1
|
Yakkala PA, Kamal A. Dual-targeting inhibitors involving tubulin for the treatment of cancer. Bioorg Chem 2025; 156:108116. [PMID: 39823818 DOI: 10.1016/j.bioorg.2024.108116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 01/20/2025]
Abstract
Combination therapies play a pivotal role in cancer treatment due to the intricate nature of the disease. Tubulin, a protein crucial for cellular functions, is a prime target in tumor therapy as it regulates microtubule dynamics. Combining tubulin inhibitors with other different inhibitors as dual targeting inhibitors has shown synergistic anti-tumor effects, amplifying therapeutic outcomes. Despite clinical approval of several tubulin inhibitors, their efficacy is hampered by drug resistance and toxic side effects. Dual targeting inhibitors of tubulin and other cancer-related pathways have emerged as vital components in cancer therapy, with promising prospects in both market availability and ongoing clinical trials. The rational design of hybrid inhibitors targeting both pathways presents an innovative approach to combatting cancer. However, despite the potent anti-tumor activity exhibited by several compounds, research on their anti-angiogenic potential remains limited. This review emphasizes the significance of tubulin based dual-target inhibitors, elucidating their mechanisms of action. Recent advances in exploring therapeutic efficacy, toxicity profiles, and challenges such as MDR are discussed. By presenting the research progress of tubulin based dual-target inhibitors as potential anticancer agents, this study delivers valuable insights for the development of more efficient drugs for cancer therapy.
Collapse
Affiliation(s)
- Prasanna Anjaneyulu Yakkala
- Department of Human Nutrition and Analytical Chemistry, Human Nutrition Program, The Ohio State University, Columbus, OH 43212, United States of America; Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ahmed Kamal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Dist. Medchal, 500078 TS, India.
| |
Collapse
|
2
|
Chowdhary S, Preeti, Shekhar, Gupta N, Kumar R, Kumar V. Advances in chalcone-based anticancer therapy: mechanisms, preclinical advances, and future perspectives. Expert Opin Drug Discov 2024; 19:1417-1437. [PMID: 39621431 DOI: 10.1080/17460441.2024.2436908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/28/2024] [Indexed: 12/06/2024]
Abstract
INTRODUCTION Cancer remains a leading cause of death worldwide with traditional treatments like chemotherapy, and radiotherapy becoming less effective due to multidrug resistance (MDR). This highlights the necessity for novel chemotherapeutics like chalcone-based compounds, which demonstrate broad anti-cancer properties and target multiple pathways. These compounds hold promise for improving cancer treatment outcomes compared to existing therapies. AREAS COVERED This review provides a comprehensive synopsis of the recent literature (2018-2024) for anti-proliferative/anti-cancer activity of chalcones. It includes the identification of potential targets, their mechanisms of action, and possible modes of binding. Additionally, chalcone derivatives in preclinical trials are also discussed. EXPERT OPINION Chalcones mark a significant stride in anticancer therapies due to their multifaceted approach in targeting various cellular pathways. Their ability to simultaneously target multiple pathways enables them to overcome drug resistance as compared to traditional therapies. With well-defined mechanisms of action, these compounds can serve as lead molecules for designing new, more promising treatments. Continued progress in synthesis and structural optimization, along with promising results from preclinical trials, offers hope for the development of more potent molecules, heralding a new era in cancer therapeutics.
Collapse
Affiliation(s)
| | - Preeti
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Shekhar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Nikita Gupta
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| | - Rajesh Kumar
- Department of Physics, Lovely Professional University, Phagwara, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
3
|
Dabhade PS, Dabhade MP, Rathod LS, Dhawale SA, More SA, Chaudhari SY, Mokale SN. Novel Pyrazole-Chalcone Hybrids: Synthesis and Computational Insights Against Breast Cancer. Chem Biodivers 2024; 21:e202400015. [PMID: 38705852 DOI: 10.1002/cbdv.202400015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
More women die of breast cancer than of any other malignancy. The resistance and toxicity of traditional hormone therapy created an urgent need for potential molecules for treating breast cancer effectively. Novel biphenyl-substituted pyrazole chalcones linked to a pyrrolidine ring were designed by using a hybridization approach. The hybrids were assessed against MCF-7 and MDA-MB-231 cells by NRU assay. Among them, 8 k, 8 d, 8 m, 8 h, and 8 f showed significantly potent IC50 values: 0.17, 5.48, 8.13, 20.51, and 23.61 μM) respectively, on MCF-7 cells compared to the positive control Raloxifene and Tamoxifen. Furthermore, most active compound 8 k [3-(3-(4-fluorophenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(2-(2-(pyrrolidin-1-yl)-ethoxy)-phenyl)-chalcone] showed cell death induced through apoptosis, cell cycle arrest at the G2/M phase, and demonstrated decrease of ER-α protein in western blotting study. Docking studies of 8 k and 8 d established adequate interactions with estrogen receptor-α as required for SERM binding. The active hybrids exhibited good pharmacokinetic properties for oral bioavailability and drug-likeness. Whereas, RMSD, RMSF, and Rg values from Molecular dynamics studies stipulated stability of the complex formed between compound 8 k and receptor. All of these findings strongly indicate the antiproliferative potential of pyrazole-chalcone hybrids for the treatment of breast cancer.
Collapse
Affiliation(s)
- Pratap S Dabhade
- Y. B. Chavan College of Pharmacy, 431003, Aurangabad, Maharashtra, India
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India, 425405
| | - Manjushri P Dabhade
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India, 425405
| | - Lala S Rathod
- Y. B. Chavan College of Pharmacy, 431003, Aurangabad, Maharashtra, India
| | - Sachin A Dhawale
- Shreeyash Instittue of Pharmaceutical Education & Research, Beed By Pass, 431001, Aurangabad, Maharashtra, India
| | - Shweta A More
- Vivekanand Education Society's College of Pharmacy, Hashu Advani Memorial Complex, Chembur (E), 400074, Mumbai, Maharashtra, India
| | - Somdatta Y Chaudhari
- Progressive Education Society's, Modern College of Pharmacy, Sector 21, Yamunanagar, Nigdi, 411044, Pune, Maharashtra, India
| | - Santosh N Mokale
- Y. B. Chavan College of Pharmacy, 431003, Aurangabad, Maharashtra, India
| |
Collapse
|
4
|
Wang H, Zhu J, Zhang Q, Tang J, Huang X. Current scenario of chalcone hybrids with antibreast cancer therapeutic applications. Arch Pharm (Weinheim) 2024; 357:e2300640. [PMID: 38227398 DOI: 10.1002/ardp.202300640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024]
Abstract
Breast cancer, an epithelial malignant tumor that occurs in the terminal ducts of the breast, is the most common female malignancy. Currently, approximately 70%-80% of breast cancer with early-stage, nonmetastatic disorder is curable, but the emergency of drug resistance often leads to treatment failure. Moreover, advanced breast cancer with distant organ metastases is incurable with the available therapeutics, creating an urgent demand to explore novel antibreast cancer agents. Chalcones, the precursors for flavonoids and isoflavonoids, exhibit promising activity against various breast cancer hallmarks, inclusive of proliferation, angiogenesis, invasion, metastasis, inflammation, stemness, and regulation of cancer epigenetics, representing useful scaffolds for the discovery of novel antibreast cancer chemotherapeutic candidates. In particular, chalcone hybrids could act on two or more different biological targets simultaneously with more efficacy, lower toxicity, and less susceptibility to resistance. Accordingly, there is a huge scope for application of chalcone hybrids to tackle the present difficulties in breast cancer therapy. This review outlines the chalcone hybrids with antibreast cancer potential developed from 2018. The structure-activity relationships as well as mechanisms of action are also discussed to shed light on the development of more effective and multitargeted chalcone candidates.
Collapse
Affiliation(s)
- Huan Wang
- Department of Breast Diseases, Jiaxing Maternity and Child Health Care Hospital, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Juanying Zhu
- Department of Breast Diseases, Jiaxing Maternity and Child Health Care Hospital, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Qianru Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Tang
- Department of Breast Diseases, Jiaxing Maternity and Child Health Care Hospital, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Xufeng Huang
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
5
|
Zhang J, Wang Z, Wang J, Zhuo X, Yu L, Han T, Song Y, Gai C, Zou Y, Meng Q, Chai X, Zhao Q. Total synthesis and structural modification of the dibenzylbutane lignan LCA as a potent anti-inflammatory agent against LPS-induced acute lung injury. Eur J Med Chem 2024; 268:116272. [PMID: 38402749 DOI: 10.1016/j.ejmech.2024.116272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Acute lung injury (ALI) is a serious public health problem associated with high morbidity and mortality. However, few efficacious drugs are clinically available. Inhibition of proinflammatory cytokines is considered to be a promising method for the treatment of inflammatory diseases. Herein, the total synthesis of a dibenzylbutane lignan, 9'-O-di-(E)-feruloyl-meso-5,5'-dimethoxysecoisolariciresinol (LCA), was completed. A series of LCA derivatives were designed and synthesized, and their anti-inflammatory activities were evaluated. Derivative 14r significantly inhibited LPS-induced expression of NO and the proinflammatory cytokines TNF-α, IL-6, and IL-1β in RAW 264.7 cells and inhibited activation of the NF-κB pathway. Compound 14r reduced LPS-induced pulmonary inflammation and ALI in mice. It showed significant protective effects against LPS-induced ALI in mice and significantly reduced levels of proinflammatory cytokines in serum and bronchoalveolar lavage fluid. The ratio of wet weight to dry weight of lung tissue was normalized by compound 14r, which was consistent with suppression of neutrophil infiltration and production of proinflammatory cytokines. Compound 14r reduced the mRNA expression of some proinflammatory cytokines, improved histopathologic changes, and reduced macrophage infiltration in lung tissues. Collectively, these results suggest a new series of LCA derivatives that could be promising anti-inflammatory agents for ALI treatment.
Collapse
Affiliation(s)
- Juan Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Zhen Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Jing Wang
- Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Xiaobin Zhuo
- Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Luyao Yu
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yan Song
- Navy Medical Center, Second Military Medical University, Shanghai, 200433, China
| | - Conghao Gai
- Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yan Zou
- Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Xiaoyun Chai
- Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Qingjie Zhao
- Department of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
6
|
Zhang J, Wang Z, Gai C, Yang F, Yun X, Jiang B, Zou Y, Meng Q, Zhao Q, Chai X. Design, synthesis, evaluation and optimization of novel azole analogues as potent antifungal agents. Bioorg Med Chem 2024; 97:117543. [PMID: 38071944 DOI: 10.1016/j.bmc.2023.117543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
In order to develop antifungal drugs, a series of novel azole analogues were designed and synthesized based on our previous work. Most of the target compounds had broad-spectrum antifungal activity, which showed excellent to moderate inhibitory activity against the tested strains, except A. fum 0504656. Among these, compounds B3, B7, B8, B11, B12 and E9 showed excellent activity against C. alb Y0109 and C. alb SC5314 (with the MIC80: 0.0156 ug/mL). In addition, compound B3 showed the best inhibitory activity against fluconazole-resistant strains C. alb 901 and C. alb 904, and had low toxicity against NIH/3T3 cells at the effective MIC range against fungi. Structure-activity relationship and docking studies of the derivatives suggest that the presence of the 2-fluoro-4-hydroxyphenyl and 1,2,3-triazole group enhance the antifungal activity of the compounds, which may be related to the interaction of the key groups with the amino acids surrounding the target enzyme.
Collapse
Affiliation(s)
- Juan Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Zhen Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Conghao Gai
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Fan Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xiaoqing Yun
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Boye Jiang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China; School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yan Zou
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Qingjie Zhao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Xiaoyun Chai
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
7
|
Wang C, Zhang Y, Zhang T, Xu J, Yan S, Liang B, Xing D. Epidermal growth factor receptor dual-target inhibitors as a novel therapy for cancer: A review. Int J Biol Macromol 2023; 253:127440. [PMID: 37839594 DOI: 10.1016/j.ijbiomac.2023.127440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Overexpression of the epidermal growth factor receptor (EGFR) has been linked to several human cancers, including esophageal cancer, pancreatic cancer, anal cancer, breast cancer, and lung cancer, particularly non-small cell lung cancer (NSCLC). Therefore, EGFR has emerged as a critical target for treating solid tumors. Many 1st-, 2nd-, 3rd-, and 4th-generation EGFR single-target inhibitors with clinical efficacy have been designed and synthesized in recent years. Drug resistance caused by EGFR mutations has posed a significant challenge to the large-scale clinical application of EGFR single-target inhibitors and the discovery of novel EGFR inhibitors. Therapeutic methods for overcoming multipoint EGFR mutations are still needed in medicine. EGFR dual-target inhibitors are more promising than single-target inhibitors as they have a lower risk of drug resistance, higher efficacy, lower dosage, and fewer adverse events. EGFR dual-target inhibitors have been developed sequentially to date, providing new options for remission in patients with previously untreatable malignancies and laying the groundwork for a future generation of compounds. This paper introduces the EGFR family proteins and their synergistic effects with other anticancer targets, and provides a comprehensive review of the development of EGFR dual-target inhibitors in cancer, as well as the opportunities and challenges associated with those fields.
Collapse
Affiliation(s)
- Chao Wang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao 266071, Shandong, China.
| | - Tingting Zhang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China
| | - Saisai Yan
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China.
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao 266071, Shandong, China; School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Taruneshwar Jha K, Shome A, Chahat, Chawla PA. Recent advances in nitrogen-containing heterocyclic compounds as receptor tyrosine kinase inhibitors for the treatment of cancer: Biological activity and structural activity relationship. Bioorg Chem 2023; 138:106680. [PMID: 37336103 DOI: 10.1016/j.bioorg.2023.106680] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Erratic cell proliferation is the initial symptom of cancer, which can eventually metastasize to other organs. Before cancer becomes metastatic, its spread is triggered by pro-angiogenic factors including vascular endothelial growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR), Platelet-derived growth factor receptor (PDGFR), fibroblast growth factor receptor (FGFR) and Platelet Factor (PF4), all of which are part of receptor tyrosine kinase (RTK) family. Receptor tyrosine kinases (RTKs) are cell-surface proteins and aresignaling enzymes that transfer ATP-phosphate to tyrosine residue substrates. Important biological processes like proliferation, differentiation, motility, and cell-cycle regulation are all possessedby these proteins. Unusual RTK expression is typically associated with cell growth abnormalities, which is linked to tumor acquisition, angiogenesis, and cancer progression. In addition to the already available medications, numerous other heterocyclic are being studied for their potential action against a variety of cancers. In the fight against cancer, in particular, these heterocycles have been used for their dynamic core scaffold and their inherent adaptability. In this review article, we have compiled last five years research work including nitrogen containing heterocycles that have targeted RTK. Herein, the SAR and activity of various compounds containing diverse heterocyclic (pyrimidine, indole, pyridine, pyrazole, benzimidazole, and pyrrole) scaffolds are discussed, and they may prove useful in the future for designing new leads against RTKs. Our focus in this manuscript is to comprehensively review the latest research on the biological activity and structural activity relationship of nitrogen compounds as RTK inhibitors. We believe that this may be an important contribution to the field, as it can help guide future research efforts and facilitate the development of more effective cancer therapies.
Collapse
Affiliation(s)
- Keshav Taruneshwar Jha
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Abhimannu Shome
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Chahat
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India.
| |
Collapse
|
9
|
Amin MM, Abuo-Rahma GEDA, Shaykoon MSA, Marzouk AA, Abourehab MAS, Saraya RE, Badr M, Sayed AM, Beshr EAM. Design, synthesis, cytotoxic activities, and molecular docking of chalcone hybrids bearing 8-hydroxyquinoline moiety with dual tubulin/EGFR kinase inhibition. Bioorg Chem 2023; 134:106444. [PMID: 36893547 DOI: 10.1016/j.bioorg.2023.106444] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
The present study established thirteen novel 8-hydroxyquinoline/chalcone hybrids3a-mof hopeful anticancer activity. According to NCI screening and MTT assay results, compounds3d-3f, 3i,3k,and3ldisplayed potent growth inhibition on HCT116 and MCF7 cells compared to Staurosporine. Among these compounds,3eand3fshowed outstanding superior activity against HCT116 and MCF7 cells and better safety toward normal WI-38 cells than Staurosporine. The enzymatic assay revealed that3e,3d, and3ihad goodtubulin polymerization inhibition (IC50 = 5.3, 8.6, and 8.05 µM, respectively) compared to the reference Combretastatin A4 (IC50 = 2.15 µM). Moreover,3e,3l, and3fexhibited EGFR inhibition (IC50 = 0.097, 0.154, and 0.334 µM, respectively) compared to Erlotinib (IC50 = 0.056 µM). Compounds3eand3fwere investigated for their effects on the cell cycle, apoptosis induction, andwnt1/β-cateningene suppression. The apoptosis markers Bax, Bcl2, Casp3, Casp9, PARP1, and β-actin were detected by Western blot. In-silico molecular docking, physicochemical, and pharmacokinetic studies were implemented for the validation of dual mechanisms and other bioavailability standards. Hence, Compounds3eand3fare promising antiproliferative leads with tubulin polymerization and EGFR kinase inhibition.
Collapse
Affiliation(s)
- Mohammed M Amin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia 61519, Egypt.
| | - Montaser Sh A Shaykoon
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Adel A Marzouk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677, USA
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Roshdy E Saraya
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt
| | - Mohamed Badr
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62513 Beni-Suef, Egypt
| | - Eman A M Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| |
Collapse
|
10
|
Theoretical and molecular mechanistic investigations of novel (3-(furan-2-yl)pyrazol-4-yl) chalcones against lung carcinoma cell line (A549). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 396:719-736. [PMID: 36469109 PMCID: PMC10042774 DOI: 10.1007/s00210-022-02344-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/16/2022] [Indexed: 12/07/2022]
Abstract
AbstractA new chalcone series has been developed that may be useful in the treatment of lung cancer. The new series was confirmed by the different spectral tools. MTT assay was used to detect the cytotoxic effect of the novel chalcones against lung cancer cell line (A549). Molecular docking studies were performed on the most two effective chalcones 7b and 7c. Different molecular techniques were utilized to study the activity and the effect of two chalcones 7b and 7c on apoptosis of A549 cell line.
Collapse
|
11
|
Danova A, Nguyen DV, Toyoda R, Mahalapbutr P, Rungrotmongkol T, Wonganan P, Chavasiri W. 3′,4′,5′-Trimethoxy- and 3,4-Dimethoxychalcones Targeting A549 Cells: Synthesis, Cytotoxic Activity, and Molecular Docking. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Khalifa NM, Haiba ME, Afifi AH, El-Moez SIA, Soliman AM. Design and Synthesis of Some New Biologically Active Indeno[1,2-c]pyrazolones. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222090158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Shi K, Wang G, Pei J, Zhang J, Wang J, Ouyang L, Wang Y, Li W. Emerging strategies to overcome resistance to third-generation EGFR inhibitors. J Hematol Oncol 2022; 15:94. [PMID: 35840984 PMCID: PMC9287895 DOI: 10.1186/s13045-022-01311-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/28/2022] [Indexed: 02/08/2023] Open
Abstract
Epidermal growth factor receptor (EGFR), the receptor for members of the epidermal growth factor family, regulates cell proliferation and signal transduction; moreover, EGFR is related to the inhibition of tumor cell proliferation, angiogenesis, invasion, metastasis, and apoptosis. Therefore, EGFR has become an important target for the treatment of cancer, including non-small cell lung cancer, head and neck cancer, breast cancer, glioma, cervical cancer, and bladder cancer. First- to third-generation EGFR inhibitors have shown considerable efficacy and have significantly improved disease prognosis. However, most patients develop drug resistance after treatment. The challenge of overcoming intrinsic and acquired resistance in primary and recurrent cancer mediated by EGFR mutations is thus driving the search for alternative strategies in the design of new therapeutic agents. In view of resistance to third-generation inhibitors, understanding the intricate mechanisms of resistance will offer insight for the development of more advanced targeted therapies. In this review, we discuss the molecular mechanisms of resistance to third-generation EGFR inhibitors and review recent strategies for overcoming resistance, new challenges, and future development directions.
Collapse
Affiliation(s)
- Kunyu Shi
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.,Tianfu Jincheng Laboratory, Chengdu, 610041, China
| | - Guan Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junping Pei
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.,Tianfu Jincheng Laboratory, Chengdu, 610041, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Liang Ouyang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China. .,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China. .,Tianfu Jincheng Laboratory, Chengdu, 610041, China.
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Tianfu Jincheng Laboratory, Chengdu, 610041, China.
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Tianfu Jincheng Laboratory, Chengdu, 610041, China.
| |
Collapse
|
14
|
Khan A, Khan SU, Khan A, Shal B, Rehman SU, Rehman SU, Htar TT, Khan S, Anwar S, Alafnan A, Rengasamy KRR. Anti-Inflammatory and Anti-Rheumatic Potential of Selective Plant Compounds by Targeting TLR-4/AP-1 Signaling: A Comprehensive Molecular Docking and Simulation Approaches. Molecules 2022; 27:molecules27134319. [PMID: 35807562 PMCID: PMC9268648 DOI: 10.3390/molecules27134319] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Plants are an important source of drug development and numerous plant derived molecules have been used in clinical practice for the ailment of various diseases. The Toll-like receptor-4 (TLR-4) signaling pathway plays a crucial role in inflammation including rheumatoid arthritis. The TLR-4 binds with pro-inflammatory ligands such as lipopolysaccharide (LPS) to induce the downstream signaling mechanism such as nuclear factor κappa B (NF-κB) and mitogen activated protein kinases (MAPKs). This signaling activation leads to the onset of various diseases including inflammation. In the present study, 22 natural compounds were studied against TLR-4/AP-1 signaling, which is implicated in the inflammatory process using a computational approach. These compounds belong to various classes such as methylxanthine, sesquiterpene lactone, alkaloid, flavone glycosides, lignan, phenolic acid, etc. The compounds exhibited different binding affinities with the TLR-4, JNK, NF-κB, and AP-1 protein due to the formation of multiple hydrophilic and hydrophobic interactions. With TLR-4, rutin had the highest binding energy (−10.4 kcal/mol), poncirin had the highest binding energy (−9.4 kcal/mol) with NF-κB and JNK (−9.5 kcal/mol), respectively, and icariin had the highest binding affinity (−9.1 kcal/mol) with the AP-1 protein. The root means square deviation (RMSD), root mean square fraction (RMSF), and radius of gyration (RoG) for 150 ns were calculated using molecular dynamic simulation (MD simulation) based on rutin’s greatest binding energy with TLR-4. The RMSD, RMSF, and RoG were all within acceptable limits in the MD simulation, and the complex remained stable for 150 ns. Furthermore, these compounds were assessed for the potential toxic effect on various organs such as the liver, heart, genotoxicity, and oral maximum toxic dose. Moreover, the blood–brain barrier permeability and intestinal absorption were also predicted using SwissADME software (Lausanne, Switzerland). These compounds exhibited promising physico-chemical as well as drug-likeness properties. Consequently, these selected compounds portray promising anti-inflammatory and drug-likeness properties.
Collapse
Affiliation(s)
- Ashrafullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar 25000, Pakistan;
| | - Shafi Ullah Khan
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar 25000, Pakistan;
- Product & Process Innovation Department, Qarshi Brands (Pvt) Ltd., Hattar 22610, Pakistan
| | - Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
- Faculty of Health Sciences, IQRA University, Islamabad Campus (Chak Shahzad), Park link Rd., Islamabad 44000, Pakistan
| | - Sabih Ur Rehman
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore 54600, Pakistan; (S.U.R.); (S.U.R.)
| | - Shaheed Ur Rehman
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore 54600, Pakistan; (S.U.R.); (S.U.R.)
| | - Thet Thet Htar
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia;
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
- Correspondence: or (S.K.); (K.R.R.)
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 55211, Saudi Arabia; (S.A.); (A.A.)
| | - Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 55211, Saudi Arabia; (S.A.); (A.A.)
| | - Kannan RR Rengasamy
- Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College, Chennai 600077, India
- Correspondence: or (S.K.); (K.R.R.)
| |
Collapse
|
15
|
Yin F, Zhao R, Gorja DR, Fu X, Lu N, Huang H, Xu B, Chen H, Shim JH, Liu K, Li Z, Laster KV, Dong Z, Lee MH. Novel dual inhibitor for targeting PIM1 and FGFR1 kinases inhibits colorectal cancer growth in vitro and patient-derived xenografts in vivo. Acta Pharm Sin B 2022; 12:4122-4137. [PMID: 36386480 PMCID: PMC9643289 DOI: 10.1016/j.apsb.2022.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer-related death in the world. The pro-viral integration site for Moloney murine leukemia virus 1 (PIM1) is a proto-oncogene and belongs to the serine/threonine kinase family, which are involved in cell proliferation, migration, and apoptosis. Fibroblast growth factor receptor 1 (FGFR1) is a tyrosine kinase that has been implicated in cell proliferation, differentiation and migration. Small molecule HCI-48 is a derivative of chalcone, a class of compounds known to possess anti-tumor, anti-inflammatory and antibacterial effects. However, the underlying mechanism of chalcones against colorectal cancer remains unclear. This study reports that HCI-48 mainly targets PIM1 and FGFR1 kinases, thereby eliciting antitumor effects on colorectal cancer growth in vitro and in vivo. HCI-48 inhibited the activity of both PIM1 and FGFR1 kinases in an ATP-dependent manner, as revealed by computational docking models. Cell-based assays showed that HCI-48 inhibited cell proliferation in CRC cells (HCT-15, DLD1, HCT-116 and SW620), and induced cell cycle arrest in the G2/M phase through modulation of cyclin A2. HCI-48 also induced cellular apoptosis, as evidenced by an increase in the expression of apoptosis biomarkers such as cleaved PARP, cleaved caspase 3 and cleaved caspase 7. Moreover, HCI-48 attenuated the activation of downstream components of the PIM1 and FGFR1 signaling pathways. Using patient-derived xenograft (PDX) murine tumor models, we found that treatment with HCI-48 diminished the PDX tumor growth of implanted CRC tissue expressing high protein levels of PIM1 and FGFR1. This study suggests that the inhibitory effect of HCI-48 on colorectal tumor growth is mainly mediated through the dual-targeting of PIM1 and FGFR1 kinases. This work provides a theoretical basis for the future application of HCI-48 in the treatment of clinical CRC.
Collapse
|
16
|
Omar AM, Khayat MT, Ahmed F, Muhammad YA, Malebari AM, Ibrahim SM, Khan MI, Shah DK, Childers WE, El-Araby ME. SAR Probing of KX2-391 Provided Analogues With Juxtaposed Activity Profile Against Major Oncogenic Kinases. Front Oncol 2022; 12:879457. [PMID: 35669422 PMCID: PMC9166630 DOI: 10.3389/fonc.2022.879457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Tirbanibulin (KX2-391, KX-01), a dual non-ATP (substrate site) Src kinase and tubulin-polymerization inhibitor, demonstrated a universal anti-cancer activity for variety of cancer types. The notion that KX2-391 is a highly selective Src kinase inhibitor have been challenged by recent reports on the activities of this drug against FLT3-ITD mutations in some leukemic cell lines. Therefore, we hypothesized that analogues of KX2-391 may inhibit oncogenic kinases other than Src. A set of 4-aroylaminophenyl-N-benzylacetamides were synthesized and found to be more active against leukemia cell lines compared to solid tumor cell lines. N-(4-(2-(benzylamino)-2-oxoethyl)phenyl)-4-chlorobenzamide (4e) exhibited activities at IC50 0.96 µM, 1.62 µM, 1.90 µM and 4.23 µM against NB4, HL60, MV4-11 and K562 leukemia cell lines, respectively. We found that underlying mechanisms of 4e did not include tubulin polymerization or Src inhibition. Such results interestingly suggested that scaffold-hopping of KX2-391 may change the two main underlying cytotoxic mechanisms (Src and tubulin). Kinase profiling using two methods revealed that 4e significantly reduces the activities of some other potent oncogenic kinases like the MAPK member ERK1/2 (>99%) and it also greatly upregulates the pro-apoptotic c-Jun kinase (84%). This research also underscores the importance of thorough investigation of total kinase activities as part of the structure-activity relationship studies.
Collapse
Affiliation(s)
- Abdelsattar M Omar
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia.,Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia.,Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Al-Azhar University, Cairo, Egypt
| | - Maan T Khayat
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Farid Ahmed
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yosra A Muhammad
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Azizah M Malebari
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sara M Ibrahim
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad I Khan
- Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia.,Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Dhaval K Shah
- School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Wayne E Childers
- Moulder Center for Drug Discovery Research, School of Pharmacy, Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA, United States
| | - Moustafa E El-Araby
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia.,Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Özdemir A, Ciftci H, Sever B, Tateishi H, Otsuka M, Fujita M, Altıntop MD. A New Series of Indeno[1,2- c]pyrazoles as EGFR TK Inhibitors for NSCLC Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020485. [PMID: 35056800 PMCID: PMC8778314 DOI: 10.3390/molecules27020485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 02/05/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death throughout the world. Due to the shortcomings of traditional chemotherapy, targeted therapies have come into prominence for the management of NSCLC. In particular, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) therapy has emerged as a first-line therapy for NSCLC patients with EGFR-activating mutations. In this context, new indenopyrazoles, which were prepared by an efficient microwave-assisted method, were subjected to in silico and in vitro assays to evaluate their potency as EGFR TK-targeted anti-NSCLC agents. Compound 4 was the most promising antitumor agent towards A549 human lung adenocarcinoma cells, with an IC50 value of 6.13 µM compared to erlotinib (IC50 = 19.67 µM). Based on its low cytotoxicity to peripheral blood mononuclear cells (PBMCs), it can be concluded that compound 4 exerts selective antitumor action. This compound also inhibited EGFR TK with an IC50 value of 17.58 µM compared to erlotinib (IC50 = 0.04 µM) and induced apoptosis (56.30%). Taking into account in silico and in vitro data, compound 4 stands out as a potential EGFR TKI for the treatment of NSCLC.
Collapse
Affiliation(s)
- Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey;
- Correspondence: (A.Ö.); (M.F.); (M.D.A.); Tel.: +90-222-335-0580 (ext. 3780) (A.Ö.); +81-96-371-4622 (M.F.); +90-222-335-0580 (ext. 3807) (M.D.A.)
| | - Halilibrahim Ciftci
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan; (H.C.); (M.O.)
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey;
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Masami Otsuka
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan; (H.C.); (M.O.)
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
- Correspondence: (A.Ö.); (M.F.); (M.D.A.); Tel.: +90-222-335-0580 (ext. 3780) (A.Ö.); +81-96-371-4622 (M.F.); +90-222-335-0580 (ext. 3807) (M.D.A.)
| | - Mehlika Dilek Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey;
- Correspondence: (A.Ö.); (M.F.); (M.D.A.); Tel.: +90-222-335-0580 (ext. 3780) (A.Ö.); +81-96-371-4622 (M.F.); +90-222-335-0580 (ext. 3807) (M.D.A.)
| |
Collapse
|
18
|
Hu L, Fan M, Shi S, Song X, Wang F, He H, Qi B. Dual target inhibitors based on EGFR: Promising anticancer agents for the treatment of cancers (2017-). Eur J Med Chem 2022; 227:113963. [PMID: 34749202 DOI: 10.1016/j.ejmech.2021.113963] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/23/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023]
Abstract
The EGFR family play a significant role in cell signal transduction and their overexpression is implicated in the pathogenesis of numerous human solid cancers. Inhibition of the EGFR-mediated signaling pathways by EGFR inhibitors is a widely used strategy for the treatment of cancers. In most cases, the EGFR inhibitors used in clinic were only effective when the cancer cells harbored specific activating EGFR mutations which appeared to preserve the ligand-dependency of receptor activation but altered the pattern of downstream signaling pathways. Moreover, cancer is a kind of multifactorial disease, and therefore manipulating a single target may result in treatment failure. Although drug combinations for the treatment of cancers proved to be successful, the use of two or more drugs concurrently still was a challenge in clinical therapy owing to various dose-limiting toxicities and drug-drug interactions caused by pharmacokinetic profiles changed. Therefore, a single drug targeting two or multiple targets could serve as an effective strategy for the treatment of cancers. In recent, drugs with diverse pharmacological effects have been shown to be more advantageous than combination therapies due to their lower incidences of side effects and more resilient therapies. Accordingly, dual target-single-agent strategy has become a popular field for cancer treatment, and researchers became more and more interest in the development of novel dual-target drugs in recent years. In this review, we briefly introduce the EGFR family proteins and synergisms between EGFR and other anticancer targets, and summarizes the development of potential dual target inhibitors based on wild-type and/or mutant EGFR for the treatment of solid cancers in the past five years. Additionally, the rational design and SARs of these dual target agents are also presented in detailed, which will lay a significant foundation for the further development of novel EGFR-based dual inhibitors with excellent druggability.
Collapse
Affiliation(s)
- Liping Hu
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, Guangdong Province, China
| | - Mengmeng Fan
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, Guangdong Province, China
| | - Shengmin Shi
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, Guangdong Province, China
| | - Xiaomeng Song
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, Guangdong Province, China
| | - Fei Wang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, Guangdong Province, China
| | - Huan He
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, Guangdong Province, China.
| | - Baohui Qi
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, Guangdong Province, China.
| |
Collapse
|
19
|
Ibrahim MT, Uzairu A, Shallangwa GA, Uba S. Computer-aided design of some quinazoline analogues as epidermal growth factor receptor inhibitors. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The treatment of epidermal growth factor receptor (EGFR)-muted non-small cell lung cancer (NSCLC) remains among the utmost important unachieved therapeutic need worldwide. Development of EGFR inhibitors to treat NSCLC mutations has been among the difficult tasks faced by researchers in this area. As such, there is a need to discover more EGFR inhibitors. The purpose of this work is to perform computer-aided/structure-based design of novel EGFR inhibitors, elucidate their nature of interactions with their target, and also assess their ADMET properties as well as their drug-likeness, respectively. Compound 17 with a highest binding affinity of −9.5kcal/mol was identified as the template hit compound using molecular docking virtual screening in our previous work. The compound interacted with the active site of the EGFR receptor via hydrogen bond with the following amino acid residues MET793, MET793, THR854, and ASP855 with bond distances of 2.61394 (Å), 2.18464 (Å), 2.57601 (Å), and 2.68794 (Å), respectively. It also interacted with the active site of the EGFR receptor via halogen bond (GLN791), hydrophobic bond (LEU718, CYS797, LYS745, ALA743, ALA743, and VAL726), electrostatic bond (LYS745), and others (MET766), respectively. Furthermore, from our previous study, the following descriptors (ATSC6m, ATSC8e, MATS7m, SpMax3_Bhp, SpMax5_Bhs, and MaxHBint10) contained in the reported model were found to be responsible for the inhibitory activities of the studied compounds. In this research, the template (compound 17) was modified manually by attaching halo-phenyl and halo-phenyl-amino rings on the para position of the flouro-nitro-benzamide moiety of the template compound, respectively.
Results
A computer-aided design/structure-based approach was used to design six new EGFR inhibitors using molecule 17 as the template compound for the design identified in our previously reported work. Molecular docking investigation was performed to elucidate the binding mode of these newly designed EGFR inhibitors with the binding pose of EGFR receptor (pdb code 4ZAU) and found to have better affinities which range from −9.5 to −10.4 kcal/mol than the template compound and gefitinib, the control, respectively. The ADMET property assessment of these newly designed EGFR inhibitors indicated that they were orally bioavailable with good absorption, distribution, metabolism, and excretory properties with no toxicity. And for their drug-likeness, they were seen to have a higher molecular weight which might be as a result of halo-phenyl-amino ring attachments. Based on this finding, halo-phenyl-amino rings might be responsible for the inhibitory activities of these newly designed compounds.
Conclusion
The six newly designed EGFR inhibitors were found to have higher binding affinities toward their target EGFR receptor than the template compound and gefitinib which was used as the control in this research. They were seen to have good ADMET and drug-like properties which indicate that they might be orally bioavailable. Furthermore, according to their synthetic accessibility score, they can be easily synthesized in the laboratory because the values were found to be less than five which fall within the easy portion of the scale. Therefore, this research recommends that these newly designed EGFR inhibitors should be synthesized most especially those with higher binding affinities, good ADMET, and drug-likeness properties than the template compound.
Collapse
|
20
|
Ibrahim MT, Uzairu A, Uba S, Shallangwa GA. Design of more potent quinazoline derivatives as EGFRWT inhibitors for the treatment of NSCLC: a computational approach. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00279-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Lung cancer remains the leading and deadly type of cancer worldwide. It was estimated to account for about 25% of the 7 million people that died as a result of cancer-related issues/mortality every year in the world. Non-small cell lung cancer (NSCLC) is the lethal/deadly class of lung cancer with nearly 1.5 million reported cases and less than 20% survival rate. Therefore, it becomes necessary to explore more effective NSCLC drugs.
Result
A computational approach was employed here to design ten new EGFRWT inhibitors using compound 18 as a template for the design identified with the best binding affinity and good pharmacokinetic properties previously reported in our work. The modeled inhibitory activities of these newly designed EGFRWT inhibitors (range from 7.746966 to 11.09261) were better than that of the hit compound with pIC50 of 7.5639 and gefitinib the positive control with pIC50 of 5.879426. The ligand-binding interaction between these newly designed EGFRWT inhibitors and the EGFR tyrosine kinase receptor as shown in Table 3 was investigated and elucidated using molecular docking protocol. Based on the molecular docking results, the binding affinities of these newly designed EGFRWT inhibitors were found to be between − 8.8 and − 9.5 kcal/mol. The designed compound SFD10 has the highest binding affinity of − 9.5 kcal/mol followed by compound SFD8 (with a binding affinity of − 9.3 kcal/mol), then by compound SFD9 and 4 (each with a binding affinity of − 9.3 kcal/mol). None of them was found to have more than one violation of the filtering criterion used in this study thereby showing good ADMET properties.
Conclusion
The modeled inhibitory activities and binding affinities of these newly designed EGFRWT inhibitors were found to be higher than that of the template compound and the control (gefitinib) used in this research. They were also seen to be non-toxic with good pharmacokinetic properties.
Collapse
|
21
|
Filho EV, Pina JWS, Antoniazi MK, Loureiro LB, Ribeiro MA, Pinheiro CB, Guimarães CJ, de Oliveira FCE, Pessoa C, Taranto AG, Greco SJ. Synthesis, docking, machine learning and antiproliferative activity of the 6-ferrocene/heterocycle-2-aminopyrimidine and 5-ferrocene-1H-Pyrazole derivatives obtained by microwave-assisted Atwal reaction as potential anticancer agents. Bioorg Med Chem Lett 2021; 48:128240. [PMID: 34217828 DOI: 10.1016/j.bmcl.2021.128240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/02/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
A simple and fast methodology under microwave irradiation for the synthesis of 2-aminopyrimidine and pyrazole derivatives using Atwal reaction is reported. After the optimization of the reaction conditions, eight 2-aminolpyrimidines containing ferrocene and heterocycles and three ferrocene pyrazoles were synthesized from the respective chalcones in good yields. Eight compounds had their structure determined by X-ray diffraction. The molecular hybrid 6a-h and 9a-c were tested on four cancer cell lines - HCT116, PC3, HL60 and SNB19 - where four pyrimidine 6a, 6f-h and one pyrazole 9c derivatives show promising antiproliferative activity. In addition, docking simulation and machine learning methods were carried out to explain the biological activity achieved by the synthetized compounds.
Collapse
Affiliation(s)
- Eclair Venturini Filho
- Chemistry Department, Federal University of Espírito Santo, Vitória, Espírito Santo CEP.:29075-910, Brazil
| | - Jorge W S Pina
- Chemistry Department, Federal University of Espírito Santo, Vitória, Espírito Santo CEP.:29075-910, Brazil
| | - Mariana K Antoniazi
- Chemistry Department, Federal University of Espírito Santo, Vitória, Espírito Santo CEP.:29075-910, Brazil
| | - Laiza B Loureiro
- Chemistry Department, Federal University of Espírito Santo, Vitória, Espírito Santo CEP.:29075-910, Brazil
| | - Marcos A Ribeiro
- Chemistry Department, Federal University of Espírito Santo, Vitória, Espírito Santo CEP.:29075-910, Brazil
| | - Carlos B Pinheiro
- Physical Department, Minas Gerais Federal University, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais CEP.: 30161-970 Brazil
| | - Celina J Guimarães
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará., Fortaleza, Ceará CEP 60430-275, Brazil; Pharmacy Sector, Foundation of Oncology Control of the State of Amazonas, Manaus, Amazonas, CEP 69040-010, Brazil
| | - Fátima C E de Oliveira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará., Fortaleza, Ceará CEP 60430-275, Brazil
| | - Claudia Pessoa
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará., Fortaleza, Ceará CEP 60430-275, Brazil
| | - Alex G Taranto
- Laboratory of Drug Design and Bioinformatics, Federal University of São João del-Rei, São João del-Rei, Minas Gerais CEP: 36307-352, Brazil
| | - Sandro J Greco
- Chemistry Department, Federal University of Espírito Santo, Vitória, Espírito Santo CEP.:29075-910, Brazil.
| |
Collapse
|
22
|
Zhang L, Xu L, Chen H, Zhang W, Xing C, Qu Z, Yu J, Zhuang C. Structure-based molecular hybridization design of Keap1-Nrf2 inhibitors as novel protective agents of acute lung injury. Eur J Med Chem 2021; 222:113599. [PMID: 34119834 DOI: 10.1016/j.ejmech.2021.113599] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 12/12/2022]
Abstract
Blocking the Kelch-like epichlorohydrin-related protein 1 (Keap1)-nuclear factor-erythroid 2 related factor 2 (Nrf2) pathway represents as a promising strategy to reduce oxidative stress and related-inflammation, including acute lung injury (ALI). NXPZ-2, a naphthalensulfonamide derivative, was previously reported to effectively inhibit the Keap1-Nrf2 protein-protein interaction (PPI) by our group. In the present work, a series of novel isothiocyanate-containing naphthalensulfonamides with the thioether, sulfoxide and sulfone moieties were designed by a structure-based molecular hybridization strategy using NXPZ-2 and the Nrf2 activator sulforaphane. They possessed good Keap1-Nrf2 PPI inhibitory activity and low cytotoxicity. The molecular docking study was performed to further explain the different activity of the thioether-, sulfoxide- and sulfone-containing naphthalensulfonamides. Among these new derivatives, 2-((N-(4-((N-(2-amino-2-oxoethyl)-4-((3-isothiocyanatopropyl)sulfinyl)phenyl)sulfonamido) naphthalen-1-yl)-4-methoxyphenyl)sulfonamido)acetamide (SCN-16) showed a good KD2 value of 0.455 μM to disrupt the PPI. In an LPS-induced peritoneal macrophage cell model, this compound could cause a significant increase in the nuclear Nrf2 protein, decrease in the cytosolic Nrf2 protein, and further elevate the downstream protective enzymes HO-1 and NQO-1, which were better than the lead compound NXPZ-2 and sulforaphane. What's more, the production of ROS and NO and the expression of pro-inflammatory cytokine TNF-α were also suppressed. In the LPS-induced ALI model, SCN-16 could significantly reduce LPS-induced inflammations and alleviate lung injuries by triggering Nrf2 nuclear translocation. Collectively, our results suggested that SCN-16 could be a novel lead compound targeting Keap1-Nrf2 protective pathway for clinical treatment of ALI.
Collapse
Affiliation(s)
- Le Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Lijuan Xu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Haihu Chen
- Department of Intervention, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Wannian Zhang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA
| | - Zhuo Qu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
23
|
Khan I, Ganapathi T, Rehman MMU, Shareef MA, Kumar CG, Kamal A. New indenopyrazole linked oxadiazole conjugates as anti-pancreatic cancer agents: Design, synthesis, in silico studies including 3D-QSAR analysis. Bioorg Med Chem Lett 2021; 44:128094. [PMID: 33964437 DOI: 10.1016/j.bmcl.2021.128094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/25/2022]
Abstract
To continue the quest of newer anticancer agents, herein a novel class of 1,4-Dihydroindenopyrazole linked oxadiazole conjugates 9(a-r) was designed, synthesized and experimented for their anti-proliferative activities against four different cancer cell lines (human) such as MDA MB-231 (breast), PANC-1 (pancreatic), MCF-7 (breast), and Caco-2 (Colorectal) by using MTT assay. Among the series compound 9h and 9 m demonstrated significant potency against the PANC-1 (human pancreatic cancer cells) with IC50 value 7.4 μM and 4.3 μM respectively. While compound 9 m was found to be equipotent to standard Gomitabine (IC50 = 4.2 μM). The detailed biological assays revealed S phase cell cycle arrest and their ability to propagate apoptosis by activating caspase 3 and 9 enzymes which was confirmed by Annexin-FITC assay and caspase assay. Moreover, docking study suggested their binding modes and interactions with caspase-3. In addition, in silico studies revealed that they exhibit good pharmacokinetics and drug likeliness properties. Furthermore, 3D-QSAR was carried out to achieve a pharmacophoric model with CoMFA (q2 = 0.631, r2 = 0.977) and CoMSIA (q2 = 0.686, r2 = 0.954) on PANC-1 cancer cells which were established, generated and validated to be reliable models for further design and optimization of newer molecules with enhanced anticancer activity.
Collapse
Affiliation(s)
- Irfan Khan
- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India.
| | - Thipparapu Ganapathi
- Stem Cell Research Division, National Institute of Nutrition (NIN), Indian Council of Medical Research (ICMR), Hyderabad 500007, Telangana, India.
| | - Md Muzaffar-Ur- Rehman
- Catalysis and Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India.
| | - Mohd Adil Shareef
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India; Centre for Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology, Tarnaka 500007, Hyderabad, India.
| | - C Ganesh Kumar
- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Ahmed Kamal
- Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, India; School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
24
|
Ibrahim MT, Uzairu A, Shallangwa GA, Uba S. Structure-based design of some quinazoline derivatives as epidermal growth factor receptor inhibitors. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-020-00107-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Abstract
Background
The discovery of epidermal growth factor receptor (EGFR) inhibitors for the treatment of lung cancer, most especially non-small cell lung cancer (NSCLC), was one of the major challenges encountered by the medicinal chemist in the world. The treatment of EGFR tyrosine kinase to manage NSCLCs becomes an urgent therapeutic necessity. NSCLC was the foremost cause of cancer mortality worldwide. Therefore, there is a need to develop more EGFR inhibitors due to the development of drug resistance by the mutation. This research is aimed at designing new EGFR inhibitors using a structure-based design approach. Structure-based drug design comprises several steps such as protein structure retrieval and preparation, ligand library preparation, docking, and structural modification on the best hit compound to design new ones.
Result
Molecular docking virtual screening on fifty sets of quinazoline derivatives/epidermal growth factor receptor inhibitors against their target protein (EGFR tyrosine kinase receptor PDB entry: 3IKA) and pharmacokinetic profile predictions were performed to identify hit compounds with promising affinities toward their target and good pharmacokinetic profiles. The hit compounds identified were compound 6 with a binding affinity of − 9.3 kcal/mol, compounds 5 and 8, each with a binding affinity of − 9.1 kcal/mol, respectively. The three hit compounds bound to EGFR tyrosine kinase receptor via four different types of interactions which include conventional hydrogen bond, carbon-hydrogen bond, electrostatic, and hydrophobic interactions, respectively. The best hit (compound 6) among the 3 hit compounds was retained as a template and used to design sixteen new EGFR inhibitors. The sixteen newly designed compounds were also docked into the active site of EGFR tyrosine kinase receptor to study their mode of interactions with the receptor. The binding affinities of these newly designed compounds range from − 9.5 kcal/mol to − 10.2 kcal/mol. The pharmacokinetic profile predictions of these newly designed compounds were further examined and found to be orally bioavailable with good absorption, low toxicity level, and permeable properties.
Conclusion
The sixteen newly designed EGFR inhibitors were found to have better binding affinities than the template used in the designing process and afatinib the positive control (an FDA approved EGFR inhibitor). None of these designed compounds was found to violate more than the permissible limit set by RO5. More so, the newly designed compounds were found to have good synthetic accessibility which indicates that these newly designed compounds can be easily synthesized in the laboratory.
Collapse
|
25
|
Lead Identification of Some Anti-Cancer Agents with Prominent Activity Against Non-small Cell Lung Cancer (NSCLC) and Structure-Based Design. CHEMISTRY AFRICA 2020. [DOI: 10.1007/s42250-020-00191-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Structure-based design and activity modeling of novel epidermal growth factor receptor kinase inhibitors; an in silico approach. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
27
|
Ibrahim MT, Uzairu A, Uba S, Shallangwa GA. Computational virtual screening and structure-based design of some epidermal growth factor receptor inhibitors. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00074-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Abstract
Background
The foremost cause of cancer mortality worldwide was lung cancer. Lung cancer is divided into small cell lung cancer and non-small cell lung cancer (NSCLC). The latter is the main type of lung cancer that account for about 90% of the cancer issues and estimate about 25% of the cancer mortality each year in the world. Among the types of lung cancer with about 1.5 million patients and less than 20% survival rate is NSCLC. Overexpression of EGFR tyrosine kinase was recognized to be the cause of NSCLC. Therefore, there is a need to develop more EGFR inhibitors due to drug-resistance development by the mutation.
Result
Computational virtual screening on some epidermal growth factor receptor inhibitors (EGFRL858R/T790M inhibitors or NSCLC therapeutic agents) against their target protein (EGFR tyrosine kinase receptor pdb entry 3IKA) was performed via molecular docking simulation and pharmacokinetics to identify hit compounds with a promising affinity toward their target. The hit compounds discovered were compound 22 with −9.8 kcal/mol, 24 with −9.7 kcal/mol, 17 with −9.7 kcal/mol, and 19 with −9.5 kcal/mol respectively. These lead compounds were further subjected to drug-likeness and ADME prediction and found to be orally bioavailable. Six (6) new EGFRL858R/T790M inhibitors using compound 22 with the highest binding affinity as a template were designed.
Conclusion
The six newly EGFRL858R/T790M inhibitors were found to have a better binding affinity than the template used in the designing process and AZD9291 (the positive control). None of the designed compounds was found to violate more than the permissible limit set by RO5 thereby predicting their easy transportation, absorption, and diffusion. More so, the designed compounds were found to have good synthetic accessibility which indicates that these designed compounds can be easily synthesized in the laboratory.
Collapse
|
28
|
Gao F, Huang G, Xiao J. Chalcone hybrids as potential anticancer agents: Current development, mechanism of action, and structure-activity relationship. Med Res Rev 2020; 40:2049-2084. [PMID: 32525247 DOI: 10.1002/med.21698] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022]
Abstract
The continuous emergency of drug-resistant cancers and the low specificity of anticancer agents have been the major challenges in the control and treatment of cancer, making an urgent need to develop novel anticancer agents with high efficacy. Chalcones, precursors of flavonoids and isoflavonoids, exhibit structural heterogeneity and can act on various drug targets. Chalcones which demonstrated potential in vitro and in vivo activity against both drug-susceptible and drug-resistant cancers, are useful templates for the development of novel anticancer agents. Hybridization of chalcone moiety with other anticancer pharmacophores could provide the hybrids which have the potential to overcome drug resistance and improve the specificity, so it represents a promising strategy to develop novel anticancer agents. This review emphasizes the development, the mechanisms of action as well as structure-activity relationships of chalcone hybrids with potential therapeutic application for many cancers in recent 10 years.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
29
|
Synthesis, Type II diabetes inhibitory activity, antimicrobial evaluation and docking studies of indeno[1,2- c]pyrazol-4(1 H)-ones. Med Chem Res 2020; 29:46-62. [PMID: 32435124 PMCID: PMC7223412 DOI: 10.1007/s00044-019-02457-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/05/2019] [Indexed: 12/02/2022]
Abstract
We report a convenient and efficient synthesis of indeno[1,2-c]pyrazol-4(1H)-ones (4a‒o) by the reaction of a variety of 2-acyl-(1H)-indene-1,3(2H)-diones (1) and 2-hydrazinylbenzo[d]thiazole/2-hydrazinyl-6-substitutedbenzo[d]thiazoles (2) in the presence of glacial acetic acid in good yields. The structure of the compounds thus prepared were confirmed by analytical and spectral (FT-IR, 1H NMR, 13C NMR, and HRMS) techniques. All the synthesized indeno[1,2-c]pyrazol-4(1H)-ones (4a‒o) were assayed for their in vitro Type II diabetes inhibitory activity by using Acarbose as standard drug and in vitro antimicrobial activity utilizing Streptomycin and Fluconazole as reference drugs. Among the synthesized derivatives, 4e (IC50 = 6.71 μg/mL) was found to be more potent against α-glucosidase enzyme as compared with the standard Acarbose (IC50 = 9.35 μg/mL) and 4i (IC50 = 11.90 μg/mL) exhibited good inhibitory activity against α-amylase enzyme as compared with the standard Acarbose (IC50 = 22.87 μg/mL). Also, all the titled compounds showed good antimicrobial activity. In addition, in vitro α-glucosidase and α-amylase inhibition were supported by docking studies performed on the derivatives 4e and 4o, respectively. ![]()
Collapse
|
30
|
Singh YP, Tej GNVC, Pandey A, Priya K, Pandey P, Shankar G, Nayak PK, Rai G, Chittiboyina AG, Doerksen RJ, Vishwakarma S, Modi G. Design, synthesis and biological evaluation of novel naturally-inspired multifunctional molecules for the management of Alzheimer's disease. Eur J Med Chem 2020; 198:112257. [PMID: 32375073 DOI: 10.1016/j.ejmech.2020.112257] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 11/17/2022]
Abstract
In our overall goal to overcome the limitations associated with natural products for the management of Alzheimer's disease and to develop in-vivo active multifunctional cholinergic inhibitors, we embarked on the development of ferulic acid analogs. A systematic SAR study to improve upon the cholinesterase inhibition of ferulic acid with analogs that also had lower logP was carried out. Enzyme inhibition and kinetic studies identified compound 7a as a lead molecule with preferential acetylcholinesterase inhibition (AChE IC50 = 5.74 ± 0.13 μM; BChE IC50 = 14.05 ± 0.10 μM) compared to the parent molecule ferulic acid (% inhibition of AChE and BChE at 20 μM, 15.19 ± 0.59 and 19.73 ± 0.91, respectively). Molecular docking and dynamics studies revealed that 7a fits well into the active sites of AChE and BChE, forming stable and strong interactions with key residues Asp74, Trp286, and Tyr337 in AChE and with Tyr128, Trp231, Leu286, Ala328, Phe329, and Tyr341 in BChE. Compound 7a was found to be an efficacious antioxidant in a DPPH assay (IC50 = 57.35 ± 0.27 μM), and it also was able to chelate iron. Data from atomic force microscopy images demonstrated that 7a was able to modulate aggregation of amyloid β1-42. Upon oral administration, 7a exhibited promising in-vivo activity in the scopolamine-induced AD animal model and was able to improve spatial memory in cognitive deficit mice in the Y-maze model. Analog 7a could effectively reverse the increased levels of AChE and BChE in scopolamine-treated animals and exhibited potent ex-vivo antioxidant properties. These findings suggest that 7a can act as a lead molecule for the development of naturally-inspired multifunctional molecules for the management of Alzheimer's and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yash Pal Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gullanki Naga Venkata Charan Tej
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Amruta Pandey
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Khushbu Priya
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Pankaj Pandey
- National Center for Natural Products Research, University of Mississippi, University, MS, 38677, United States
| | - Gauri Shankar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Prasanta Kumar Nayak
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Geeta Rai
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Amar G Chittiboyina
- National Center for Natural Products Research, University of Mississippi, University, MS, 38677, United States
| | - Robert J Doerksen
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, United States
| | - Swati Vishwakarma
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
31
|
Yu M, Zeng M, Pan Z, Wu F, Guo L, He G. Discovery of novel akt1 inhibitor induces autophagy associated death in hepatocellular carcinoma cells. Eur J Med Chem 2020; 189:112076. [PMID: 32007668 DOI: 10.1016/j.ejmech.2020.112076] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 02/08/2023]
Abstract
In this study, a series of thieno [2,3-d]pyrimidine derivatives were designed, synthesized and evaluated as novel AKT1 inhibitors. In vitro antitumor assay results showed that compounds 9d-g and 9i potently suppressed the enzymatic activities of AKT1 and potently inhibited the proliferation of HepG2, Hep3B, Huh-7 and SMMC-7721 cancer cell lines. Among these derivatives, the compound 9f demonstrated the best inhibitory activities on AKT1 (IC50 = 0.034 μM) and Huh-7 cell (IC50 = 0.076 μM). A panel of biological assays showed that compound 9f suppressed the cellular proliferation of Huh-7 through Akt/mTOR signaling pathway mediated autophagy mechanism. Furthermore, the antitumor capacity of 9f was validated in the subcutaneous Huh-7 xenograft models. Together, our results demonstrate that a novel small-molecule Akt1 inhibitor induces autophagy associated death in hepatocellular carcinoma, which may afford a potential drug candidate for targeted cancer therapy.
Collapse
Affiliation(s)
- Meng Yu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, PR China
| | - Minghui Zeng
- Department of Pharmacy, Qionglai Medical Center Hospital of Sichuan Province, Chengdu, Sichuan, 611530, PR China
| | - Zhaoping Pan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, PR China
| | - Fengbo Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, PR China
| | - Li Guo
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
32
|
Genç H, Taşdemir V, Tozlu İ, Ögün E. Synthesis of Novel Tetra-Substituted Pyrazole Derivatives from 2,3- Furandione. LETT ORG CHEM 2019. [DOI: 10.2174/1570178616666190314150302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Synthesis of pyrazole-3-carboxylic acid was progressed via two different protocols, one of
which is solid state. Pyrazole-3-carboxylic acid was converted into different derivatives such as ester,
urea, amide and nitrile. The amide compound was converted to nitrile using SOCl2 and DMF. Solid
state heating of carboxylic acid gave decarboxylated product. Cyclization of tetra-substituted pyrazole
with hydrazines resulted in pyrazolopyridazinones. The antimicrobial activities of the synthesized pyrazole
derivatives against Bacillus cereus, Escherichia coli, Micrococcus luteus, Staphylococcus aureus,
and Saccharomyces cerevisiae were evaluated. One of the pyrazole derivatives which possess nitro group
showed antimicrobial activity in only B. cereus, a Gram-positive bacteria, with an MIC of 128 μg/mL.
Collapse
Affiliation(s)
- Hasan Genç
- Department of Sciences, Faculty of Education, Van Yuzuncu Yil University, Van 65080, Turkey
| | - Volkan Taşdemir
- Science Research and Application Center, Van Yuzuncu Yil University, Van 65080, Turkey
| | - İsrafil Tozlu
- Department of Sciences, Faculty of Education, Van Yuzuncu Yil University, Van 65080, Turkey
| | - Erdal Ögün
- Biology Department, Science Faculty, Van Yuzuncu Yil University, Van 65080, Turkey
| |
Collapse
|
33
|
Khan I, Shareef MA, Kumar CG. An overview on the synthetic and medicinal perspectives of indenopyrazoles. Eur J Med Chem 2019; 178:1-12. [DOI: 10.1016/j.ejmech.2019.05.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 02/07/2023]
|
34
|
Khan I, Ganapathi T, Shareef MA, Shaik AB, Akbar S, Rajanna A, Kamal A, Kumar CG. One‐Pot Synthesis and Biological Evaluation of Arylpropenone Aminochalcone Conjugates as Potential Apoptotic Inducers. ChemistrySelect 2019. [DOI: 10.1002/slct.201900532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Irfan Khan
- Department of Organic Synthesis and Process ChemistryCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India
| | - Thipparapu Ganapathi
- Stem Cell Research DivisionNational Institute of Nutrition (NIN)Indian Council of Medical Research (ICMR) Hyderabad 500007, Telangana India
| | - Mohd Adil Shareef
- Centre for SemiochemicalsDepartment of Fluoro-AgrochemicalsCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India
| | - Anver Basha Shaik
- Department of Organic Synthesis and Process ChemistryCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Syed Akbar
- Centre for SemiochemicalsDepartment of Fluoro-AgrochemicalsCSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | - Ajumeera Rajanna
- Stem Cell Research DivisionNational Institute of Nutrition (NIN)Indian Council of Medical Research (ICMR) Hyderabad 500007, Telangana India
| | - Ahmed Kamal
- School of Pharmaceutical Education and Research (SPER), Jamia Hamdard New Delhi 110062 India
| | - Chityal Ganesh Kumar
- Department of Organic Synthesis and Process ChemistryCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research Ghaziabad 201002 India
| |
Collapse
|