1
|
Zhou L, Xiang M, Xin Y, Gao S, Xu K, Zhang J, Lu X, Tang W. Design and synthesis of benzothiazole aryl urea derivatives as potent anti-staphylococcal agents targeting autolysin-mediated peptidoglycan hydrolases. Eur J Med Chem 2025; 292:117715. [PMID: 40324299 DOI: 10.1016/j.ejmech.2025.117715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Novel benzothiazole aryl ureas were designed and synthesized as anti-MRSA agents targeting peptidoglycan (PG) hydrolases (autolysins). Structural simplification of prior benzothiazole-urea hybrids yielded compounds 4a, 7a and 11a bearing p-CF3 on phenyl ring demonstrating narrow-spectrum activity against Gram-positive bacteria including clinical methicillin-resistant S. aureus (MRSA). The primary autolysin in S. aureus, AtlA, mediates peptidoglycan hydrolase activity critical for bacterial growth, division, and cell wall remodeling. Mechanistic studies revealed that 4a down-regulated autolysin-related genes RNAIII and walR, disrupting peptidoglycan homeostasis. Knockout of atlA (a key autolysin gene) impaired 4a's efficacy, confirming autolysins as critical targets. Docking indicated that 4a binds to AtlA via hydrogen bonds, Pi-Pi, and hydrophobic interactions. In vivo, 4a significantly reduced bacterial load in a murine abdominal infection model, outperforming vancomycin at 10 mg/kg with lower cytotoxicity. Additionally, 4a disrupted MRSA biofilms, suppressed hemolytic toxin production, and alleviated inflammation in infected mice. These findings underscore AtlA as a promising therapeutic target and highlight benzothiazole phenyl urea as a scaffold for developing innovative anti-staphylococcal agents.
Collapse
Affiliation(s)
- Long Zhou
- School of Pharmacy, Department of Medical Microbiology, Anhui Medical University, Hefei, 230032, China
| | - Miaoqing Xiang
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei, 230022, China
| | - Yu Xin
- School of Pharmacy, Department of Medical Microbiology, Anhui Medical University, Hefei, 230032, China
| | - Shan Gao
- School of Pharmacy, Department of Medical Microbiology, Anhui Medical University, Hefei, 230032, China
| | - Kehan Xu
- School of Pharmacy, Department of Medical Microbiology, Anhui Medical University, Hefei, 230032, China
| | - Jing Zhang
- Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei, 230022, China
| | - Xueer Lu
- Department of Clinical Laboratory, Hefei Third People's Hospital, Hefei Third Clinical College of Anhui Medical University, Hefei, 230022, China.
| | - Wenjian Tang
- School of Pharmacy, Department of Medical Microbiology, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
2
|
Shu D, Fayad E, Abu Ali OA, Qin HL. Discovery of A Synthetic Hub for Regio- and Stereoselective Construction of Triazolyl Vinyl Sulfonyl Fluorides. J Org Chem 2024; 89:16969-16974. [PMID: 39482943 DOI: 10.1021/acs.joc.4c02186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
A new sulfonyl fluoride reagent 1-bromobut-3-ene-1,3-disulfonyl difluoride (BEDF) was developed. This unique reagent possesses two clickable functionalities to be used for both azide-alkyne cycloaddition click and SuFEx click reactions. This new reagent was applied for the regioselective construction of a class of novel triazolyl vinyl sulfonyl fluorides in which the C-4 position 1H-1,2,3-triazoles were functionalized with vinyl sulfonyl fluorides of exclusively E-configuration.
Collapse
Affiliation(s)
- Dengfeng Shu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ola A Abu Ali
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
3
|
Liu MJ, Fayad E, Abu Ali OA, Tao XF, Qin HL. Synthesis of α-Bromo Arylethyl Sulfonyl Fluorides and β-Arylethenesulfonyl Fluorides via Copper-Catalyzed Meerwein Arylation. J Org Chem 2024; 89:13709-13718. [PMID: 39151070 DOI: 10.1021/acs.joc.4c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
A practical copper-catalyzed process for the synthesis of the β-arylethenesulfonyl fluorides is described. A series of α-bromo arylethyl sulfonyl fluorides was prepared via Meerwein reaction from arenediazonium tetrafluoroborates and ethenesulfonyl fluoride (ESF) under mild conditions. The following β-arylethenesulfonyl fluorides were further obtained through a β-elimination reaction. This protocol features excellent regio- and stereoselectivity and broad substrate scope.
Collapse
Affiliation(s)
- Ming-Jian Liu
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ola A Abu Ali
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Xiang-Feng Tao
- School of Chemistry, Chemical Engineering and Life Sciences,Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
4
|
Huang W, Fayad E, Abu Ali OA, Qin HL. A portal to highly valuable indole-functionalized vinyl sulfonyl fluorides and allylic sulfonyl fluorides. Org Biomol Chem 2024; 22:7117-7120. [PMID: 39150283 DOI: 10.1039/d4ob01213e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
A practical and efficient method for the C-3 site selective alkenylation of indoles was developed for constructing novel indole-functionalized vinyl sulfonyl fluorides and indolyl allylic sulfonyl fluorides. The reaction is accomplished with exclusive regio- and stereoselectivity without using transition metal catalysts, providing novel products of great potential value in medicinal chemistry, chemical biology, and drug discovery.
Collapse
Affiliation(s)
- Wenzhuo Huang
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Ola A Abu Ali
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia.
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
5
|
Liashuk OS, Andriashvili VA, Tolmachev AO, Grygorenko OO. Chemoselective Reactions of Functionalized Sulfonyl Halides. CHEM REC 2024; 24:e202300256. [PMID: 37823680 DOI: 10.1002/tcr.202300256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Chemoselective transformations of functionalized sulfonyl fluorides and chlorides are surveyed comprehensively. It is shown that sulfonyl fluorides provide an excellent selectivity control in their reactions. Thus, numerous conditions are tolerated by the SO2 F group - from amide and ester formation to directed ortho-lithiation and transition-metal-catalyzed cross-couplings. Meanwhile, sulfur (VI) fluoride exchange (SuFEx) is also compatible with numerous functional groups, thus confirming its title of "another click reaction". On the contrary, with a few exceptions, most transformations of functionalized sulfonyl chlorides typically occur at the SO2 Cl moiety.
Collapse
Affiliation(s)
- Oleksandr S Liashuk
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Vladyslav A Andriashvili
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Andriy O Tolmachev
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| |
Collapse
|
6
|
Xiao YC, Chen FE. The vinyl sulfone motif as a structural unit for novel drug design and discovery. Expert Opin Drug Discov 2024; 19:239-251. [PMID: 37978948 DOI: 10.1080/17460441.2023.2284201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Vinyl sulfones are a special sulfur-containing structural unit that have attracted considerable attention, owing to their important role in serving as key structural motifs of various biologically active compounds as well as serving as versatile building blocks for organic transformations. The synthetic strategy of vinyl sulfone derivatives has been substantially upgraded over the past 30 years, and the wide application of this functional group in drug design and discovery has been promoted. AREA COVERED In this review, the authors review the application of vinyl sulfones in drug discovery and select optimized compounds which might have significant impact or potential inspiration for drug design. EXPERT OPINION Vinyl sulfones have been reported to target various macromolecular targets via non-covalent or covalent interactions, including multiple kinases, tubulin, cysteine protease, transcription factor, and so on. Thus, it has been significantly applied as a privileged scaffold in the design of anticancer, anti-infective, anti-inflammatory, and neuroprotective agents. However, much work remains to be done to improve the drug-like properties, such as chemical and metabolic stability, ADME, and toxicity. Besides, the chemical space of vinyl sulfones needs to be expanded, including but not limited to the design of constrained endocyclic and exocyclic vinyl sulfones.
Collapse
Affiliation(s)
- You-Cai Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Fen-Er Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Li Q, Qi S, Liang J, Tian Y, He S, Liao Q, Xing S, Han L, Chen X. Review of triazole scaffolds for treatment and diagnosis of Alzheimer's disease. Chem Biol Interact 2023; 382:110623. [PMID: 37451665 DOI: 10.1016/j.cbi.2023.110623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Triazole scaffolds, a series of 5-membered heterocycles, are well known for their high efficacy, low toxicity, and superior pharmacokinetics. Alzheimer's disease (AD) is the first neurodegenerative disorder with complex pathological mechanisms. Triazole, as an aromatic group with three nitrogen atoms, forms polar and non-polar interactions with diverse key residues in the receptor-ligand binding procedure, and has been widely used in the molecular design in the development of anti-AD agents. Moreover, considering the simple synthesis approaches, triazole scaffolds are commonly used to link two pharmacodynamic groups in one chemical molecule, forming multi-target directed ligands (MTDLs). Furthermore, the click reaction between azide- and cyano-modified enzyme and ligand provides feasibility for the new modulator discovery, compound tissue distribution evaluation, enzyme localization, and pharmacological mechanism study, promoting the diagnosis of AD course.
Collapse
Affiliation(s)
- Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| | - Shulei Qi
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Jinxin Liang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Yuqing Tian
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Siyu He
- Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Qinghong Liao
- Shandong Junrong Technology Transfer Co., Ltd, Qingdao, 266071, Shandong, PR China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Lingfei Han
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Xuehong Chen
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| |
Collapse
|
8
|
Liu M, Tang W, Qin HL. Discovery of ( E)-2-Methoxyethene-1-sulfonyl Fluoride for the Construction of Enaminyl Sulfonyl Fluoride. J Org Chem 2023; 88:1909-1917. [PMID: 36649643 DOI: 10.1021/acs.joc.2c02836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A new sulfonyl fluoride reagent (E)-2-methoxyethene-1-sulfonyl fluoride (MeO-ESF) was developed and successfully applied for the construction of enaminyl sulfonyl fluoride (N-ESF). This protocol provides highly atom-economical access to diverse N-ESF and produces CH3OH as the sole byproduct under mild and environmentally benign conditions.
Collapse
Affiliation(s)
- Min Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
9
|
Zhang C, Liang B, Xiong Z, Liang Z, Cai H, Zhong H, Xie Y, Xie Y, Liu X, Xie S, Lan F, Zhou Z. Distribution of Biocide Resistance Genes and Association with Clonal Complex Genotypes in Staphylococcus aureus Isolated from School-Age Children in Guangzhou. Infect Drug Resist 2022; 15:7165-7175. [PMID: 36514798 PMCID: PMC9741823 DOI: 10.2147/idr.s387528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Chlorhexidine and mupirocin are often prescribed to children in affected communities to prevent colonization and transmission of Staphylococcus aureus, but this has led to an increasing rate of biocide resistance. In this study, we aimed to determine the distribution of biocide resistance genes among S. aureus isolates from school-age children in Guangzhou, investigate chlorhexidine gluconate and mupirocin susceptibility and clonal complex (CC) genotypes in strains carrying biocide-resistance genes, and further explore the role of biofilms in this resistance. Patients and Methods Antibiotic resistance and multilocus sequence genotyping were performed on 722 S. aureus isolates from previous study. The distribution of nine biocide genes (qacA/B, mupA, mepA, sepA, norA, lmrS, smr, mupB, qacG) was determined by PCR. Isolates carrying qacA/B or mupA genes were further tested for susceptibility to chlorhexidine gluconate (CHG) and mupirocin and biofilm formation abilities. Results The most prevalent of the nine biocide resistance genes were mepA (95.57%), followed by norA (78.81%), lmrS (77.01%), and sepA (58.17%). The qacG gene was not detected. Distribution of sepA was significantly decreased in CC30 and CC45 genotypes, and presence of sepA was associated with resistance to antibiotics such as CLI, ERY, TCY, SXT, CIP, and LVX. In addition, 64 (94.1%, n=68) qacA/B+ isolates showed CHG resistance, 12 (100.0%, n=12) mupA+ isolates were mupirocin resistant, and 4 (80%, n=5) and 5 (100%, n=5) qacA/B+mupA+ isolates were CHG and mupirocin resistant, respectively. Of these 85 isolates, 98.8% (n=84) had different degrees of biofilm-forming abilities, which were positively associated with CHG and mupirocin resistance. Conclusion The distribution of biocide resistance genes was associated with special CCs. The qacA/B and mupA genes are highly associated with resistance to CHG and mupirocin, and biofilm formation was found to contribute to this biocide resistance.
Collapse
Affiliation(s)
- Chao Zhang
- Clinical Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China,Clinical Laboratory, Longgang District Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Bingshao Liang
- Clinical Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhile Xiong
- Clinical Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China,Clinical Laboratory, Longgang District Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Zhuwei Liang
- Clinical Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China,Clinical Laboratory, Longgang District Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Hao Cai
- Clinical Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Huamin Zhong
- Clinical Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Yongqiang Xie
- Clinical Laboratory, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Yuanwei Xie
- Clinical Laboratory, Longgang District Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Xiaochun Liu
- Clinical Laboratory, Longgang District Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Shiying Xie
- Clinical Laboratory, Longgang District Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Fangjun Lan
- Clinical Laboratory, Longgang District Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Zhenwen Zhou
- Clinical Laboratory, Longgang District Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, People’s Republic of China,Correspondence: Zhenwen Zhou, Clinical Laboratory, Longgang District Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, People’s Republic of China, Tel +86 13925097897, Email
| |
Collapse
|
10
|
Shahin IG, Mohamed KO, Taher AT, Mayhoub AS, Kassab AE. The Anti-MRSA Activity of Phenylthiazoles: A Comprehensive Review. Curr Pharm Des 2022; 28:3469-3477. [PMID: 36424796 DOI: 10.2174/1381612829666221124112006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/06/2022] [Accepted: 10/27/2022] [Indexed: 11/26/2022]
Abstract
Antimicrobial resistance is an aggravating global issue therefore it has been under extensive research in an attempt to reduce the number of antibiotics that are constantly reported as obsolete jeopardizing the lives of millions worldwide. Thiazoles possess a reputation as one of the most diverse biologically active nuclei, and phenylthiazoles are no less exceptional with an assorted array of biological activities such as anthelmintic, insecticidal, antimicrobial, antibacterial, and antifungal activity. Recently phenyl thiazoles came under the spotlight as a scaffold having strong potential as an anti-MRSA lead compound. It is a prominent pharmacophore in designing and synthesizing new compounds with antibacterial activity against multidrug-resistant bacteria such as MRSA, which is categorized as a serious threat pathogen, that exhibited concomitant resistance to most of the first-line antibiotics. MRSA has been associated with soft tissue and skin infections resulting in high death rates, rapid dissemination, and loss of millions of dollars of additional health care costs. In this brief review, we have focused on the advances of phenylthiazole derivatives as potential anti-MRSA from 2014 to 2021. The review encompasses the effect on biological activity due to combining this molecule with various synthetic pharmacophores. The physicochemical aspects were correlated with the pharmacokinetic properties of the reviewed compounds to reach a structure-activity relationship profile. Lead optimization of phenyl thiazole derivatives has additionally been outlined where the lipophilicity of the compounds was balanced with the metabolic stability and oral solubility to aid the researchers in medicinal chemistry, design, and synthesizing effective anti- MRSA phenylthiazoles in the future.
Collapse
Affiliation(s)
- Inas G Shahin
- Department of Organic Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza 11787, Egypt
| | - Khaled O Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Azza T Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.,Department of Pharmaceutical Organic Chemistry, College of Pharmacy, October 6 University, 6-October, Giza, Egypt
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt.,University of Science and Technology, Nanoscience Program, Zewail City of Science and Technology, October Gardens, 6th October, Giza 12578, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
11
|
Li HH, Wu C, Zhang SL, Yang JG, Qin HL, Tang W. Fluorosulfate-containing pyrazole heterocycles as selective BuChE inhibitors: structure-activity relationship and biological evaluation for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2022; 37:2099-2111. [PMID: 35899776 PMCID: PMC9448382 DOI: 10.1080/14756366.2022.2103553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Novel scaffolds are expected to treat Alzheimer’s disease, pyrazole-5-fluorosulfates were found as selective BuChE inhibitors. Compounds K1–K26 were assayed for ChE inhibitory activity, amongst them, compound K3 showed potent BuChE and hBuChE inhibition (IC50 = 0.79 μM and 6.59 μM). SAR analysis showed that 1-, 3-, 4-subtituent and 5-fluorosulfate of pyrazole ring affected BuChE inhibitory activity. Molecular docking showed that the fluorosulfate increased the binding affinity of hBuChE through π-sulphur interaction. Compound K3 was a reversible, mixed and non-competitive BuChE inhibitor (Ki = 0.77 μM) and showed remarkable neuroprotection, safe toxicological profile and BBB penetration. In vivo behavioural study showed that K3 treatment improved the Aβ1 − 42-induced cognitive impairment, and significantly prevented the effects of Aβ1 − 42 toxicity. Therefore, selective BuChE inhibitor K3 has potential to be further developed as AD therapeutics.
Collapse
Affiliation(s)
- Huan-Huan Li
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Chengyao Wu
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Shi-Long Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jian-Guo Yang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Giel MC, Owyong TC, Hong Y. The synthesis and application of a colour-switch β-arylethenesulfonyl fluoride fluorescent probe in the detection of serum albumin. Aust J Chem 2022. [DOI: 10.1071/ch22165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proteins play a pivotal role in regulating important physiological processes and serve as important biomarkers for many diseases. Herein, we present a new strategy for bovine serum albumin (BSA) detection using a novel colour-switch fluorescent probe CPV-ESF ((E)-2-(4-((Z)-1-cyano-2-(4-(diethylamino)phenyl)vinyl)phenyl)ethene-1-sulfonyl fluoride). CPV-ESF reacts with nucleophilic amino acids of BSA via 1,4-Michael addition click chemistry to create a covalently linked CPV-ESF:BSA complex, which can be easily detected by a fluorescence colour-switch response. The sensing mechanism, sensitivity and selectivity of CPV-ESF for BSA detection as well as its application for cell imaging have been investigated.
Collapse
|
13
|
Chowdary B N, Preetham HD, Verma SK, Hamse VK, Umashankara M, Raj. S N, Pramoda K, Kumar KSS, Selvi G. A short hydrophobic peptide conjugated 3,5- disubstituted pyrazoles as antibacterial agents with DNA gyrase inhibition. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Chemical and biology of Sulfur (VI) Fluoride Exchange (SuFEx) Click Chemistry for Drug Discovery. Bioorg Chem 2022; 130:106227. [DOI: 10.1016/j.bioorg.2022.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/05/2022] [Accepted: 10/22/2022] [Indexed: 11/19/2022]
|
15
|
Zeng YZ, Wang JB, Qin HL. A reductive dehalogenative process for chemo- and stereoselective synthesis of 1,3-dienylsulfonyl fluorides. Org Biomol Chem 2022; 20:7776-7780. [PMID: 36168842 DOI: 10.1039/d2ob01434c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method for the mild and efficient synthesis of 1,3-dienylsulfonyl fluorides was developed via dehalogenation of α-halo-1,3-dienylsulfonyl fluorides in the presence of zinc powder and acetic acid, achieving exclusive chemo- and stereoselectivities. This protocol was successfully applied to the synthesis of heterocyclic dienylsulfonyl fluorides and polyene sulfonyl fluoride.
Collapse
Affiliation(s)
- Yu-Zhen Zeng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| | - Jian-Bai Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China. .,Changyi Tianyu Pharm. Co., Ltd., Weifang 261399, China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
16
|
Giel MC, Zhang S, Hu Q, Ding D, Tang Y, Hong Y. Synthesis of a β-Arylethenesulfonyl Fluoride-Functionalized AIEgen for Activity-Based Urinary Trypsin Detection. ACS APPLIED BIO MATERIALS 2022; 5:4321-4326. [PMID: 35993571 DOI: 10.1021/acsabm.2c00513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Trypsin is one of the most important enzymes of the digestive system produced by the pancreatic acinar cells. Abnormal trypsin activity will affect pancreatic function, resulting in the corresponding pathological changes in the human body. Herein, we present a strategy based on the ensemble of a novel dual warhead probe HPC-ESF and the natural trypsin substrate bovine serum albumin (BSA) for the detection of trypsin activity including in real urine samples. The β-arylethenesulfonyl bearing HPC-ESF is nonemissive when dissolved in aqueous solution but becomes highly fluorescent upon conjugation to BSA through covalent bond formation with nucleophilic amino acids to create the HPC-ESF:BSA sensing system. The HPC-ESF:BSA complex can be hydrolyzed in the presence of trypsin, which results in a distinct fluorescence decrease in correlation with trypsin concentration and thus allows the detection of trypsin. Compared to previous methods, our covalent approach is simple to prepare and highly reliable. Our work will provide a different avenue for researchers to design fluorescent sensors based on a covalent labeling strategy, enriching the small library of functional groups available for such applications.
Collapse
Affiliation(s)
- Marie-Claire Giel
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Shouxiang Zhang
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Qi Hu
- Medical Device Research Institute, Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Youhong Tang
- Medical Device Research Institute, Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5042, Australia
- Australia-China Joint Research Centre for Personal Health Technologies, Flinders University, South Australia 5042, Australia
| | - Yuning Hong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
17
|
Zhang X, Fang WY, Qin HL. Regio- and Stereoselective Installation of Bromide onto Vinyl Sulfonyl Fluorides: Construction of a Class of Versatile Sulfur Fluoride Exchange Hubs. Org Lett 2022; 24:4046-4051. [PMID: 35622119 DOI: 10.1021/acs.orglett.2c01509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A convenient protocol for the exclusively regio- and stereoselective installation of a bromine atom on the 2-arylvinylsulfonyl fluorides using lithium bromide (LiBr) as the bromine source was described, providing (Z)-1-bromo-2-arylethene-1-sulfonyl fluorides (Z-BASF) with versatile reactive handles (bromide, vinyl, and sulfonyl fluoride) in ≤88% yield. Meanwhile, Z-BASF molecules displayed various reactivities in a series of chemical transformations.
Collapse
Affiliation(s)
- Xu Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Wan-Yin Fang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
18
|
Zha L, Xie Y, Wu C, Lei M, Lu X, Tang W, Zhang J. Novel benzothiazole‒urea hybrids: Design, synthesis and biological activity as potent anti-bacterial agents against MRSA. Eur J Med Chem 2022; 236:114333. [PMID: 35397402 DOI: 10.1016/j.ejmech.2022.114333] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/19/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
Novel benzothiazole‒urea hybrids were designed, synthesized and evaluated their anti-bacterial activity. They only exhibited anti-bacterial activity against Gram-positive bacteria, including clinical methicillin-resistant S. aureus (MRSA), compounds 5f, 5i, 8e, 8k and 8l exhibited potent activity (MIC = 0.39 and 0.39/0.78 μM against SA and MRSA, respectively). Crystal violet assay showed that compounds 5f, 8e and 8l not only inhibited the formation of biofilms but also eradicated preformed biofilms. Compound 8l had membrane disruption, little propensity to induce resistance, benign safety and in vivo anti-MRSA efficacy in a mouse model of abdominal infection. Therefore, our data demonstrated the potential to advance benzothiazole‒urea hybrids as a new class of antibiotics.
Collapse
Affiliation(s)
- Liang Zha
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yunfeng Xie
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Chengyao Wu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Ming Lei
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xueer Lu
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| | - Jing Zhang
- Anhui Prevention and Treatment Center for Occupational Disease, Anhui No. 2 Provincial People's Hospital, Hefei, 230022, China.
| |
Collapse
|
19
|
Ahmadi R, Emami S. Recent applications of vinyl sulfone motif in drug design and discovery. Eur J Med Chem 2022; 234:114255. [DOI: 10.1016/j.ejmech.2022.114255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/20/2022] [Accepted: 03/03/2022] [Indexed: 01/10/2023]
|
20
|
Sumrra SH, Hassan AU, Zafar MN, Shafqat SS, Mustafa G, Zafar MN, Zubair M, Imran M. Metal incorporated sulfonamides as promising multidrug targets: Combined enzyme inhibitory, antimicrobial, antioxidant and theoretical exploration. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131710] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Wang X, Qiu H, Yang N, Xie H, Liang W, Lin J, Zhu H, Zhou Y, Wang N, Tan X, Zhou J, Cui W, Teng D, Wang J, Liang H. Fascaplysin derivatives binding to DNA via unique cationic five-ring coplanar backbone showed potent antimicrobial/antibiofilm activity against MRSA in vitro and in vivo. Eur J Med Chem 2022; 230:114099. [PMID: 35007859 DOI: 10.1016/j.ejmech.2021.114099] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/18/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is considered as one of the most dangerous clinical pathogens. Biofilms forming ability of MRSA is also a major cause of drug resistance. Hence, it is in urgent need to develop novel antibacterial/antibiofilm drugs. Fascaplysin with a unique cationic five-ring coplanar backbone is emerging as a potential antibacterial compound. In this study, aiming at developing novel and more effective agents, a series of fascaplysin derivatives and their corresponding β-carboline precursors have been synthesized. Then their antibacterial/antibiofilm activity and mechanisms against MRSA were investigated for the first time. The results showed that most fascaplysins rather than β-carboline precursors exhibit superior antimicrobial activity against MRSA ATCC43300, demonstrating the important role of cationic five-ring coplanar backbone playing in antibacterial activity. Among them, 14 and 18 are the most potent compounds with MIC value of 0.098 μg/ml (10-fold lower than vancomycin), and 18 featuring the lowest toxicity. Subsequent mechanisms exploration indicates that 18 has relatively stronger ability to destroy bacterial cell wall and membrane, higher binding affinity to bacterial genomic DNA. Molecular docking study revealed that besides the key role of cationic five-ring coplanar backbone, introduction of N-aryl amide at 9-position of fascaplysin promoted the combination of compound 18 and DNA via additional π-π stacking and hydrogen bonding of the naphthyl group. Moreover, fascaplysins could inhibit MRSA biofilm formation in vitro and bacterial infection in vivo. All these results illustrate that fascaplysin derivative 18 is a strong and safe multi-target antibacterial agent, which makes it an attractive candidate for the treatment of MRSA and its biofilm infections.
Collapse
Affiliation(s)
- Xiao Wang
- Immunology Innovation Team, School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Hongda Qiu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haoji Xie
- Immunology Innovation Team, School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Weida Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Jiayu Lin
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Haifeng Zhu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yuan Zhou
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Xinyi Tan
- Immunology Innovation Team, School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jiale Zhou
- Immunology Innovation Team, School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Wei Cui
- Immunology Innovation Team, School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Hongze Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
22
|
Cu-catalyzed endo-selective asymmetric 1,3-dipolar cycloaddition of azomethine ylides with ethenesulfonyl fluorides: Efficient access to chiral pyrrolidine-3-sulfonyl fluorides. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Wu C, Zhang G, Zhang ZW, Jiang X, Zhang Z, Li H, Qin HL, Tang W. Structure-activity relationship, in vitro and in vivo evaluation of novel dienyl sulphonyl fluorides as selective BuChE inhibitors for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2021; 36:1860-1873. [PMID: 34425715 PMCID: PMC8386747 DOI: 10.1080/14756366.2021.1959571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/26/2021] [Accepted: 07/19/2021] [Indexed: 01/08/2023] Open
Abstract
To discover novel scaffolds as leads against dementia, a series of δ-aryl-1,3-dienesulfonyl fluorides with α-halo, α-aryl and α-alkynyl were assayed for ChE inhibitory activity, in which compound A10 was identified as a selective BuChE inhibitor (IC50 = 0.021 μM for eqBChE, 3.62 μM for hBuChE). SAR of BuChE inhibition showed: (i) o- > m- > p-; -OCH3 > -CH3 > -Cl (-Br) for δ-aryl; (ii) α-Br > α-Cl, α-I. Compound A10 exhibited neuroprotective, BBB penetration, mixed competitive inhibitory effect on BuChE (Ki = 29 nM), and benign neural and hepatic safety. Treatment with A10 could almost entirely recover the Aβ1-42-induced cognitive dysfunction to the normal level, and the assessment of total amount of Aβ1-42 confirmed its anti-amyloidogenic profile. Therefore, the potential BuChE inhibitor A10 is a promising effective lead for the treatment of AD.
Collapse
Affiliation(s)
- Chengyao Wu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Guijuan Zhang
- Management Center of Anhui Continuing Education Network Park, Anhui Open University, Hefei, China
| | - Zai-Wei Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Xia Jiang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Ziwen Zhang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Huanhuan Li
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, China
| | - Wenjian Tang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, China
| |
Collapse
|
24
|
Grygorenko OO, Volochnyuk DM, Vashchenko BV. Emerging Building Blocks for Medicinal Chemistry: Recent Synthetic Advances. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oleksandr O. Grygorenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
- Institute of Organic Chemistry National Academy of Sciences of Ukraine Murmanska Street 5 Kyiv 02094 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. Chervonotkatska 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
25
|
Chen K, Wu W, Hou X, Yang Q, Li Z. A review: antimicrobial properties of several medicinal plants widely used in Traditional Chinese Medicine. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Due to the dramatic increase in the use of antibiotics and growing health threat of bacterial resistance to many commonly used antibiotics, many studies have been directed at developing new and effective antibacterial compounds, among which many new, natural, and effective antibacterial compounds discovered from medicinal plants have drawn great interest and raised new hope for treating the challenges of antibiotic resistance. This review aimed to summarize the most important and widely used medicinal plants that were reported to have antibacterial activities. A general literature search from 2010 to 2020 was conducted using different databases, including Science Direct, Web of Science, and PubMed. According to the literature, three medicinal plants with outstanding antibacterial activities, Taraxacum officinale, Coptis Rhizome, and Scutellaria baicalensis, were screened and reviewed by prioritization. The extraction methods, antibacterial activities of different parts of plants or the plant-derived compounds, spectra of antibacterial activities, and toxicity were described, respectively. However, the antibacterial activities of the extracts or pure compounds as reported in the reviewed literature were mostly based on in vitro assays, and moreover, the deeper antibacterial mechanisms have not been elucidated clearly. Therefore, further studies are required in the fields of purification and identification of the antibacterial compounds, its mechanisms of action, and synergistic effects in combination with other antibacterial drugs, which may be helpful in the development of new antibacterial drugs.
Collapse
|
26
|
Prasad HN, Ananda A, Najundaswamy S, Nagashree S, Mallesha L, Dayananda B, Jayanth H, Mallu P. Design, synthesis and molecular docking studies of novel piperazine metal complexes as potential antibacterial candidate against MRSA. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Verma SK, Verma R, Kumar KSS, Banjare L, Shaik AB, Bhandare RR, Rakesh KP, Rangappa KS. A key review on oxadiazole analogs as potential methicillin-resistant Staphylococcus aureus (MRSA) activity: Structure-activity relationship studies. Eur J Med Chem 2021; 219:113442. [PMID: 33878562 DOI: 10.1016/j.ejmech.2021.113442] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/22/2021] [Accepted: 04/02/2021] [Indexed: 01/03/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is becoming dangerous to human beings due to easy transmission mode and leading to the difficult-to-treat situation. The rapid resistance development of MRSA to many approved antibiotics is of major concern. There is a lot of scope to develop novel, efficient, specific, and nontoxic drug candidates to fight against MRSA isolates. The interesting molecular structure and adaptable feature of oxadiazole moiety which are bioisosteres of esters and amides, and these functional groups show improved resistance to esterases mediated hydrolytic cleavage, attracting researchers to develop required novel antibiotics based on oxadiazole core. This review summarizes the developments of oxadiazole-containing derivatives as potent antibacterial agents against multidrug-resistant MRSA strains and discussing the structure-activity relationship (SAR) in various directions. The current survey is the highlight of the present scenario of oxadiazole hybrids on MRSA studies, covering articles published from 2011 to 2020. This collective information may become a good platform to plan and develop new oxadiazole-based small molecule growth inhibitors of MRSA with minimal side effects.
Collapse
Affiliation(s)
- Santosh Kumar Verma
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, Shaanxi, PR China; Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin University, Yulin, 719000, Shaanxi, PR China
| | - Rameshwari Verma
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, Shaanxi, PR China; Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin University, Yulin, 719000, Shaanxi, PR China.
| | | | - Laxmi Banjare
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur, Koni, 495009, Chhattisgarh, India
| | - Afzal B Shaik
- Department of Pharmaceutical Chemistry, Vignan Pharmacy College, Jawaharlal Nehru Technological University, Vadlamudi, 522213, Andhra Pradesh, India
| | - Richie R Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman Uniersity, Ajman, United Arab Emirates
| | - Kadalipura P Rakesh
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430073, PR China
| | | |
Collapse
|
28
|
Jia J, Luo Y, Zhong X, He L. Methicillin-resistance Staphylococcus aureus (MRSA) Pyruvate kinase (PK) inhibitors and Their Antimicrobial Activities. Curr Med Chem 2021; 29:908-923. [PMID: 33749550 DOI: 10.2174/0929867328666210322103340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 11/22/2022]
Abstract
Resistance to antibiotics has been widely existed in the health care and community setting, thus developing a novel aspect of new antibiotics is urgently necessary. Methicillin-resistance Staphylococcus aureus (MRSA) Pyruvate kinase (PK) is crucial to the survive of bacterial, making it a novel antimicrobial target. In the past decade, most reported PK inhibitors including indole, flavonoid, phenazine derivative from natural product small molecules or their analogues, or virtual screening from small molecule compound library. This review covers the PK inhibitors and their antimicrobial activities reported from the beginning of 2011 through the middle of 2020. The Structure Activity Relationships (SARs) was discussed briefly as well.
Collapse
Affiliation(s)
- Jingjing Jia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041. China
| | - Yang Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041. China
| | - Xue Zhong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041. China
| | - Ling He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041. China
| |
Collapse
|
29
|
Narwal S, Kumar S, Verma PK. Synthesis and biological activity of new chalcone scaffolds as prospective antimicrobial agents. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04359-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Parrino B, Carbone D, Cascioferro S, Pecoraro C, Giovannetti E, Deng D, Di Sarno V, Musella S, Auriemma G, Cusimano MG, Schillaci D, Cirrincione G, Diana P. 1,2,4-Oxadiazole topsentin analogs as staphylococcal biofilm inhibitors targeting the bacterial transpeptidase sortase A. Eur J Med Chem 2021; 209:112892. [PMID: 33035921 DOI: 10.1016/j.ejmech.2020.112892] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
The inhibition or prevention of biofilm formation represents an emerging strategy in the war against antibiotic resistance, interfering with key players in bacterial virulence. This approach includes the inhibition of the catalytic activity of transpeptidase sortase A (Srt A), a membrane enzyme responsible for covalently attaching a wide variety of adhesive matrix molecules to the peptidoglycan cell wall in Gram-positive strains. A new series of seventeen 1,2,4-oxadiazole derivatives was efficiently synthesized and screened as potential new anti-virulence agents. The ability of inhibiting biofilm formation was evaluated against both Gram-positive and Gram-negative pathogens. Remarkably, all these compounds inhibited S. aureus and/or P. aeruginosa biofilm formation in a dose dependent manner, with 50% biofilm inhibitory concentrations (BIC50s) below 10 μM for the most active compounds. Inhibition of SrtA was validated as one of the possible mechanisms of action of these new 1,2,4-oxadiazole derivatives, in the tested Gram-positive pathogen, using a specific enzymatic assay for a recombinant S. aureus SrtA. The three most active compounds, eliciting BIC50 values for S. aureus ATCC 25923 between 0.7 and 9.7 μM, showed a good activity toward the enzyme eliciting IC50 values ranging from 2.2 to 10.4 μM.
Collapse
Affiliation(s)
- Barbara Parrino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Stella Cascioferro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands; Fondazione Pisana per La Scienza, Pisa, Italy
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | - Veronica Di Sarno
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano, 84084, Italy
| | - Simona Musella
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano, 84084, Italy
| | - Giulia Auriemma
- Department of Pharmacy, University of Salerno, Via G. Paolo II 132, Fisciano, 84084, Italy
| | - Maria Grazia Cusimano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Domenico Schillaci
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Girolamo Cirrincione
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| |
Collapse
|
31
|
Pyrazole-based analogs as potential antibacterial agents against methicillin-resistance staphylococcus aureus (MRSA) and its SAR elucidation. Eur J Med Chem 2020; 212:113134. [PMID: 33395624 DOI: 10.1016/j.ejmech.2020.113134] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/07/2020] [Accepted: 12/22/2020] [Indexed: 01/01/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is becoming lethal to humanity due to easy transmission and difficult-to-treat skin and flimsy diseases. The most threatening aspect is the rapid resistance development of MRSA to any approved antibiotics, including vancomycin. The development of new, efficient, and nontoxic drug candidate to fight against MRSA isolates is the need of the hour. The intriguing molecular structure and versatile bioactive pyrazole core attracting to development required novel antibiotics. This review presents the decade developments of pyrazole-containing derivatives with a broad antibacterial movement against diverged bacterial strains. In specific, we correlated the efficacy of structurally diversified pyrazole analogs against MRSA and discussed different angles of structure-activity relationship (SAR). The current survey highlights pyrazole hybrids' present scenario on MRSA studies, covering articles published from 2011 to 2020. This collective information may become an excellent platform to plan and develop new pyrazole-based small MRSA growth inhibitors with minimal side effects.
Collapse
|
32
|
Kumar S, Sharma B, Mehra V, Kumar V. Recent accomplishments on the synthetic/biological facets of pharmacologically active 1H-1,2,3-triazoles. Eur J Med Chem 2020; 212:113069. [PMID: 33388593 DOI: 10.1016/j.ejmech.2020.113069] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022]
Abstract
The continuous demand of medicinally important scaffolds has prompted the synthetic chemists to identify simple and efficient routes for their synthesis. 1H-1,2,3-triazole, obtained by highly versatile, efficacious and selective "Click Reaction" has become a synthetic/medicinal chemist's favorite not only because of its ability to mimic different functional groups but also due to enhancement in the targeted biological activities. Triazole ring has also been shown to play a critical role in biomolecular mimetics, fragment-based drug design, and bioorthogonal methodologies. In addition, the availability of triazole containing drugs such as fluconazole, furacyclin, etizolam, voriconazole, triozolam etc. in market has underscored the potential of this biologically enriched core in expediting development of new scaffolds. The present review, therefore, is an attempt to highlight the recent synthetic/biological advancements in triazole derivatives that could facilitate the in-depth understanding of its role in the drug discovery process.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Bharvi Sharma
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Vishu Mehra
- Department of Chemistry, Hindu College, Amritsar, Punjab, 143001, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
33
|
Antibacterial activities of sulfonyl or sulfonamide containing heterocyclic derivatives and its structure-activity relationships (SAR) studies: A critical review. Bioorg Chem 2020; 105:104400. [DOI: 10.1016/j.bioorg.2020.104400] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/25/2020] [Accepted: 10/17/2020] [Indexed: 12/21/2022]
|
34
|
Abdelrahman MA, Eldehna WM, Nocentini A, Ibrahim HS, Almahli H, Abdel-Aziz HA, Abou-Seri SM, Supuran CT. Novel benzofuran-based sulphonamides as selective carbonic anhydrases IX and XII inhibitors: synthesis and in vitro biological evaluation. J Enzyme Inhib Med Chem 2020; 35:298-305. [PMID: 31809607 PMCID: PMC6913630 DOI: 10.1080/14756366.2019.1697250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 11/18/2019] [Indexed: 02/01/2023] Open
Abstract
Pursuing on our efforts toward searching for efficient hCA IX and hCA XII inhibitors, herein we report the design and synthesis of new sets of benzofuran-based sulphonamides (4a,b, 5a,b, 9a-c, and 10a-d), featuring the zinc anchoring benzenesulfonamide moiety linked to a benzofuran tail via a hydrazine or hydrazide linker. All the target benzofurans were examined for their inhibitory activities toward isoforms hCA I, II, IX, and XII. The target tumour-associated hCA IX and XII isoforms were efficiently inhibited with KIs spanning in ranges 10.0-97.5 and 10.1-71.8 nM, respectively. Interestingly, arylsulfonehydrazones 9 displayed the best selectivity toward hCA IX and XII over hCA I (SIs: 39.4-250.3 and 26.0-149.9, respectively), and over hCA II (SIs: 19.6-57.1 and 13.0-34.2, respectively). Furthermore, the target benzofurans were assessed for their anti-proliferative activity, according to US-NCI protocol, toward a panel of sixty cancer cell lines. Only benzofurans 5b and 10b possessed selective and moderate growth inhibitory activity toward certain cancer cell lines.
Collapse
Affiliation(s)
- Mohamed A. Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Hany S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Hadia Almahli
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Hatem A. Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Egypt
| | - Sahar M. Abou-Seri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| |
Collapse
|
35
|
Antibacterial activities with the structure-activity relationship of coumarin derivatives. Eur J Med Chem 2020; 207:112832. [DOI: 10.1016/j.ejmech.2020.112832] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
|
36
|
Ding SY, Faraj Y, Wei J, Wang W, Xie R, Liu Z, Ju XJ, Chu LY. Antimicrobial peptide-functionalized magnetic nanoparticles for rapid capture and removal of pathogenic bacteria. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Huang Y, Hu H, Yan R, Lin L, Song M, Yao X. Synthesis and evaluation of antimicrobial and anticancer activities of 3-phenyl-1-phenylsulfonyl pyrazoles containing an aminoguanidine moiety. Arch Pharm (Weinheim) 2020; 354:e2000165. [PMID: 33047391 DOI: 10.1002/ardp.202000165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/01/2020] [Accepted: 09/16/2020] [Indexed: 11/10/2022]
Abstract
A series of 3-phenyl-1-phenylsulfonyl pyrazoles containing an aminoguanidine moiety was designed, synthesized, and evaluated for their antimicrobial and anticancer activities. The majority of the target compounds showed broad-spectrum antimicrobial activity against the tested strains, with minimum inhibitory concentration (MIC) values ranging from 2 to 64 μg/ml. Compound 5k, showing the most potent antimicrobial activity against Bacillus subtilis CMCC 63501 and multidrug-resistant Staphylococcus aureus ATCC 43300 with an MIC value of 2 μg/ml, was the most promising one in this series. It was also effective for S. aureus ATCC 33591 and multidrug-resistant Escherichia coli ATCC BAA-196 at higher concentrations. The bactericidal time-kill kinetics test illustrated that compound 5k had rapid bactericidal potential. Docking results exhibited that compound 5k showed various kinds of binding to the FabH receptor, reflecting that 5k could bind with the active site well. All compounds showed excellent activity against the investigated cancer cells, with IC50 values ranging from 1.90 to 54.53 µM. Among them, compound 5f showed prominent cytotoxicity with IC50 = 1.90 µM against A549 cells, while exhibiting lower inhibitory activity against 293T cells (IC50 = 41.72 µM), indicating that it has the potential for a good therapeutic index as an anticancer drug.
Collapse
Affiliation(s)
- Yushan Huang
- Medical College, Jinggangshan University, Ji'an, Jiangxi, China
| | - Hongmei Hu
- Medical College, Jinggangshan University, Ji'an, Jiangxi, China
| | - Rui Yan
- Medical College, Jinggangshan University, Ji'an, Jiangxi, China
| | - Liwen Lin
- Medical College, Jinggangshan University, Ji'an, Jiangxi, China
| | - Mingxia Song
- Medical College, Jinggangshan University, Ji'an, Jiangxi, China.,Research Center of Chinese Medicinal Resources and Functional Molecules, Jinggangshan University, Ji'an, China
| | - Xiaodong Yao
- Jiangxi Institute of Biological Products Inc., Ji'an, Jiangxi, China
| |
Collapse
|
38
|
Novel anti-tubercular and antibacterial based benzosuberone-thiazole moieties: Synthesis, molecular docking analysis, DNA gyrase supercoiling and ATPase activity. Bioorg Chem 2020; 104:104316. [PMID: 33022549 DOI: 10.1016/j.bioorg.2020.104316] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 12/20/2022]
Abstract
Herein, molecular hybridization strategy was utilized in the design of new benzosuberone-thiazole derivatives. The structures of the synthesized hybrids were determined on the basis of elemental and spectral analyses. These compounds were evaluated for their antibacterial activities against five bronchitis causing bacteria in addition to their anti-tubercular activities. Most compounds revealed promising activities. Amongst active compounds, benzosuberone-dithiazole derivatives 22a and 28 with MIC value = 1.95 µg/ml against H. influenza, M. pneumonia, and B. pertussis displayed four times the activity of ciprofloxacin (MIC = 7.81 µg/ml) against H. influenza, twice the activity of ciprofloxacin (MIC = 3.9 µg/ml) against M. pneumonia and were equipotent to ciprofloxacin against B. pertussis (MIC = 1.95 µg/ml). Additionally, benzosuberone-dithiazole derivatives 22a and 27 were the most promising anti-tubercular among the tested compounds with MIC values of 0.12 and 0.24 µg/ml, respectively against sensitive M. tuberculosis in addition to high activity against resistant strain of M. tuberculosis (MIC = 0.98 and 1.95 µg/ml, respectively) compared to isoniazid (MIC = 0.12 µg/ml against sensitive M. tuberculosis and no activity against resistant M. tuberculosis). Cytotoxicity study of the active dithiazole derivatives 22a, 27 and 28 against normal human lung cells (WI-38) indicated their high safety profile as showed from their high IC50 values (IC50 = 107, 74.8, and 117 µM, respectively). Furthermore, DNA gyrase supercoiling and ATPase activity assays showed that 22a, 27 and 28 have the potential to inhibit DNA gyrase at low micromolar levels (IC50 = 3.29-15.64 µM). Molecular docking analysis was also carried out to understand the binding profiles of the synthesized compounds into the ATPase binding sites of bacterial and mycobacterial DNA gyraseB.
Collapse
|
39
|
Ge X, Xu Z. 1,2,4-Triazole hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus. Arch Pharm (Weinheim) 2020; 354:e2000223. [PMID: 32985011 DOI: 10.1002/ardp.202000223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 02/03/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has developed numerous mechanisms of virulence and strategies to evade the human immune system, and it can be transmitted between humans, animals, and the environment. Thus, MRSA is an important cause of morbidity and mortality in both hospitals and in the community, creating an urgent demand for the development of novel anti-MRSA candidates. The 1,2,4-triazole nucleus is a bioisostere of amide, ester, and carboxylic acid, and the 1,2,4-triazole ring is found in many compounds with diverse biological effects. 1,2,4-Triazole derivatives could exert their antibacterial activity through inhibition of efflux pumps, filamentous temperature-sensitive protein Z, penicillin-binding protein, DNA gyrase, and topoisomerase IV, and they play an important role in the discovery of novel antibacterial agents. Among them, 1,2,4-triazole hybrids, which have the potential to exert dual/multiple mechanisms of action, possess a promising broad-spectrum antibacterial activity against a panel of clinically important drug-resistant pathogens including MRSA. This review outlines the recent developments of 1,2,4-triazole hybrids with a potential anti-MRSA activity, covering articles published between 2010 and 2020. The mechanisms of action, critical aspects of their design, and structure-activity relationships are also discussed.
Collapse
Affiliation(s)
- Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhi Xu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
40
|
Zhang ZW, Wang SM, Fang WY, Lekkala R, Qin HL. Protocol for Stereoselective Construction of Highly Functionalized Dienyl Sulfonyl Fluoride Warheads. J Org Chem 2020; 85:13721-13734. [DOI: 10.1021/acs.joc.0c01877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zai-Wei Zhang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Shi-Meng Wang
- School of Life Science, Wuchang University of Technology, Wuhan 430223, P. R. China
| | - Wan-Yin Fang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Ravindar Lekkala
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
41
|
Ansari A, Ibrahim F, Pervez S, Aman A. Inhibitory mechanism of BAC-IB17 against β-lactamase mediated resistance in methicillin-resistant Staphylococcus aureus and application as an oncolytic agent. Microb Pathog 2020; 149:104499. [PMID: 32956794 DOI: 10.1016/j.micpath.2020.104499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
Cancer remains a foremost cause of deaths worldwide, despite several advances in the medical science. The conventional chemotherapeutic methods are not only harmful for normal body cells but also become inactive due to the development of resistance by cancer cells. Therefore, the demand of safe anticancer agents is increasing and enforced the bottomless research on the bacteriocins. Several studies have reported the selective anticancer property of bacteriocins. Current research is the contribution to explore the exact mechanism of action and in vitro application of bacteriocin (BAC-IB17) as an oncolytic agent. In this study, β-lactamase mediated resistance of methicillin resistant Staphylococcus aureus (MRSA) was studied and inhibitory mechanism of MRSA by BAC-IB17 was investigated. Cytotoxic studies were conducted to analyze the anticancerous potential of BAC-IB17. Results revealed that BAC-IB17 inhibited the β-lactamase and produced profound effect on the membrane integrity of MRSA confirmed by scanning electron microscope (SEM). FTIR spectroscopic analysis revealed the changes in the functional groups of bacterial cells before and after treatment with BAC-IB17. BAC-IB17 also found anticancer in nature as it kills HeLa cell lines with the IC50 value of 12.5 μg mL-1 with no cytotoxic effect on normal cells at this concentration. This specific anticancer property of BAC-IB17 will make it a promising candidate for the treatment of cancer after further clinical trials. Moreover, BAC-IB17 may control MDR bacteria responsible for the secondary complications in cancer patients.
Collapse
Affiliation(s)
- Asma Ansari
- The Karachi Institute of Biotechnology & Genetic Engineering (KIBGE), University of Karachi, Karachi, 75270, Pakistan.
| | - Fariha Ibrahim
- The Karachi Institute of Biotechnology & Genetic Engineering (KIBGE), University of Karachi, Karachi, 75270, Pakistan
| | - Sidra Pervez
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Afsheen Aman
- The Karachi Institute of Biotechnology & Genetic Engineering (KIBGE), University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
42
|
Long S, Resende DISP, Palmeira A, Kijjoa A, Silva AMS, Tiritan ME, Pereira-Terra P, Freitas-Silva J, Barreiro S, Silva R, Remião F, Pinto E, Martins da Costa P, Sousa E, Pinto MMM. New marine-derived indolymethyl pyrazinoquinazoline alkaloids with promising antimicrobial profiles. RSC Adv 2020; 10:31187-31204. [PMID: 35520644 PMCID: PMC9056383 DOI: 10.1039/d0ra05319h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/11/2020] [Indexed: 01/03/2023] Open
Abstract
Due to the emergence of multidrug-resistant pathogenic microorganisms, the search for novel antimicrobials is urgent. Inspired by marine alkaloids, a series of indolomethyl pyrazino [1,2-b]quinazoline-3,6-diones was prepared using a one-pot microwave-assisted multicomponent polycondensation of amino acids. The compounds were evaluated for their antimicrobial activity against a panel of nine bacterial strains and five fungal strains. Compounds 26 and 27 were the most effective against Staphylococcus aureus ATCC 29213 reference strain with MIC values of 4 μg mL−1, and a methicillin-resistant Staphylococcus aureus (MRSA) isolate with MIC values of 8 μg mL−1. It was possible to infer that enantiomer (−)-26 was responsible for the antibacterial activity (MIC 4 μg mL−1) while (+)-26 had no activity. Furthermore, compound (−)-26 was able to impair S. aureus biofilm production and no significant cytotoxicity towards differentiated and non-differentiated SH-SY5Y cells was observed. Compounds 26, 28, and 29 showed a weak antifungal activity against Trichophyton rubrum clinical isolate with MIC 128 μg mL−1 and presented a synergistic effect with fluconazole. Indolomethyl pyrazino [1,2-b]quinazoline-3,6-diones were prepared using a one-pot multicomponent polycondensation of amino acids and were evaluated for their antimicrobial activity against a panel of nine bacterial strains and five fungal strains.![]()
Collapse
Affiliation(s)
- Solida Long
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Diana I S P Resende
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal .,CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal
| | - Andreia Palmeira
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal .,CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal
| | - Anake Kijjoa
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Artur M S Silva
- QOPNA - Química Orgânica, Produtos Naturais e Agroalimentares, Departamento de Química, Universidade de Aveiro 3810-193 Aveiro Portugal
| | - Maria Elizabeth Tiritan
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal .,CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal.,CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS) Rua Central de Gandra, 1317 4585-116 Gandra PRD Portugal
| | - Patrícia Pereira-Terra
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Joana Freitas-Silva
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Sandra Barreiro
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Renata Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Eugénia Pinto
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal.,Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Paulo Martins da Costa
- CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Emília Sousa
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal .,CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal
| | - Madalena M M Pinto
- LQOF - Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal .,CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões Av. General Norton de Matos S/N 4450-208 Matosinhos Portugal
| |
Collapse
|
43
|
Genetic Characterization of Methicillin-Resistant Staphylococcus aureus Isolates from Human Bloodstream Infections: Detection of MLS B Resistance. Antibiotics (Basel) 2020; 9:antibiotics9070375. [PMID: 32635147 PMCID: PMC7400445 DOI: 10.3390/antibiotics9070375] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022] Open
Abstract
In this study we aimed to characterize antimicrobial resistance in methicillin-resistant Staphylococcus aureus (MRSA) isolated from bloodstream infections as well as the associated genetic lineages of the isolates. Sixteen MRSA isolates were recovered from bacteremia samples from inpatients between 2016 and 2019. The antimicrobial susceptibility of these isolates was tested by the Kirby–Bauer disk diffusion method against 14 antimicrobial agents. To determine the macrolide–lincosamide–streptogramin B (MLSB) resistance phenotype of the isolates, erythromycin-resistant isolates were assessed by double-disk diffusion (D-test). The resistance and virulence genes were screened by polymerase chain reaction (PCR). All isolates were characterized by multilocus sequence typing (MLST), spa typing, staphylococcal chromosomal cassette mec (SCCmec) typing, and accessory gene regulator (agr) typing. Isolates showed resistance to cefoxitin, penicillin, ciprofloxacin, erythromycin, fusidic acid, clindamycin, and aminoglycosides, confirmed by the presence of the blaZ, ermA, ermC, mphC, msrA/B, aac(6’)-Ie-aph(2’’)-Ia, and ant(4’)-Ia genes. Three isolates were Panton–Valentine-leukocidin-positive. Most strains (n = 12) presented an inducible MLSB phenotype. The isolates were ascribed to eight spa-types (t747, t002, t020, t1084, t008, t10682, t18526, and t1370) and four MLSTs (ST22, ST5, ST105, and ST8). Overall, most (n = 12) MRSA isolates had a multidrug-resistance profile with inducible MLSB phenotypes and belonged to epidemic MRSA clones.
Collapse
|
44
|
Leng J, Tang W, Fang WY, Zhao C, Qin HL. A Simple Protocol for the Stereoselective Construction of Enaminyl Sulfonyl Fluorides. Org Lett 2020; 22:4316-4321. [PMID: 32407099 DOI: 10.1021/acs.orglett.0c01360] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A clickable connective hub 1-bromo-2-triazolethane-1-sulfonyl fluoride BTESF (1) was developed and successfully applied for the fluorosulfonylvinylation of a host of primary and secondary cyclic or acyclic amines including amino acids and pharmaceuticals. Further antimicrobial experiments revealed that vinyl sulfonyl fluoride functionalized norfloxacin (3ak), ciprofloxacin (3am), and lomefloxacin (3an) exhibited 4-fold improved antimicrobial activity against Gram-positive bacteria compared to their parent drugs.
Collapse
Affiliation(s)
- Jing Leng
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P.R. China
| | - Wenjian Tang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wan-Yin Fang
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P.R. China
| | - Chuang Zhao
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P.R. China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P.R. China
| |
Collapse
|
45
|
Ipe DS, Kumar PTS, Love RM, Hamlet SM. Silver Nanoparticles at Biocompatible Dosage Synergistically Increases Bacterial Susceptibility to Antibiotics. Front Microbiol 2020; 11:1074. [PMID: 32670214 PMCID: PMC7326045 DOI: 10.3389/fmicb.2020.01074] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/29/2020] [Indexed: 12/21/2022] Open
Abstract
Antibiotics used to treat bacterial infections can become ineffective over time or result in the emergence of antibiotic resistant pathogens. With the advent of nanotechnology, silver nanoparticles (AgNPs) have gained significant attention as a therapeutic agent due to the well-known antimicrobial properties of silver. However, there are concerns and limited literature on the potential cytotoxicity of nanoparticles at effective antimicrobial concentrations. AgNPs prepared from silver nitrate with glucose reduction were characterized by surface plasmon resonance, dynamic light scattering, zeta potential analysis and transmission electron microscopy. The cytotoxicity of AgNPs towards human gingival fibroblasts over 7 days was determined using cell proliferation assays and confocal microscopy. AgNP MIC and antibacterial effects alone and in combination with 11 antibiotics were determined against a panel of nine microbial species including gram-positive and gram-negative bacterial species. AgNPs concentrations ≤ 1 μg/mL were non-cytotoxic but also showed no antibacterial effects. However, when combined with each of eleven antibiotics, the biocompatible concentration of AgNPs (1 μg/mL) resulted in significant inhibition of bacterial growth for multiple bacterial species that were resistant to either the antibiotics or AgNPs alone. This study presents a promising strategy with further testing in vivo, to develop novel antimicrobial agents and strategies to confront emerging antimicrobial resistance.
Collapse
Affiliation(s)
- Deepak S Ipe
- School of Dentistry and Oral Health, Griffith University, Gold Coast, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - P T Sudheesh Kumar
- School of Dentistry and Oral Health, Griffith University, Gold Coast, QLD, Australia
| | - Robert M Love
- School of Dentistry and Oral Health, Griffith University, Gold Coast, QLD, Australia
| | - Stephen M Hamlet
- School of Dentistry and Oral Health, Griffith University, Gold Coast, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
46
|
Obalı AY, Akçaalan S, Arslan E, Obalı İ. Antibacterial activities and DNA-cleavage properties of novel fluorescent imidazo-phenanthroline derivatives. Bioorg Chem 2020; 100:103885. [PMID: 32388431 DOI: 10.1016/j.bioorg.2020.103885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/23/2020] [Accepted: 04/23/2020] [Indexed: 01/01/2023]
Abstract
Design and biological activities of fluorescent imidazo-phenanthroline derivatives; (E)-5-((4-((4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenoxy)methyl)benzylidene)amino)- isophthalicacid, 2 and 2-(4-(((5-chloroquinolin-8-yl)oxy)methyl)phenyl)-1H-imidazo[4,5f] [1,10]phenanthroline, 3, have been reported. Their characterizations were performed by spectroscopic techniques. Their promising photophysical behaviours were observed in absorbance and fluorescence studies. The antibacterial activities of the compounds were determined against seven different microorganisms; Bacillus subtilis ATCC 6633(G + ), Pseudomonas aeruginosa ATCC 29853(G-), Escherichia coli ATCC 35,218 (G-), Enterococcus faecalis ATCC 292,112 (G + ), Salmonella typhimurium ST-10 (G-), Streptococcus mutans NCTC 10,449 (G + ), and Staphylococcus aureus ATCC 25923(G + ). MIC values of 3 was determined as 156,25 μM on all tested bacteria. A preliminary study of the structure-activity relationship (SAR) also revealed that the antimicrobial activity depended on the substituents on the phenyl ring. The electron withdrawing Cl-substitued compound 3 most favour for antimicrobial activity even at lowest concentration compared to other compounds. DNA-cleavage activities of the compounds were also investigated. The interactions of the compounds with supercoiled pBR322 plasmid DNA were obtained by agarose gel electrophoresis. All imidazo-phenanthroline derivatives were found to be highly effective on DNA, even at the lowest concentrations because of their planar nature which provides ease of bind to the helix structure of DNA.
Collapse
Affiliation(s)
| | - Sedef Akçaalan
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Turkey
| | - Emine Arslan
- Department of Biology, Faculty of Science, Selcuk University, Turkey
| | - İhsan Obalı
- Department of Biology, Faculty of Science, Selcuk University, Turkey
| |
Collapse
|
47
|
Antibacterial and antibiofilm activities of synthetic analogs of 3-alkylpyridine marine alkaloids. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02549-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Indole-based derivatives as potential antibacterial activity against methicillin-resistance Staphylococcus aureus (MRSA). Eur J Med Chem 2020; 194:112245. [DOI: 10.1016/j.ejmech.2020.112245] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/20/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022]
|
49
|
A facile synthesis, drug-likeness, and in silico molecular docking of certain new azidosulfonamide–chalcones and their in vitro antimicrobial activity. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02568-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
50
|
Ullas B, Rakesh K, Shivakumar J, Gowda DC, Chandrashekara P. Multi-targeted quinazolinone-Schiff's bases as potent bio-therapeutics. RESULTS IN CHEMISTRY 2020. [DOI: 10.1016/j.rechem.2020.100067] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|