1
|
Tang T, Luo J, Zhang D, Lu Y, Liao W, Zhang J. Innovative design and potential applications of covalent strategy in drug discovery. Eur J Med Chem 2025; 284:117202. [PMID: 39756145 DOI: 10.1016/j.ejmech.2024.117202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025]
Abstract
Covalent inhibitors provide persistent inhibition while maintaining excellent selectivity and efficacy by creating stable covalent connections with specific amino acids in target proteins. This technique enables the precise inhibition of previously undruggable targets, lowering the frequency of administration and potentially bypassing drug resistance. Because of these advantages, covalent inhibitors have tremendous potential in treating cancer, inflammation, and infectious illnesses, making them extremely important in modern pharmacological research. Covalent inhibitors targeting EGFR, BTK, and KRAS (G12X), which overcome drug resistance and off-target, non-"medicinal" difficulties, as well as covalent inhibitors targeting SARS-CoV-2 Mpro, have paved the way for the development of new antiviral medicines. Furthermore, the use of covalent methods in drug discovery procedures, such as covalent PROTACs, covalent molecular gels, covalent probes, CoLDR, and Dual-targeted covalent inhibitors, preserves these tactics' inherent features while incorporating the advantages of covalent inhibitors. This synthesis opens up new therapeutic opportunities. This review comprehensively examines the use of covalent techniques in drug discovery, emphasizing their transformational potential for future drug development.
Collapse
Affiliation(s)
- Tianyong Tang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxiang Luo
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dan Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Konsue A, Lamtha T, Gleeson D, Jones DJL, Britton RG, Pickering JD, Choowongkomon K, Gleeson MP. Design, preparation and biological evaluation of new Rociletinib-inspired analogs as irreversible EGFR inhibitors to treat non-small-cell-lung cancer. Bioorg Med Chem 2024; 113:117906. [PMID: 39299082 DOI: 10.1016/j.bmc.2024.117906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
Epidermal growth factor receptor (EGFR) kinase has been implicated in the uncontrolled cell growth associated with non-small cell lung cancer (NSCLC). This has prompted the development of 3 generations of EGFR inhibitors over the last 2 decades due to the rapid development of drug resistance issues caused by clinical mutations, including T790M, L858R and the double mutant T790M & L858R. In this work we report the design, preparation and biological assessment of new irreversible 2,4-diaminopyrimidine-based inhibitors of EGFR kinase. Twenty new compounds have been prepared and evaluated which incorporate a range of electrophilic moieties. These include acrylamide, 2-chloroacetamide and (2E)-3-phenylprop-2-enamide, to allow reaction with residue Cys797. In addition, more polar groups have been incorporated to provide a better balance of physical properties than clinical candidate Rociletinib. Inhibitory activities against EGFR wildtype (WT) and EGFR T790M & L858R have been evaluated along with cytotoxicity against EGFR-overexpressing (A549, A431) and normal cell lines (HepG2). Selectivity against JAK3 kinase as well as physicochemical properties determination (logD7.4 and phosphate buffer solubility) have been used to profile the compounds. We have identified 20, 21 and 23 as potent mutant EGFR inhibitors (≤20 nM), with comparable or better selectivity over WT EGFR, and lower activity at JAK3, than Osimertinib or Rociletinib. Compounds 21 displayed the best combination of EGFR mutant activity, JAK3 selectivity, cellular activity and physicochemical properties. Finally, kinetic studies on 21 were performed, confirming a covalent mechanism of action at EGFR.
Collapse
Affiliation(s)
- Adchata Konsue
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Thomanai Lamtha
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Duangkamol Gleeson
- Department of Chemistry & Applied Computational Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Donald J L Jones
- Leicester Cancer Research Centre, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Robert G Britton
- Leicester Cancer Research Centre, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - James D Pickering
- School of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - M Paul Gleeson
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.
| |
Collapse
|
3
|
Mehta NV, Degani MS. The expanding repertoire of covalent warheads for drug discovery. Drug Discov Today 2023; 28:103799. [PMID: 37839776 DOI: 10.1016/j.drudis.2023.103799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
The reactive functionalities of drugs that engage in covalent interactions with the enzyme/receptor residue in either a reversible or an irreversible manner are called 'warheads'. Covalent warheads that were previously neglected because of safety concerns have recently gained center stage as a result of their various advantages over noncovalent drugs, including increased selectivity, increased residence time, and higher potency. With the approval of several covalent inhibitors over the past decade, research in this area has accelerated. Various strategies are being continuously developed to tune the characteristics of warheads to improve their potency and mitigate toxicity. Here, we review research progress in warhead discovery over the past 5 years to provide valuable insights for future drug discovery.
Collapse
Affiliation(s)
- Namrashee V Mehta
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, Maharashtra, India.
| | - Mariam S Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai 400019, Maharashtra, India.
| |
Collapse
|
4
|
Șandor A, Ionuț I, Marc G, Oniga I, Eniu D, Oniga O. Structure-Activity Relationship Studies Based on Quinazoline Derivatives as EGFR Kinase Inhibitors (2017-Present). Pharmaceuticals (Basel) 2023; 16:534. [PMID: 37111291 PMCID: PMC10141396 DOI: 10.3390/ph16040534] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a critical role in the tumorigenesis of various forms of cancer. Targeting the mutant forms of EGFR has been identified as an attractive therapeutic approach and led to the approval of three generations of inhibitors. The quinazoline core has emerged as a favorable scaffold for the development of novel EGFR inhibitors due to increased affinity for the active site of EGFR kinase. Currently, there are five first-generation (gefitinib, erlotinib, lapatinib, vandetanib, and icotinib) and two second-generation (afatinib and dacomitinib) quinazoline-based EGFR inhibitors approved for the treatment of various types of cancers. The aim of this review is to outline the structural modulations favorable for the inhibitory activity toward both common mutant (del19 and L858R) and resistance-conferring mutant (T790M and C797S) EGFR forms, and provide an overview of the newly synthesized quinazoline derivatives as potentially competitive, covalent or allosteric inhibitors of EGFR.
Collapse
Affiliation(s)
- Alexandru Șandor
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| | - Ioana Ionuț
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| | - Ilioara Oniga
- Department of Pharmacognosy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania;
| | - Dan Eniu
- Department of Surgical Oncology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 34-36 Republicii Street, 40015 Cluj-Napoca, Romania;
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400010 Cluj-Napoca, Romania; (A.Ș.); (G.M.); (O.O.)
| |
Collapse
|
5
|
Ferlenghi F, Scalvini L, Vacondio F, Castelli R, Bozza N, Marseglia G, Rivara S, Lodola A, La Monica S, Minari R, Petronini PG, Alfieri R, Tiseo M, Mor M. A sulfonyl fluoride derivative inhibits EGFR L858R/T790M/C797S by covalent modification of the catalytic lysine. Eur J Med Chem 2021; 225:113786. [PMID: 34464874 DOI: 10.1016/j.ejmech.2021.113786] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
The emergence of the C797S mutation in EGFR is a frequent mechanism of resistance to osimertinib in the treatment of non-small cell lung cancer (NSCLC). In the present work, we report the design, synthesis and biochemical characterization of UPR1444 (compound 11), a new sulfonyl fluoride derivative which potently and irreversibly inhibits EGFRL858R/T790M/C797S through the formation of a sulfonamide bond with the catalytic residue Lys745. Enzymatic assays show that compound 11 displayed an inhibitory activity on EGFRWT comparable to that of osimertinib, and it resulted more selective than the sulfonyl fluoride probe XO44, recently reported to inhibit a significant part of the kinome. Neither compound 11 nor XO44 inhibited EGFRdel19/T790M/C797S triple mutant. When tested in Ba/F3 cells expressing EGFRL858R/T790M/C797S, compound 11 resulted significantly more potent than osimertinib at inhibiting both EGFR autophosphorylation and proliferation, even if the inhibition of EGFR autophosphorylation by compound 11 in Ba/F3 cells was not long lasting.
Collapse
Affiliation(s)
| | - Laura Scalvini
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | - Nicole Bozza
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Silvia Rivara
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Alessio Lodola
- Department of Food and Drug, University of Parma, Parma, Italy.
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberta Minari
- Medical Oncology, University Hospital of Parma, Parma, Italy
| | | | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Medical Oncology, University Hospital of Parma, Parma, Italy
| | - Marco Mor
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
6
|
Unadkat V, Rohit S, Parikh P, Sanna V, Singh S. Rational design-aided discovery of novel 1,2,4-oxadiazole derivatives as potential EGFR inhibitors. Bioorg Chem 2021; 114:105124. [PMID: 34328857 DOI: 10.1016/j.bioorg.2021.105124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
A molecular dynamics-based sampling of epidermal growth factor receptor tyrosine kinase (EGFR-TK) was carried out to search for energetically more stable protein, which was then used for molecular docking of a series of 1,2,4-oxadiazole derivatives previously reported from our laboratory. A total of 14 compounds were docked, where compounds 6a and 6b showed better binding to EGFR in silico. Further, physicochemical properties of all the compounds were calculated, which suggested that all the molecules obeyed Lipinski's rule of 5 and had favorable polar surface area and CaCO2 permeability along with the low potential for HERG inhibition. All the compounds were then screened for their ability to produce cytotoxicity in four different cell lines overexpressing EGFR (A549, HCT-116, HEPG2, MCF-7) and one EGFR negative cancer cell line (SW620); at three concentrations: 10, 1, and 0.1 µM. None of the compounds showed activity against SW620, which suggested that the compounds show cytotoxicity through inhibition of EGFR. Compounds that showed promise in this 3-concentration screen were further subjected to multiple dose-response curves to identify the IC50 values for the shortlisted eight compounds. It was encouraging to see 6a and 6b showing the best IC50 values against almost all the cell-lines which further suggests that our design protocol can be applied to optimize this lead (which are currently in the low micromolar range) to design the homologous compounds to achieve the desired potency in the nanomolar range and also to achieve selectivity across a range of kinases.
Collapse
Affiliation(s)
- Vishal Unadkat
- Kashiv Biosciences Pvt Ltd, 27-2 & 43 Building Block B Paiki, Mauje Sarkhej, Opp Applewoods Township, Sarkhej, Ahmedabad 382210, Gujarat, India.
| | - Shishir Rohit
- Kashiv Biosciences Pvt Ltd, 27-2 & 43 Building Block B Paiki, Mauje Sarkhej, Opp Applewoods Township, Sarkhej, Ahmedabad 382210, Gujarat, India
| | - Paranjay Parikh
- Piramal Pharma Solutions, Plot 18, PHARMEZ, Matoda, Sarkhej-Bavla NH 8A, Taluka Sanand, Ahmedabad 382213, Gujarat, India
| | - Vinod Sanna
- Piramal Pharma Solutions, Plot 18, PHARMEZ, Matoda, Sarkhej-Bavla NH 8A, Taluka Sanand, Ahmedabad 382213, Gujarat, India
| | - Sanjay Singh
- Division of Biological & Life Sciences (Formerly Institute of Life Sciences), School of Arts & Sciences, Ahmedabad University, Navaragnpura, Ahmedabad 380009, Gujarat, India; National Institute of Animal Biotechnology, Near Gowlidoddy, Extended Q City Road, Gachibowli, Hyderabad 500032, Telangana, India
| |
Collapse
|
7
|
Fighting tertiary mutations in EGFR-driven lung-cancers: Current advances and future perspectives in medicinal chemistry. Biochem Pharmacol 2021; 190:114643. [PMID: 34097913 DOI: 10.1016/j.bcp.2021.114643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022]
Abstract
Third-generation inhibitors of the epidermal growth factor receptor (EGFR), best exemplified by osimertinib, have been developed to selectively target variants of EGFR bearing activating mutations and the mutation of gatekeeper T790 in patients with EGFR-mutated forms of Non-Small Cell Lung Cancer (NSCLC). While the application of third-generation inhibitors has represented an effective first- and second-line treatment, the efficacy of this class of inhibitors has been hampered by the novel, tertiary mutation C797S, which may occur after the treatment with osimertinib. More recently, other point mutations, including L718Q, G796D, G724S, L792 and G719, have emerged as mutations mediating resistance to third-generation inhibitors. The challenge of overcoming newly developed and recurrent resistances mediated by EGFR-mutations is thus driving the search of alternative strategies in the design of new therapeutic agents able to block EGFR-driven tumor growth. In this manuscript we review the recently emerged EGFR-dependent mechanisms of resistance to third-generation inhibitors, and the achievements lately obtained in the development of next-generation EGFR inhibitors.
Collapse
|
8
|
Voice AT, Tresadern G, Twidale RM, van Vlijmen H, Mulholland AJ. Mechanism of covalent binding of ibrutinib to Bruton's tyrosine kinase revealed by QM/MM calculations. Chem Sci 2021; 12:5511-5516. [PMID: 33995994 PMCID: PMC8097726 DOI: 10.1039/d0sc06122k] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ibrutinib is the first covalent inhibitor of Bruton's tyrosine kinase (BTK) to be used in the treatment of B-cell cancers. Understanding the mechanism of covalent inhibition will aid in the design of safer and more selective covalent inhibitors that target BTK. The mechanism of covalent inhibition in BTK has been uncertain because there is no appropriate residue nearby that can act as a base to deprotonate the cysteine thiol prior to covalent bond formation. We investigate several mechanisms of covalent modification of C481 in BTK by ibrutinib using combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics reaction simulations. The lowest energy pathway involves direct proton transfer from C481 to the acrylamide warhead in ibrutinib, followed by covalent bond formation to form an enol intermediate. There is a subsequent rate-limiting keto-enol tautomerisation step (ΔG ‡ = 10.5 kcal mol-1) to reach the inactivated BTK/ibrutinib complex. Our results represent the first mechanistic study of BTK inactivation by ibrutinib to consider multiple mechanistic pathways. These findings should aid in the design of covalent drugs that target BTK and other similar targets.
Collapse
Affiliation(s)
- Angus T Voice
- Centre for Computational Chemistry, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Gary Tresadern
- Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V. Turnhoutseweg 30 B-2340 Beerse Belgium
| | - Rebecca M Twidale
- Centre for Computational Chemistry, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Herman van Vlijmen
- Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V. Turnhoutseweg 30 B-2340 Beerse Belgium
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
9
|
Arafet K, González FV, Moliner V. Quantum Mechanics/Molecular Mechanics Studies of the Mechanism of Cysteine Proteases Inhibition by Dipeptidyl Nitroalkenes. Chemistry 2020; 26:2002-2012. [PMID: 31692123 DOI: 10.1002/chem.201904513] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/05/2019] [Indexed: 11/10/2022]
Abstract
In this work a computational study of the mechanism of inhibition of cruzain, rhodesain, and cathepsin L cysteine proteases by the dipeptidyl nitroalkene Cbz-Phe-Ala-CH=CH-NO2 has been carried out by means of molecular dynamics simulations with hybrid QM/MM potentials. The free-energy surfaces confirmed that the inhibition takes place by the formation of a covalent bond between the protein and the β-carbon atom of the inhibitor. According to the results, the tested inhibitor should be a much more efficient inhibitor of cruzain than of rhodesain, and little activity would be expected against cathepsin L, in total correspondence with the available experimental data. The origin of these differences may lie in the different stabilizing electrostatic interactions established between the inhibitor and the residues of the active site and S2 pocket of these enzymes. These results may be useful for the rational design of new dipeptidyl nitroalkenes with higher and more selective inhibitory activity against cysteine proteases.
Collapse
Affiliation(s)
- Kemel Arafet
- Departament de Química Física i Analítica, Universitat Jaume I, 12071, Castelló, Spain
| | - Florenci V González
- Departament de Química Inorgànica i Orgànica, Universitat Jaume I, 12071, Castelló, Spain
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, 12071, Castelló, Spain
| |
Collapse
|
10
|
Lodola A, Callegari D, Scalvini L, Rivara S, Mor M. Design and SAR Analysis of Covalent Inhibitors Driven by Hybrid QM/MM Simulations. Methods Mol Biol 2020; 2114:307-337. [PMID: 32016901 DOI: 10.1007/978-1-0716-0282-9_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quantum mechanics/molecular mechanics (QM/MM) hybrid technique is emerging as a reliable computational method to investigate and characterize chemical reactions occurring in enzymes. From a drug discovery perspective, a thorough understanding of enzyme catalysis appears pivotal to assist the design of inhibitors able to covalently bind one of the residues belonging to the enzyme catalytic machinery. Thanks to the current advances in computer power, and the availability of more efficient algorithms for QM-based simulations, the use of QM/MM methodology is becoming a viable option in the field of covalent inhibitor design. In the present review, we summarized our experience in the field of QM/MM simulations applied to drug design problems which involved the optimization of agents working on two well-known drug targets, namely fatty acid amide hydrolase (FAAH) and epidermal growth factor receptor (EGFR). In this context, QM/MM simulations gave valuable information in terms of geometry (i.e., of transition states and metastable intermediates) and reaction energetics that allowed to correctly predict inhibitor binding orientation and substituent effect on enzyme inhibition. What is more, enzyme reaction modelling with QM/MM provided insights that were translated into the synthesis of new covalent inhibitor featured by a unique combination of intrinsic reactivity, on-target activity, and selectivity.
Collapse
Affiliation(s)
- Alessio Lodola
- Drug Design and Discovery Group, Department of Food and Drug, University of Parma, Parma, Italy.
| | - Donatella Callegari
- Drug Design and Discovery Group, Department of Food and Drug, University of Parma, Parma, Italy
| | - Laura Scalvini
- Drug Design and Discovery Group, Department of Food and Drug, University of Parma, Parma, Italy
| | - Silvia Rivara
- Drug Design and Discovery Group, Department of Food and Drug, University of Parma, Parma, Italy
| | - Marco Mor
- Drug Design and Discovery Group, Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
11
|
Fumarola C, Bozza N, Castelli R, Ferlenghi F, Marseglia G, Lodola A, Bonelli M, La Monica S, Cretella D, Alfieri R, Minari R, Galetti M, Tiseo M, Ardizzoni A, Mor M, Petronini PG. Expanding the Arsenal of FGFR Inhibitors: A Novel Chloroacetamide Derivative as a New Irreversible Agent With Anti-proliferative Activity Against FGFR1-Amplified Lung Cancer Cell Lines. Front Oncol 2019; 9:179. [PMID: 30972293 PMCID: PMC6443895 DOI: 10.3389/fonc.2019.00179] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/04/2019] [Indexed: 12/26/2022] Open
Abstract
Fibroblast Growth Factor Receptors (FGFR1-4) have a critical role in the progression of several human cancers, including Squamous Non-Small-Cell Lung Cancer (SQCLC). Both non-selective and selective reversible FGFR inhibitors are under clinical investigation for the treatment of patients with tumors harboring FGFR alterations. Despite their potential efficacy, the clinical development of these drugs has encountered several challenges, including toxicity, and the appearance of drug resistance. Recent efforts have been directed at development of irreversible FGFR inhibitors, which have the potential to exert superior anti-proliferative activity in tumors carrying FGFR alterations. With this in mind, we synthetized, and investigated a set of novel inhibitors possessing a warhead potentially able to covalently bind a cysteine in the P-loop of FGFR. Among them, the chloroacetamide UPR1376 resulted able to irreversible inhibit FGFR1 phosphorylation in FGFR1 over-expressing cells generated from SQCLC SKMES-1 cells. In addition, this compound inhibited cell proliferation in FGFR1-amplified H1581 cells with a potency higher than the reversible inhibitor BGJ398 (infigratinib), while sparing FGFR1 low-expressing cells. The anti-proliferative effects of UPR1376 were demonstrated in both 2D and 3D systems and were associated with the inhibition of MAPK and AKT/mTOR signaling pathways. UPR1376 inhibited cell proliferation also in two BGJ398-resistant cell clones generated from H1581 by chronic exposure to BGJ398, although at concentrations higher than those effective in the parental cells, likely due to the persistent activation of the MAPK pathway associated to NRAS amplification. Combined blockade of FGFR1 and MAPK signaling, by UPR1376 and trametinib respectively, significantly enhanced the efficacy of UPR1376, providing a means of circumventing resistance to FGFR1 inhibition. Our findings suggest that the insertion of a chloroacetamide warhead on a suitable scaffold, as exemplified by UPR1376, is a valuable strategy to develop a novel generation of FGFR inhibitors for the treatment of SQCLC patients with FGFR alterations.
Collapse
Affiliation(s)
- Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Nicole Bozza
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | | | - Alessio Lodola
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Daniele Cretella
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Maricla Galetti
- Italian Workers' Compensation Authority (INAIL) Research Center, Parma, Italy.,Department of Medicine and Surgery, Center of Excellence for Toxicological Research, University of Parma, Parma, Italy
| | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Andrea Ardizzoni
- Division of Medical Oncology, Sant'Orsola-Malpighi University Hospital and Alma Mater University of Bologna, Bologna, Italy
| | - Marco Mor
- Department of Food and Drug, University of Parma, Parma, Italy
| | | |
Collapse
|