, including resistant and metastatic kinds, falls on medicinal chemists. A variety of P-gp inhibitors with great potency, high selectivity, and minimal toxicity have been identified in recent years. The latest advances in drug design, characterization, structure-activity relationship (SAR) research, and modes of action of newly synthesized, powerful small molecules P-gp inhibitors over the previous ten years are highlighted in this review. P-gp transporter over-expression has been linked to MDR, therefore the development of P-gp inhibitors will expand our understanding of the processes and functions of P-gp-mediated drug efflux, which will be helpful for drug discovery and clinical cancer therapies.
Collapse
Affiliation(s)
- Xuanming Zhao
- Energy Engineering College, Yulin University, Yulin City 71900, China
| | - Jing Di
- Physical Education College, Yulin University, Yulin City 71900, China.
| | - Dingjie Luo
- School of Humanities and Management, Xi'an Traffic Engineering Institute, Xi'an City 710000, China
| | - Yogesh Vaishnav
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Kamal
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu 181221, India
| | - Nargiza Nuralieva
- School of Education, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Deepti Verma
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Payal Verma
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Shekhar Verma
- University College of Pharmacy Raipur, Chhattisgarh Swami Vivekananda Technical University, Newai, Bhilai 491107, Chhattisgarh, India.
| |
Collapse
|
8
|
Yang G, Liu S, Zhang C, Yu L, Zou Z, Wang C, Gao M, Li S, Ma Y, Xu R, Song Z, Liu R, Wang H. Discovery of Pyxinol Amide Derivatives Bearing Amino Acid Residues as Nonsubstrate Allosteric Inhibitors of P-Glycoprotein-Mediated Multidrug Resistance. J Med Chem 2023. [PMID: 37332162 DOI: 10.1021/acs.jmedchem.3c00283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Nonsubstrate allosteric inhibitors of P-glycoprotein (Pgp), which are considered promising modulators for overcoming multidrug resistance (MDR), are relatively unknown. Herein, we designed and synthesized amino acids bearing amide derivatives of pyxinol, the main ginsenoside metabolite produced by the human liver, and examined their MDR reversal abilities. A potential nonsubstrate inhibitor (7a) was identified to undergo high-affinity binding to the putative allosteric site of Pgp at the nucleotide-binding domains. Subsequent assays confirmed that 7a (25 μM) was able to suppress both basal and verapamil-stimulated Pgp-ATPase activities (inhibition rates of 87 and 60%, respectively) and could not be pumped out by Pgp, indicating that it was a rare nonsubstrate allosteric inhibitor. Moreover, 7a interfered with Pgp-mediated Rhodamine123 efflux while exhibiting high selectivity for Pgp. Notably, 7a also markedly enhanced the therapeutic efficacy of paclitaxel, with a tumor inhibition ratio of 58.1%, when used to treat nude mice bearing KBV xenograft tumors.
Collapse
Affiliation(s)
- Gangqiang Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Shuqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Chen Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Liping Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Zongji Zou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Conghui Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Meng Gao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Shuang Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yiqi Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Ruoxuan Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Zhihua Song
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Rongxia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| |
Collapse
|
9
|
Yang G, Mi X, Wang Y, Li S, Yu L, Huang X, Tan S, Yu H. Fusion of Michael-acceptors enhances the anti-inflammatory activity of ginsenosides as potential modulators of the NLRP3 signaling pathway. Bioorg Chem 2023; 134:106467. [PMID: 36933337 DOI: 10.1016/j.bioorg.2023.106467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
Ginsenosides are a promising group of secondary metabolites for developing anti-inflammatory agents. In this study, Michael acceptor was fused into the aglycone A-ring of protopanoxadiol (PPD)-type ginsenosides (MAAG), the main pharmacophore of ginseng, and its liver metabolites to produce novel derivatives and assess their anti-inflammatory activity in vitro. The structure-activity relationship of MAAG derivatives was assessed based on their NO-inhibition activities. Of these, a 4-nitrobenzylidene derivative of PPD (2a) was the most effective and dose-dependently inhibited the release of proinflammatory cytokines. Further studies indicated that 2a-induced downregulation on lipopolysaccharide (LPS)-induced iNOS protein expression and cytokine release may be related to its inhibitory effect on MAPK and NF-κB signaling pathways. Importantly, 2a almost completely inhibited LPS-induced production of mitochondrial reactive oxygen species (mtROS) and LPS-induced NLRP3 upregulation. This inhibition was higher than that by hydrocortisone sodium succinate, a glucocorticoid drug. Overall, the fusion of Michael acceptors into the aglycone of ginsenosides greatly enhanced the anti-inflammatory activities of the derivatives, and 2a alleviated inflammation considerably. These findings could be attributed to the inhibition of LPS-induced mtROS to block abnormal activation of the NLRP3 pathway.
Collapse
Affiliation(s)
- Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China.
| | - Xiaoliang Mi
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Yunxiao Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Shuang Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Liping Yu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Xinru Huang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Shuai Tan
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Hui Yu
- College of Food Engineering, Ludong University, Yantai 264025, China.
| |
Collapse
|
10
|
Yang G, Xie H, Wang C, Zhang C, Yu L, Zhang L, Liu X, Xu R, Song Z, Liu R, Ueda M. Design, synthesis, and discovery of Eudistomin Y derivatives as lysosome-targeted antiproliferation agents. Eur J Med Chem 2023; 250:115193. [PMID: 36774698 DOI: 10.1016/j.ejmech.2023.115193] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Eudistomin Y is a novel class of β-carbolines of marine origin with potential antiproliferation activity against MDA-MB-231 cells (triple-negative breast carcinoma). However, the subcellular target or the detailed mechanism against cancer cell proliferation has not yet been identified. In this study, based on its special structure, a novel series of Eudistomin Y fluorescent derivatives were designed and synthesized by enhancing the electron-donor effect of N-9 to endow it with fluorescent properties through N-alkylation. The structure-activity relationships against the proliferation of cancer cells were also analyzed. A quarter of Eudistomin Y derivatives showed much higher potency against cancer cell proliferation than the original Eudistomin Y1. Fluorescent derivative H1k with robust antiproliferative activity could arrest MDA-MB-231 cells in the G2-M phase. The subcellular localization studies of the probes, including H1k, and Eudistomin Y1 were performed in MDA-MB-231 cells, and the co-localization and competitive inhibition assays revealed their lysosome-specific localization. Moreover, H1k could dose-dependently increase the autophagy signal and downregulate the expression of cyclin-dependent kinase (CDK1) and cyclin B1 which principally regulated the G2-M transition. Furthermore, the specific autophagy inhibitor 3-methyladenine significantly inhibited the H1k-triggered antiproliferation of cancer cells and the downregulation of CDK1 and cyclin B1. Overall, the lysosome is identified as the subcellular target of Eudistomin Y for the first time, and derivative H1k showed robust antiproliferative activity against MDA-MB-231 cells by decreasing Cyclin B1-CDK1 complex via a lysosome-dependent pathway.
Collapse
Affiliation(s)
- Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China.
| | - Hao Xie
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Conghui Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Chen Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Liping Yu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Luyu Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Xin Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Ruoxuan Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Rongxia Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Minoru Ueda
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan; Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
11
|
Wang Y, Mi X, Du Y, Li S, Yu L, Gao M, Yang X, Song Z, Yu H, Yang G. Design, Synthesis, and Anti-Inflammatory Activities of 12-Dehydropyxinol Derivatives. Molecules 2023; 28:molecules28031307. [PMID: 36770974 PMCID: PMC9921557 DOI: 10.3390/molecules28031307] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Pyxinol skeleton is a promising framework of anti-inflammatory agents formed in the human liver from 20S-protopanaxadiol, the main active aglycone of ginsenosides. In the present study, a new series of amino acid-containing derivatives were produced from 12-dehydropyxinol, a pyxinol oxidation metabolite, and its anti-inflammatory activity was assessed using an NO inhibition assay. Interestingly, the dehydrogenation at C-12 of pyxinol derivatives improved their potency greatly. Furthermore, half of the derivatives exhibited better NO inhibitory activity than hydrocortisone sodium succinate, a glucocorticoid drug. The structure-activity relationship analysis indicated that the kinds of amino acid residues and their hydrophilicity influenced the activity to a great extent, as did R/S stereochemistry at C-24. Of the various derivatives, 5c with an N-Boc-protected phenylalanine residue showed the highest NO inhibitory activity and relatively low cytotoxicity. Moreover, derivative 5c could dose-dependently suppress iNOS, IL-1β, and TNF-α via the MAPK and NF-κB pathways, but not the GR pathway. Overall, pyxinol derivatives hold potential for application as anti-inflammatory agents.
Collapse
Affiliation(s)
- Yunxiao Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Xiaoliang Mi
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Yuan Du
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Shuang Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Liping Yu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Meng Gao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Xiaoyue Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Hui Yu
- College of Food Engineering, Ludong University, Yantai 264025, China
- Correspondence: (H.Y.); (G.Y.)
| | - Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
- Correspondence: (H.Y.); (G.Y.)
| |
Collapse
|
12
|
Design, synthesis, and biological evaluation of ocotillol derivatives fused with 2-aminothiazole via A-ring as modulators of P-glycoprotein-mediated multidrug resistance. Eur J Med Chem 2022; 243:114784. [PMID: 36167009 DOI: 10.1016/j.ejmech.2022.114784] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/21/2022]
Abstract
Overexpression of P-glycoprotein (P-gp) plays a key role in the development of multidrug resistance (MDR), the major reason for the failure of chemotherapy in clinics. Ocotillol and its derivatives had been reported with good P-gp-mediated tumor MDR reversal activity in vitro. Herein, a series of ocotillol derivatives fused with 2-aminothiazole (2-AT) via A-ring were designed and synthesized to further improve the tumor MDR reversal potency. These compounds were evaluated for their MDR reversal activity against the KBV cells by MTT assay. Among them, the most promising derivative against P-gp-mediated MDR was compound 12 with 2-AT and glycine in the A-ring. Rhodamine123 (Rh123) accumulation assay, Western blot assay, and P-gp-Glo™ assay showed that compound 12 efficiently inhibited the efflux function of P-gp by stimulating P-gp ATPase rather than downregulating its expression. Moreover, compound 12 sensitized KBV cells to paclitaxel arrested cells in the G2/M phase and induced cell apoptosis. Importantly, compound 12 significantly inhibited the growth of KBV cell-derived xenograft tumors in nude mice by increasing the sensitivity of paclitaxel in vivo. Finally, the structure-activity relationships (SARs) of ocotillol derivatives were further investigated. In summary, compound 12 has the potential to overcome MDR in cancer caused by P-gp.
Collapse
|
13
|
Liu C, Zhao Z, Gao R, Zhang X, Sun Y, Wu J, Liu J, Chen C. Matrix Metalloproteinase-2-Responsive Surface-Changeable Liposomes Decorated by Multifunctional Peptides to Overcome the Drug Resistance of Triple-Negative Breast Cancer through Enhanced Targeting and Penetrability. ACS Biomater Sci Eng 2022; 8:2979-2994. [PMID: 35666956 DOI: 10.1021/acsbiomaterials.2c00295] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although nanomedicine has demonstrated great potential for combating drug resistance, its suboptimal recognition of malignant cells and limited transport across multiple biological obstacles seriously impede the efficacious accumulation of drugs in tumor lesions, which strikingly limits its application in the clinical therapy of drug-resistant triple-negative breast cancer (TNBC). Hence, a surface-variable drug delivery vehicle based on the modification of liposomes with a multifunctional peptide (named EMC) was fabricated in this work and used for encapsulating doxorubicin and the p-glycoprotein inhibitor tariquidar. This EMC peptide contains an EGFR-targeting bullet that was screened from a "one-bead one-compound" combinatorial library, an MMP-2-cleaved substrate, and a cell-penetrating segment. The EGFR-targeting sequence has been validated to possess excellent specificity and affinity for EGFR at both the cellular and molecular levels and could be unloaded from the EMC peptide by MMP-2 in the tumor microenvironment. This doxorubicin/tariquidar-coloaded and peptide-functionalized liposome (DT-pLip) exhibited superior efficacy in tumor growth inhibition to drug-resistant TNBC both in vitro and in vivo through EGFR targeting, osmotic enhancement in response to MMP-2, controllable release, and inhibited efflux. Consequently, our systematic studies indicated the potential of this liposome-based nanoplatform in the therapy of drug-resistant TNBC through targeting effects and tumor microenvironment-triggered penetration enhancement.
Collapse
Affiliation(s)
- Changliang Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, National clinical research center for geriatrics, Translational Neuroscience center, Department of Anesthesiology, The Research Units of West China, Chinese Academy of Medical Science, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Zijian Zhao
- BOE Technology Group Co., Ltd., Beijing 100176, China
| | - Rui Gao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, National clinical research center for geriatrics, Translational Neuroscience center, Department of Anesthesiology, The Research Units of West China, Chinese Academy of Medical Science, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Xueying Zhang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, National clinical research center for geriatrics, Translational Neuroscience center, Department of Anesthesiology, The Research Units of West China, Chinese Academy of Medical Science, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Yalan Sun
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, National clinical research center for geriatrics, Translational Neuroscience center, Department of Anesthesiology, The Research Units of West China, Chinese Academy of Medical Science, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiahui Wu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, National clinical research center for geriatrics, Translational Neuroscience center, Department of Anesthesiology, The Research Units of West China, Chinese Academy of Medical Science, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jin Liu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, National clinical research center for geriatrics, Translational Neuroscience center, Department of Anesthesiology, The Research Units of West China, Chinese Academy of Medical Science, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Chan Chen
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, National clinical research center for geriatrics, Translational Neuroscience center, Department of Anesthesiology, The Research Units of West China, Chinese Academy of Medical Science, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
14
|
Smirnova I, Petrova A, Lobov A, Minnibaeva E, Phoung TTT, Van LT, Khine MM, Esaulkova I, Slita A, Zarubaev V, Kazakova O. Azepanodipterocarpol is potential candidate for inhibits influenza H1N1 type among other lupane, oleanane, and dammarane A-ring amino-triterpenoids. J Antibiot (Tokyo) 2022; 75:258-267. [PMID: 35246615 PMCID: PMC8894567 DOI: 10.1038/s41429-022-00514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 11/26/2022]
Abstract
A series of lupane-, oleanane- and dammarane-based triterpenoids with 3β-amino, A-ring azepano- and 3,4-seco-fragments has been synthesized and evaluated for antiviral activity against influenza A(H1N1) virus. It was found that azepanodipterocarpol 8 and 3β-amino-28-oxoallobetulin 11 showed antiviral activity with IC50 1.1 and 2.6 μg ml-1, and selectivity index of 19 and 10, respectively.
Collapse
Affiliation(s)
- Irina Smirnova
- Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences, 71 pr. Oktyabrya, 450054, Ufa, Russian Federation.
| | - Anastasiya Petrova
- Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences, 71 pr. Oktyabrya, 450054, Ufa, Russian Federation
| | - Alexander Lobov
- Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences, 71 pr. Oktyabrya, 450054, Ufa, Russian Federation
| | - El'za Minnibaeva
- Department of Technical Chemistry and Materials Science, Bashkir State University, Faculty of Engineering, 32 Zaki Validi, 450076, Ufa, Russian Federation
| | - Thao Tran Thi Phoung
- Institute of Chemistry - Vietnamese Academy of Science and Technology 18, Hoang Quoc Viet street 18 Cau Giay district, Hanoi, Vietnam
| | - Loc Tran Van
- Institute of Chemistry - Vietnamese Academy of Science and Technology 18, Hoang Quoc Viet street 18 Cau Giay district, Hanoi, Vietnam
| | - Myint Myint Khine
- Department of Chemistry, University of Yangon, University Avenue Road, Kamayut Township, 11041, Yangon, Myanmar
| | - Iana Esaulkova
- Department of virology, St. Petersburg Pasteur Institute of Epidemiology and Microbiology, Experimental virology laboratory, 14 Mira St., St. Petersburg, 197001, Russian Federation
| | - Alexander Slita
- Department of virology, St. Petersburg Pasteur Institute of Epidemiology and Microbiology, Experimental virology laboratory, 14 Mira St., St. Petersburg, 197001, Russian Federation
| | - Vladimir Zarubaev
- Department of virology, St. Petersburg Pasteur Institute of Epidemiology and Microbiology, Experimental virology laboratory, 14 Mira St., St. Petersburg, 197001, Russian Federation
| | - Oxana Kazakova
- Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences, 71 pr. Oktyabrya, 450054, Ufa, Russian Federation
| |
Collapse
|
15
|
Huang W, Wang Y, Xu S, Qiao H, Cheng H, Wang L, Liu S, Tian Q, Wang R, Wang H, Bi Y. Design, synthesis, and tumor drug resistance reversal activity of novel hederagenin derivatives modified by nitrogen-containing heterocycles. Eur J Med Chem 2022; 232:114207. [DOI: 10.1016/j.ejmech.2022.114207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
|
16
|
Abdelfatah S, Böckers M, Asensio M, Kadioglu O, Klinger A, Fleischer E, Efferth T. Isopetasin and S-isopetasin as novel P-glycoprotein inhibitors against multidrug-resistant cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153196. [PMID: 32229058 DOI: 10.1016/j.phymed.2020.153196] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/24/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND A major problem of cancer treatment is the development of multidrug resistance (MDR) to chemotherapy. MDR is caused by different mechanisms such as the expression of the ABC-transporters P-glycoprotein (P-gp, MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). These transporters efflux xenobiotic toxins, including chemotherapeutics, and they were found to be overexpressed in different cancer types. PURPOSE Identification of novel molecules that overcome MDR by targeting ABC-transporters. METHODS Resazurin reduction assay was used for cytotoxicity test. AutoDock 4.2. was used for molecular docking. The function of P-gp and BCRP was tested using a doxorubicin uptake assay and an ATPase assay. ROS generation was detected using flow cytometry for the measurement of H2DCFH-DA fluorescence. Annexin/PI staining was applied for the detection of apoptosis. Bioinformatic analyses were performed using LigandScout 3.12. software and DataWarrior software. RESULTS In our search for new molecules that selectively act against resistant phenotypes, we identified isopetasin and S-isopetasin, which are bioactive natural products from Petasites formosanus. They exerted collateral sensitivity towards leukemia cells with high P-gp expression in CEM/ADR5000 cells, compared to sensitive wild-type CCRF-CEM leukemia cells. Also, they revealed considerable activity towards breast cancer cells overexpressing breast cancer resistance protein, MDA-MB-231-BCRP clone 23. This motivated us to investigate whether the function of P-gp was inhibited. In-silico results showed the compounds bound with high affinity and interacted with key amino acid residues in P-gp . Then, we found that the two compounds increased doxorubicin accumulation in P-gp overexpressing CEM/ADR5000 by three-fold compared to cells without inhibitor. P-gp-mediated drug efflux was ATP-dependent. Isopetasin and S-isopetasin increased the ATPase activity of human P-gp in a comparable fashion as verapamil used as control P-gp inhibitor. As isopetasin and S-isopetasin exerted dual roles, first as cytotoxic compounds and then as P-gp inhibitors, we suggested that their P-gp inhibition is part of a larger complex of mechanisms to induce cell death in cancer patients. P-gp dysfunction induces mitochondrial stress to generate ATP. Upon continuing stress by P-gp inhibition, the mitochondria generate reactive oxygen species (ROS). Initially established for verapamil, this theory was validated in the present study for isopetasin and S-isopetasin, as treatment with the two candidates increased ROS levels in CEM/ADR5000 cells followed by apoptosis. CONCLUSION Our study highlights the importance of isopetasin and S-isopetasin as novel ROS-generating and apoptosis-inducing P-gp inhibitors.
Collapse
Affiliation(s)
- Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Madeleine Böckers
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Maitane Asensio
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany; Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | | | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
17
|
Xu Q, Deng H, Li X, Quan ZS. Application of Amino Acids in the Structural Modification of Natural Products: A Review. Front Chem 2021; 9:650569. [PMID: 33996749 PMCID: PMC8118163 DOI: 10.3389/fchem.2021.650569] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/02/2021] [Indexed: 01/11/2023] Open
Abstract
Natural products and their derivatives are important sources for drug discovery; however, they usually have poor solubility and low activity and require structural modification. Amino acids are highly soluble in water and have a wide range of activities. The introduction of amino acids into natural products is expected to improve the performance of these products and minimize their adverse effects. Therefore, this review summarizes the application of amino acids in the structural modification of natural products and provides a theoretical basis for the structural modification of natural products in the future. The articles were divided into six types based on the backbone structures of the natural products, and the related applications of amino acids in the structural modification of natural products were discussed in detail.
Collapse
Affiliation(s)
- Qian Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| |
Collapse
|
18
|
Wang C, Gao M, Liu S, Zou Z, Ren R, Zhang C, Xie H, Sun J, Qi Y, Qu Q, Song Z, Yang G, Wang H. Pyxinol bearing amino acid residues: Easily achievable and promising modulators of P-glycoprotein-mediated multidrug resistance. Eur J Med Chem 2021; 216:113317. [PMID: 33706147 DOI: 10.1016/j.ejmech.2021.113317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/06/2021] [Accepted: 02/18/2021] [Indexed: 10/22/2022]
Abstract
The P-glycoprotein (Pgp) is a major transporter involved in multidrug resistance (MDR) of cancer cells leading to chemotherapy failure. In our previous study, we demonstrated that the amide derivatives of pyxinol are promising modulators against Pgp-mediated MDR in cancer. In the present study, we designed and synthesized novel pyxinol derivatives linked to amino acid residues. We evaluated MDR (paclitaxel (Ptx) resistance) reversal potency of forty pyxinol derivatives in KBV cells and analyzed their structure-activity relationships. Half of our derivatives sensitized KBV cells to Ptx at non-toxic concentrations, among which the pyxinol compound bearing a methionine residue (3c) exhibited the best activity in MDR reversal. Compound 3c was found to possess high selectivity toward Pgp and sensitize the KBV cells to Pgp substrates by blocking the efflux function of Pgp. This manifestation may be attributed to its high binding affinity with Pgp, as suggested by docking studies. Overall, the biological profile and ease of synthesizing these pyxinol derivatives render them promising lead compounds for further development for Pgp-mediated MDR.
Collapse
Affiliation(s)
- Conghui Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Meng Gao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Shuqi Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Zongji Zou
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Ruiyin Ren
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Chen Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Hao Xie
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Jingxian Sun
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Yupeng Qi
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Qi Qu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China.
| | - Hongbo Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China.
| |
Collapse
|
19
|
Zhang Y, Yu H, Fu S, Tan L, Liu J, Zhou B, Li L, Liu Y, Wang C, Li P, Liu J. Synthesis and Anti-Hepatocarcinoma Effect of Amino Acid Derivatives of Pyxinol and Ocotillol. Molecules 2021; 26:molecules26040780. [PMID: 33546225 PMCID: PMC7913291 DOI: 10.3390/molecules26040780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 11/17/2022] Open
Abstract
Aiming at seeking an effective anti-hepatocarcinoma drug with low toxicity, a total of 24 amino acid derivatives (20 new along with 4 known derivatives) of two active ocotillol-type sapogenins (pyxinol and ocotillol) were synthesized. Both in vitro and in vivo anti-hepatocarcinoma effects of derivatives were evaluated. At first, the HepG2 human cancer cell was employed to evaluate the anti-cancer activity. Most of the derivatives showed obvious enhanced activity compared with pyxinol or ocotillol. Among them, compound 2e displayed the most excellent activity with an IC50 value of 11.26 ± 0.43 µM. Next, H22 hepatoma-bearing mice were used to further evaluate the anti-liver cancer activity of compound 2e. It was revealed that the growth of H22 transplanted tumor was significantly inhibited when treated with compound 2e or compound 2e combined with cyclophosphamide (CTX) (p < 0.05, p < 0.01), and the inhibition rates of tumor growth were 35.32% and 55.30%, respectively. More importantly, compound 2e caused limited damage to liver and kidney in contrast with CTX causing significant toxicity. Finally, the latent mechanism of compound 2e was explored by serum and liver metabolomics based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) technology. A total of 21 potential metabolites involved in 8 pathways were identified. These results suggest that compound 2e is a promising agent for anti-hepato-carcinoma, and that it also could be used in combination with CTX to increase efficiency and to reduce toxicity.
Collapse
Affiliation(s)
- Ying Zhang
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China; (Y.Z.); (H.Y.); (S.F.); (L.T.); (J.L.); (B.Z.); (L.L.); (Y.L.); (C.W.); (P.L.)
- The First Hospital of Jilin University, Changchun 130021, China
| | - Hui Yu
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China; (Y.Z.); (H.Y.); (S.F.); (L.T.); (J.L.); (B.Z.); (L.L.); (Y.L.); (C.W.); (P.L.)
| | - Shuzheng Fu
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China; (Y.Z.); (H.Y.); (S.F.); (L.T.); (J.L.); (B.Z.); (L.L.); (Y.L.); (C.W.); (P.L.)
| | - Luying Tan
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China; (Y.Z.); (H.Y.); (S.F.); (L.T.); (J.L.); (B.Z.); (L.L.); (Y.L.); (C.W.); (P.L.)
| | - Junli Liu
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China; (Y.Z.); (H.Y.); (S.F.); (L.T.); (J.L.); (B.Z.); (L.L.); (Y.L.); (C.W.); (P.L.)
| | - Baisong Zhou
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China; (Y.Z.); (H.Y.); (S.F.); (L.T.); (J.L.); (B.Z.); (L.L.); (Y.L.); (C.W.); (P.L.)
| | - Le Li
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China; (Y.Z.); (H.Y.); (S.F.); (L.T.); (J.L.); (B.Z.); (L.L.); (Y.L.); (C.W.); (P.L.)
| | - Yunhe Liu
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China; (Y.Z.); (H.Y.); (S.F.); (L.T.); (J.L.); (B.Z.); (L.L.); (Y.L.); (C.W.); (P.L.)
| | - Caixia Wang
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China; (Y.Z.); (H.Y.); (S.F.); (L.T.); (J.L.); (B.Z.); (L.L.); (Y.L.); (C.W.); (P.L.)
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China; (Y.Z.); (H.Y.); (S.F.); (L.T.); (J.L.); (B.Z.); (L.L.); (Y.L.); (C.W.); (P.L.)
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China; (Y.Z.); (H.Y.); (S.F.); (L.T.); (J.L.); (B.Z.); (L.L.); (Y.L.); (C.W.); (P.L.)
- Research Center of Natural Drug, Jilin University, Changchun 130021, China
- Correspondence:
| |
Collapse
|
20
|
Wang B, Liu S, Huang W, Ma M, Chen X, Zeng W, Liang K, Wang H, Bi Y, Li X. Design, synthesis, and biological evaluation of hederagenin derivatives with improved aqueous solubility and tumor resistance reversal activity. Eur J Med Chem 2020; 211:113107. [PMID: 33360797 DOI: 10.1016/j.ejmech.2020.113107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 01/11/2023]
Abstract
Multidrug resistance (MDR) has become a major obstacle to malignancies treatment by chemotherapeutic drugs, therefore, it is important to develop MDR reversal agents with high activity. We have previously found that the hederagenin (HD) derivative HBQ showed good tumor MDR reversal activity in vitro and in vivo but had poor solubility. In this study, to enhance the aqueous solubility and tumor MDR reversal activity of HBQ, three series of HD derivatives were designed and synthesized. Nitrogen-containing heterocyclic-substituted, PEGylated, and ring-A substituted derivatives significantly reversed the MDR phenotype of KBV (multidrug-resistant oral epidermoid carcinoma) cells toward paclitaxel at a concentration of 10 μM in MTT assays. The PEGylated derivatives 10c-10e had increased aqueous solubility compared with HBQ by 18-657 fold, while maintaining tumor MDR reversal activity. The most in vitro active compound 10c possessed good chemical stability to an esterase over 24 h and enhanced the sensitivity of KBV cells to paclitaxel and vincristine with IC50 values of 4.58 and 0.79 nM, respectively. Mechanism studies indicated that compound 10c increased the accumulation of P-glycoprotein (P-gp) substrates rhodamine 123 and Flutax1 in KBV cells and MCF-7T (paclitaxel-resistant breast carcinoma) cells, that is to say, compound 10c exerted the reversal effect of tumor MDR by inhibiting the efflux function of P-gp. Finally, the structure-activity relationships were further investigated by analyzing the relationship between structure and tumor MDR reversal activity of HD derivatives. This study highlights the potential of PEGylated HD derivatives such as compound 10c for the development of tumor MDR reversal agents and provides information for the further improvement of the aqueous solubility and tumor MDR reversal activity of HD derivatives in the future.
Collapse
Affiliation(s)
- Binghua Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Shuqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Wentao Huang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Mengxin Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Xiaoqian Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Wenxuan Zeng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Kaicheng Liang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Yi Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Xiaopeng Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| |
Collapse
|
21
|
Liu J, Liu Y, Yu H, Zhang Y, Hsu ACY, Zhang M, Gou Y, Sun W, Wang F, Li P, Liu J. Design, synthesis and biological evaluation of novel pyxinol derivatives with anti-heart failure activity. Biomed Pharmacother 2020; 133:111050. [PMID: 33378957 DOI: 10.1016/j.biopha.2020.111050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 01/20/2023] Open
Abstract
Heart failure (HF) is an important and leading cause of substantial morbidity and mortality globally. The angiotensin-converting enzymatic (ACE) is the causative source for congestive heart failure. Natural products and its derivatives play a vital role in drug discovery and development owing to their efficacy and low toxicity. Pyxinol is a potent natural agent for cardiovascular disease. Thus we investigated the effect on ACE and HF of pyxinol derivatives. We designed and synthesized 32 novel fatty acid ester derivatives of pyxinol via esterification. Among them, compounds 2e (IC50=105 nM) and 3b (IC50=114 nM) displayed excellent ACE inhibitory activity in vitro, and exhibited non-toxic to H9c2 cells. The interactions between ACE and compounds were predicted by molecular docking respectively. In verapamil-induced zebrafish HF model, the activity assay showed that these two derivatives could improve cardiovascular physiological indexes including heart beats, venous congestion, heart dilation, cardiac output, ejection fraction and fractional shortening in a dose-dependent manner. A UPLC-QTOF-MS-based serum metabolomics approach was applied to explore the latent mechanism. A total of 25 differentiated metabolites and 8 perturbed metabolic pathways were identified. These results indicated that pyxinol fatty acid ester derivatives 2e and 3b might be considered as potent drug candidates against heart failure and deserved further research and development.
Collapse
Affiliation(s)
- Junli Liu
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China
| | - Yunhe Liu
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China
| | - Hui Yu
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China; The First Hospital of Jilin University, Changchun 130021, China
| | - Alan Chen-Yu Hsu
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, The University of Newcastle, Newcastle, NSW 2305, Australia
| | - Mingming Zhang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yawei Gou
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Wei Sun
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Fang Wang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| |
Collapse
|
22
|
Cao Y, Wang K, Xu S, Kong L, Bi Y, Li X. Recent Advances in the Semisynthesis, Modifications and Biological Activities of Ocotillol-Type Triterpenoids. Molecules 2020; 25:E5562. [PMID: 33260848 PMCID: PMC7730845 DOI: 10.3390/molecules25235562] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022] Open
Abstract
Ginseng is one of the most widely consumed herbs in the world and plays an important role in counteracting fatigue and alleviating stress. The main active substances of ginseng are its ginsenosides. Ocotillol-type triterpenoid is a remarkably effective ginsenoside from Vietnamese ginseng that has received attention because of its potential antibacterial, anticancer and anti-inflammatory properties, among others. The semisynthesis, modification and biological activities of ocotillol-type compounds have been extensively studied in recent years. The aim of this review is to summarize semisynthesis, modification and pharmacological activities of ocotillol-type compounds. The structure-activity relationship studies of these compounds were reported. This summary should prove useful information for drug exploration of ocotillol-type derivatives.
Collapse
Affiliation(s)
| | | | | | | | - Yi Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (Y.C.); (K.W.); (S.X.); (L.K.); (X.L.)
| | | |
Collapse
|
23
|
M. F. Gonçalves B, S. P. Cardoso D, U. Ferreira MJ. Overcoming Multidrug Resistance: Flavonoid and Terpenoid Nitrogen-Containing Derivatives as ABC Transporter Modulators. Molecules 2020; 25:E3364. [PMID: 32722234 PMCID: PMC7435859 DOI: 10.3390/molecules25153364] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Multidrug resistance (MDR) in cancer is one of the main limitations for chemotherapy success. Numerous mechanisms are behind the MDR phenomenon wherein the overexpression of the ATP-binding cassette (ABC) transporter proteins P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance protein 1 (MRP1) is highlighted as a prime factor. Natural product-derived compounds are being addressed as promising ABC transporter modulators to tackle MDR. Flavonoids and terpenoids have been extensively explored in this field as mono or dual modulators of these efflux pumps. Nitrogen-bearing moieties on these scaffolds were proved to influence the modulation of ABC transporters efflux function. This review highlights the potential of semisynthetic nitrogen-containing flavonoid and terpenoid derivatives as candidates for the design of effective MDR reversers. A brief introduction concerning the major role of efflux pumps in multidrug resistance, the potential of natural product-derived compounds in MDR reversal, namely natural flavonoid and terpenoids, and the effect of the introduction of nitrogen-containing groups are provided. The main modifications that have been performed during last few years to generate flavonoid and terpenoid derivatives, bearing nitrogen moieties, such as aliphatic, aromatic and heterocycle amine, amide, and related functional groups, as well as their P-gp, MRP1 and BCRP inhibitory activities are reviewed and discussed.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/chemistry
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- ATP-Binding Cassette Transporters/chemistry
- ATP-Binding Cassette Transporters/metabolism
- Drug Resistance, Multiple/drug effects
- Flavonoids/chemistry
- Flavonoids/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Multidrug Resistance-Associated Proteins/chemistry
- Multidrug Resistance-Associated Proteins/metabolism
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/metabolism
- Neoplasms/drug therapy
- Neoplasms/metabolism
- Nitrogen/chemistry
- Terpenes/chemistry
- Terpenes/pharmacology
Collapse
Affiliation(s)
| | | | - Maria-José U. Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (B.M.F.G.); (D.S.P.C.)
| |
Collapse
|
24
|
Yang G, Gao M, Sun Y, Wang C, Fang X, Gao H, Diao W, Yu H. Design, synthesis and anti-inflammatory activity of 3-amino acid derivatives of ocotillol-type sapogenins. Eur J Med Chem 2020; 202:112507. [PMID: 32650181 DOI: 10.1016/j.ejmech.2020.112507] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/06/2020] [Accepted: 05/22/2020] [Indexed: 01/12/2023]
Abstract
Ocotillol-type sapogenins (OTS) are major ginsenoside metabolites in human hepatic tissue. In order to better utilize OTS and derivatives thereof as anti-inflammatory compounds, present study produced multiple novel 3-amino acid OTS derivatives and evaluated their anti-inflammatory activity in vitro. The nitric oxide (NO) inhibitory activity of these compounds was used for OTS structure-activity relationship (SAR) evaluations, revealing that both R/S stereochemistry at C-24 and the amino acid type at C-3 influence such NO inhibitory activity. This activity was highest for an N-Boc-protected neutral aliphatic amino acid derivative of 24R-OTS (5a), which performed better than even hydrocortisone sodium succinate in vitro. Compound 5a was also able to markedly suppress the LPS-induced upregulation of TNF-α, IL-6, iNOS, and COX-2 via the NF-κB and MAPK pathways. This suggests that OTS derivatives may be valuable anti-inflammatory compounds worthy of further preclinical evaluation.
Collapse
Affiliation(s)
- Gangqiang Yang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China.
| | - Meng Gao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Yixiao Sun
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Conghui Wang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Xiaojuan Fang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Hongyan Gao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Wenshuang Diao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, 264005, China
| | - Hui Yu
- College of Food Engineering, Ludong University, Yantai, 264025, China.
| |
Collapse
|
25
|
Zhang Z, Chen Z, Zhang S, Shao X, Zhou Z. Antibacterial activity of the structurally novel ocotillol-type lactone and its analogues. Fitoterapia 2020; 144:104597. [PMID: 32325155 DOI: 10.1016/j.fitote.2020.104597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 01/04/2023]
Abstract
A novel series of ocotillol-type lactone derivatives were designed and synthesized in order to study their antibacterial activity and structure-activity relationships. Among which, compounds 4j and 4 m were found to be the most active with minimum inhibitory concentrations (MICs) of 1-4 μg/mL against Gram-positive bacteria and showed low cytotoxicity against MCF-7, HEK-293 and HK-2 cells at their MICs. The antibacterial effect of compound 4 m was characterized further by scanning electron microscopy, cytoplasmic β-galactosidase leakage assay and UV-visible analysis. The results showed that 4 m may exert its antibacterial effect by damaging bacterial cell membranes and disrupting the function of DNA, both of which could lead to rapid cell death.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Pharmacy, Medical College, China Three Gorges University, Yichang 443002, China
| | - Zhiguo Chen
- Department of Pharmacy, Traditional Chinese Medicine Hospital of China Three Gorges University, Yichang Hospital of Traditional Chinese Medicine, Yichang 443002, China
| | - Shengyu Zhang
- Department of Pharmacy, Medical College, China Three Gorges University, Yichang 443002, China
| | - Xiao Shao
- Department of Pharmacy, Medical College, China Three Gorges University, Yichang 443002, China
| | - Zhiwen Zhou
- Department of Pharmacy, Medical College, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
26
|
Liu J, Gan H, Li T, Wang J, Du G, An Y, Yan X, Geng C. The metabolites and biotransformation pathways in vivo after oral administration of ocotillol, RT 5 , and PF 11. Biomed Chromatogr 2020; 34:e4856. [PMID: 32307731 DOI: 10.1002/bmc.4856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/03/2020] [Accepted: 04/14/2020] [Indexed: 11/07/2022]
Abstract
Ocotillol, pseudo-ginsenoside RT5 (RT5 ), and pseudo-ginsenoside F11 (PF11 ) are ocotillol-type saponins that have the same aglycone structure but with different numbers of glucose at the C-6 position. In this study, the metabolites of ocotillol, RT5 , and PF11 in rat plasma, stomach, intestine, urine, and feces after oral administration were investigated by ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry. The results showed that RT5 was easily biotransformed into metabolites in vivo, whereas PF11 and RT5 were difficult to be biotransformed. Hydrogenation, dehydrogenation, dehydration, deglycosylation, deoxygenation, hydration, phosphorylation, deoxidation, glucuronidation, and reactions combining amino acid were speculated to be involved in the biotransformation of ocotillol, RT5 , and PF11 . Based on the structural analysis of metabolites, it was deduced that hydrogenation, dehydration, deoxidation, and reactions combining amino acid occurred on the aglycone structure, whereas deglycosylation, hydration, and phosphorylation occurred on the glycosyl chain. Further, metabolites in plasma, urine, feces, and tissues were different: First, glucuronidation products were found in urine, stomach, intestine, and feces, but not in plasma. Second, the ocotillol prototype was not identified in urine samples. Third, the RT5 prototype was found in stomach, intestine, feces, and urine, but not in plasma.
Collapse
Affiliation(s)
- Jihua Liu
- College of Pharmacy, Jilin University, Changchun, 130021, China
| | - Huizhu Gan
- China-Japan Union Hospital, Jilin University, Changchun, 130021, China
| | - Ting Li
- College of Pharmacy, Jilin University, Changchun, 130021, China
- Department of Pharmaceutics, Changzhi Medical College, Changzhi, 046000, China
| | - Jia Wang
- College of Pharmacy, Jilin University, Changchun, 130021, China
| | - Guangguang Du
- College of Pharmacy, Jilin University, Changchun, 130021, China
| | - Yang An
- College of Pharmacy, Jilin University, Changchun, 130021, China
| | - Xiaojing Yan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian, 16023, China
| | - Cong Geng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian, 16023, China
| |
Collapse
|
27
|
Sun Y, Fang X, Gao M, Wang C, Gao H, Bi W, Tang H, Cui Y, Zhang L, Fan H, Yu H, Yang G. Synthesis and Structure-Activity Relationship of Pyxinol Derivatives as Novel Anti-Inflammatory Agents. ACS Med Chem Lett 2020; 11:457-463. [PMID: 32292550 DOI: 10.1021/acsmedchemlett.9b00562] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/12/2020] [Indexed: 01/19/2023] Open
Abstract
Pyxinol, the main metabolite of 20S-protopanaxadiol in human liver, was chosen as a novel skeleton for the development of anti-inflammatory agents. Pyxinol derivatives modified at C-3, C-12, or C-25 and selected stereoisomers were designed, prepared, and investigated for in vitro anti-inflammatory activities. Structure-activity relationship (SAR), focused on skeleton, was analyzed based on their ability to inhibit lipopolysaccharide (LPS)-induced nitric oxide (NO) synthesis. The preliminary SAR results signified that the biological activity of the pyxinol derivatives is largely dependent on the R/S stereochemistry of pyxinol skeleton and the hydroxy at C-3 is a modifiable position. Among the tested compounds, the 3-oximinopyxinol (4a) exhibited the most potent NO-inhibitory activity and was even comparable to the steroid drug. Furthermore, compound 4a also significantly decreased LPS-induced TNF-α and IL-6 synthesis and iNOS and COX-2 expressions via the NF-κB pathway. This study proves that pyxinol is an interesting skeleton for anti-inflammatory drug discovery.
Collapse
Affiliation(s)
- Yixiao Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xiaojuan Fang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Meng Gao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Conghui Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Hongyan Gao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Wenjing Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Hanhan Tang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yetong Cui
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Leiming Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Huaying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Hui Yu
- College of Food Engineering, Ludong University, Yantai 264025, China
| | - Gangqiang Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| |
Collapse
|
28
|
Wang M, Li H, Liu W, Cao H, Hu X, Gao X, Xu F, Li Z, Hua H, Li D. Dammarane-type leads panaxadiol and protopanaxadiol for drug discovery: Biological activity and structural modification. Eur J Med Chem 2020; 189:112087. [PMID: 32007667 DOI: 10.1016/j.ejmech.2020.112087] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/14/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Based on the definite therapeutic benefits, such as neuroprotective, cardioprotective, anticancer, anti-diabetic and so on, the Panax genus which contains many valuable plants, including ginseng (Panax ginseng C.A. Meyer), notoginseng (Panax notoginseng) and American ginseng (Panax quinquefolius L.), attracts research focus. Actually, the biological and pharmacological effects of the Panax genus are mainly attributed to the abundant ginsenosides. However, the low membrane permeability and the gastrointestinal tract influence seriously limit the absorption and bioavailability of ginsenosides. The acid or base hydrolysates of ginsenosides, 20 (R,S)-panaxadiol and 20 (R,S)-protopanaxadiol showed improved bioavailability and diverse pharmacological activities. Moreover, relative stable skeletons and active hydroxyl group at C-3 position and other reactive sites are suitable for structural modification to improve biological activities. In this review, the pharmacological activities of panaxadiol, protopanaxadiol and their structurally modified derivatives are comprehensively summarized.
Collapse
Affiliation(s)
- Mingying Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Haonan Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Hao Cao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Xiang Gao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Zhanlin Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, And School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, PR China.
| |
Collapse
|
29
|
Jin L, Wang C, Liu J, Li P, Li J, Cui X, Wang Y. Pseudo-ginsengenin DQ ameliorated aconitine-induced arrhythmias by influencing Ca 2+ and K + currents in ventricular myocytes. RSC Adv 2020; 10:25999-26005. [PMID: 35518596 PMCID: PMC9055354 DOI: 10.1039/d0ra01683g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/08/2020] [Indexed: 11/21/2022] Open
Abstract
Pseudo-ginsengenin DQ (PDQ) is the product of the oxidative cyclization of protopanaxadiol. PDQ exhibits various bioactivities, including reversal of multidrug resistance in cancer, renal protective effects against acute nephrotoxicity and attenuating myocardial ischemia injury induced by isoproterenol or ligation of coronary arterials, but its effect on arrhythmias has not been clear until now. Because of the complicated effects of ginseng on the cardiovascular system, it is necessary to investigate whether PDQ affects arrhythmias, which are always concomitant with other cardiac diseases. Aconitine was used to induce arrhythmia in vivo. To understand its electrophysiological fundamental, whole-cell patch-clamp was used to record the L-type calcium current (ICa,L) and potassium currents (IK and IK1) in the ventricular myocytes in rats. Oral administration of PDQ exerted obvious antiarrhythmic effects, as indicated by the decreased incidence rate, lower number of occurrences, and shorter duration time of ventricular tachycardia and ventricular tachycardia, decreased mortality rate and increased survival time. ICa,L and IK were inhibited by PDQ treatment while IK1 was not affected. To conclude, PDQ may have an anti-arrhythmia effect through inhibiting ICa,L and IK. Pseudo-ginsengenin DQ (PDQ) is the product of the oxidative cyclization of protopanaxadiol. PDQ could ameliorate aconitine-induced arrhythmias by influencing Ca2+ and K+ currents in ventricular myocytes.![]()
Collapse
Affiliation(s)
- Lifang Jin
- School of Pharmaceutical Sciences
- Jilin University
- Changchun 130021
- China
- Department of Hematology and Oncology
| | - Cuizhu Wang
- School of Pharmaceutical Sciences
- Jilin University
- Changchun 130021
- China
| | - Jinping Liu
- School of Pharmaceutical Sciences
- Jilin University
- Changchun 130021
- China
| | - Pingya Li
- School of Pharmaceutical Sciences
- Jilin University
- Changchun 130021
- China
| | - Jing Li
- College of Basic Medical Sciences
- Jilin University
- Changchun
- China
| | - Xiaoli Cui
- College of Basic Medical Sciences
- Jilin University
- Changchun
- China
| | - Yi Wang
- School of Pharmaceutical Sciences
- Jilin University
- Changchun 130021
- China
| |
Collapse
|
30
|
Hou W, Meng Y, Xu XF, Huang ZX, Liu J, Wang ZY, Lin J, Chen WM. Novel virosecurinine bivalent mimetics as potent reversal agents against P-glycoprotein-mediated multidrug resistance. Eur J Med Chem 2019; 183:111726. [DOI: 10.1016/j.ejmech.2019.111726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 01/20/2023]
|
31
|
Wang KY, Zhou ZW, Zhang HY, Cao YC, Xu JY, Ma C, Meng QG, Bi Y. Design, Synthesis and Antibacterial Evaluation of 3-Substituted Ocotillol-Type Derivatives. Molecules 2018; 23:molecules23123320. [PMID: 30558186 PMCID: PMC6321515 DOI: 10.3390/molecules23123320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance has become a serious global problem that threatens public health. In our previous work, we found that ocotillol-type triterpenoid saponin showed good antibacterial activity. Based on preliminary structure-activity relationship, novel serious C-3 substituted ocotillol-type derivatives 7⁻26 were designed and synthesized. The in vitro antibacterial activity was tested on five bacterial strains (B. subtilis 168, S. aureus RN4220, E. coli DH5α, A. baum ATCC19606 and MRSA USA300) and compared with the tests on contrast. Among these derivatives, C-3 position free hydroxyl substituted compounds 7⁻14, showed good antibacterial activity against Gram-positive bacteria. Furthermore, compound 22 exhibited excellent antibacterial activity with minimum inhibitory concentrations (MIC) values of 2 μg/mL against MRSA USA300 and 4 μg/mL against B. subtilis. The structure-activity relationships of all current ocotillol-type derivatives our team synthesised were summarized. In addition, the prediction of absorption, distribution, metabolism, and excretion (ADME) properties and the study of pharmacophores were also conducted. These results can provide a guide to further design and synthesis works.
Collapse
Affiliation(s)
- Kai-Yi Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Zhi-Wen Zhou
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| | - Heng-Yuan Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| | - Yu-Cheng Cao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Jin-Yi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| | - Cong Ma
- Department of Applied Biology and Chemical Technology, and State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Qing-Guo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Yi Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|