1
|
Ouertani A, Mollet C, Boughanmi Y, de Pomyers H, Mosbah A, Ouzari HI, Cherif A, Gigmes D, Maresca M, Mabrouk K. Screening of antimicrobial activity in venom: Exploring key parameters. Toxicon 2024; 251:108135. [PMID: 39433258 DOI: 10.1016/j.toxicon.2024.108135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/20/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
The escalating challenge of antibiotic resistance significantly threatens global health, underscoring the critical need for new antimicrobial agents. Venoms, increasingly recognized as reservoirs of bioactive compounds with diverse pharmacological effects, have been the focus of recent research. This work evaluates the use of various screening methodologies in assessing the antimicrobial activities of 185 venoms against some gram positive and gram negative bacteria, including E. coli ATCC 8739, B. subtilis ATCC 6633, P. aeruginosa ATCC 9027, and S. aureus ATCC 6538P species and explores the influence of settings on the findings. Furthermore, the research explored the possibility of purifying antimicrobial molecules from venoms through HPLC. Several fractions demonstrated antimicrobial activity against the tested strains. Our results reveal that the measured antimicrobial efficacy of venoms varies according to:i) venom concentration, ii) the detection method, including microdilution and radial diffusion assays, and iii) the choice of culture medium, specifically LB or MH. This strategy has allowed us, for the first time, to identify antimicrobial activity in: i) Bitis arietans venom against P. aeruginosa ATCC 9027, ii) Naja nubiae and Bothrops lanceolatus against B. subtilis ATCC 6633, P. aeruginosa ATCC 9027, and S. aureus ATCC 6538P, and iii) Hadogenes zuluanus, Mesobuthus caucasicus, Nebo hierichonticus, Opistophthalmus wahlbergii scorpions, and Mylabris quadripunctata beetles against S. aureus ATCC 6538P. These findings highlight venoms potential as effective antimicrobial resources and improve our understanding of key factors critical for an accurate detection of venoms antimicrobial properties.
Collapse
Affiliation(s)
- Awatef Ouertani
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabet, 2020, Ariana, Tunisia
| | - Chloé Mollet
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13397, Marseille, Cedex 20, France; LATOXAN SAS, 845 avenue Pierre Brossolette, 26800, Portes-les-Valence, France
| | - Yasmine Boughanmi
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13397, Marseille, Cedex 20, France; LATOXAN SAS, 845 avenue Pierre Brossolette, 26800, Portes-les-Valence, France
| | - Harold de Pomyers
- LATOXAN SAS, 845 avenue Pierre Brossolette, 26800, Portes-les-Valence, France
| | - Amor Mosbah
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabet, 2020, Ariana, Tunisia
| | - Hadda-Imene Ouzari
- Université Tunis El Manar, FST, LMBA (LR03ES03), 2092, Campus Universitaire, Tunis, Tunisia
| | - Ameur Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole SidiThabet, 2020, Ariana, Tunisia
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13397, Marseille, Cedex 20, France
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13013, Marseille, France
| | - Kamel Mabrouk
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13397, Marseille, Cedex 20, France.
| |
Collapse
|
2
|
Kumar P, Saini S, Gangwar A, Sharma R, Anal JMH. Antibacterial activity of structurally diverse natural prenylated isobavachalcone derivatives. RSC Adv 2024; 14:32771-32785. [PMID: 39429936 PMCID: PMC11484510 DOI: 10.1039/d4ra05370b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
Isobavachalcone (IBC) is a natural prenylated flavonoid containing chalcone and prenyl chain moieties with a wide range of biological and pharmacological properties. In this work, we synthesized structurally diversified derivatives (IBC-2 to IBC-10) from the natural prenylated chalcone IBC isolated from Psoralea corylifolia and assessed their antibacterial potency against the Gram-positive and Gram-negative bacterial strains S. aureus ATCC 29213, MRSA ATCC 15187, E. coli ATCC25922 and P. aeruginosa ATCC 27853. IBC and IBC-2 exhibited a minimum inhibition concentration (MIC) of 5.0 μM against S. aureus ATCC 29213, whereas IBC-3 exhibited a broad-spectrum activity against Gram-positive and Gram-negative pathogens. Cytotoxicity assessments on the murine RAW 264.7 macrophage cell line revealed minimal to moderate cytotoxicity for IBC-2 and IBC-3 with a favorable selectivity index (>10). Time- and concentration-dependent studies further supported the bactericidal nature of the compounds, as IBC, IBC-2, and IBC-3 exhibited concentration-dependent killing of S. aureus in a time-dependent manner. Furthermore, combination studies, SEM analysis, and PI staining suggest that IBC-3's mechanism of action targets the bacteria's cytoplasmic membrane or cell wall. The bioactive compounds displayed promising drug-like characteristics and a favorable pharmacokinetic profile (ADME-Tox), indicating a projected high oral bioavailability. Structure-activity relationships (SARs) drawn from this study reveal that a prenyl chain at the A-ring and hydroxy functional groups attached to the aromatic rings of chalcone scaffolds are responsible for this antibacterial potential, which will be helpful in the future discovery and development of antibiotics from natural products to overcome the antibiotic resistance crisis.
Collapse
Affiliation(s)
- Puneet Kumar
- Natural Products and Medicinal Chemistry Division, CSIR- Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sapna Saini
- Infectious Division, CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Anjali Gangwar
- Infectious Division, CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Rashmi Sharma
- Infectious Division, CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Jasha Momo H Anal
- Natural Products and Medicinal Chemistry Division, CSIR- Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
3
|
Yang W, Goh HJ, Han YT, Lee MH, Cha DS. Hispidol Regulates Behavioral Responses to Ethanol through Modulation of BK Channels: A Novel Candidate for the Treatment of Alcohol Use Disorder. Molecules 2024; 29:4531. [PMID: 39407462 PMCID: PMC11478065 DOI: 10.3390/molecules29194531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Alcohol use disorder (AUD) is the most common substance use disorder and poses a significant global health challenge. Despite pharmacological advances, no single drug effectively treats all AUD patients. This study explores the protective potential of hispidol, a 6,4'-dihydroxyaurone, for AUD using the Caenorhabditis elegans model system. Our findings demonstrate that hispidol-fed worms exhibited more pronounced impairments in thrashes, locomotory speed, and bending amplitude, indicating that hispidol exacerbated the detrimental effects of acute ethanol exposure. However, hispidol significantly improved ethanol withdrawal behaviors, such as locomotory speed and chemotaxis performance. These beneficial effects were absent in slo-1 worms (the ortholog of mammalian α-subunit of BK channel) but were restored with the slo-1(+) or hslo(+) transgene, suggesting the involvement of BK channel activity. Additionally, hispidol increased fluorescence intensity and puncta in the motor neurons of slo-1::mCherry-tagged worms, indicating enhanced BK channel expression and clustering. Notably, hispidol did not alter internal ethanol concentrations, suggesting that its action is independent of ethanol metabolism. In the mouse models, hispidol treatment also demonstrated anxiolytic activity against ethanol withdrawal. Overall, these findings suggest hispidol as a promising candidate for targeting the BK channel in AUD treatment.
Collapse
Affiliation(s)
- Wooin Yang
- College of Pharmacy, Woosuk University, Wanju 55338, Republic of Korea
| | - Hee Jae Goh
- College of Pharmacy, Woosuk University, Wanju 55338, Republic of Korea
| | - Young Taek Han
- College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Myon-Hee Lee
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Dong Seok Cha
- College of Pharmacy, Woosuk University, Wanju 55338, Republic of Korea
| |
Collapse
|
4
|
McNeill F, Twamley B, Guiry PJ. Asymmetric Synthesis of Quaternary α-Aryl Stereocentres in Benzofuran-3(2H)-Ones Using Decarboxylative Asymmetric Allylic Alkylation. Chemistry 2024; 30:e202401738. [PMID: 38752722 DOI: 10.1002/chem.202401738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Indexed: 06/27/2024]
Abstract
The Pd-catalysed decarboxylative asymmetric allylic alkylation (DAAA) has been applied to the enantioselective synthesis of sterically hindered benzofuran-3(2H)-one-derived α-aryl-β-keto esters employing the (R,R)-ANDEN phenyl Trost ligand. A range of substrates were synthesised, employing previously developed aryllead triacetate methodology to install various aryl groups. The resulting α-aryl-α-allyl benzofuran-3(2H)-one DAAA products were obtained in moderate to high yields and in enantioselectivities of up to 96 % ee, with the best results observed for substrates containing a di-ortho-substitution pattern on the aryl ring as well as naphthyl-containing substrates.
Collapse
Affiliation(s)
- Fionn McNeill
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin Belfield, Dublin 4, Ireland
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, The University of Dublin College Green, Dublin 2, Ireland
| | - Patrick J Guiry
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin Belfield, Dublin 4, Ireland
| |
Collapse
|
5
|
Di Maio A, Olleik H, Courvoisier-Dezord E, Guillier S, Neulat-Ripoll F, Haudecoeur R, Bolla JM, Casanova M, Cavalier JF, Canaan S, Pique V, Charmasson Y, Baydoun E, Hijazi A, Perrier J, Maresca M, Robin M. Design and Synthesis of Novel Amino and Acetamidoaurones with Antimicrobial Activities. Antibiotics (Basel) 2024; 13:300. [PMID: 38666976 PMCID: PMC11047580 DOI: 10.3390/antibiotics13040300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024] Open
Abstract
The development of new and effective antimicrobial compounds is urgent due to the emergence of resistant bacteria. Natural plant flavonoids are known to be effective molecules, but their activity and selectivity have to be increased. Based on previous aurone potency, we designed new aurone derivatives bearing acetamido and amino groups at the position 5 of the A ring and managing various monosubstitutions at the B ring. A series of 31 new aurone derivatives were first evaluated for their antimicrobial activity with five derivatives being the most active (compounds 10, 12, 15, 16, and 20). The evaluation of their cytotoxicity on human cells and of their therapeutic index (TI) showed that compounds 10 and 20 had the highest TI. Finally, screening against a large panel of pathogens confirmed that compounds 10 and 20 possess large spectrum antimicrobial activity, including on bioweapon BSL3 strains, with MIC values as low as 0.78 µM. These results demonstrate that 5-acetamidoaurones are far more active and safer compared with 5-aminoaurones, and that benzyloxy and isopropyl substitutions at the B ring are the most promising strategy in the exploration of new antimicrobial aurones.
Collapse
Affiliation(s)
- Attilio Di Maio
- Aix Marseille University, University Avignon, CNRS, IRD, IMBE, 13013 Marseille, France; (A.D.M.); (V.P.)
| | - Hamza Olleik
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France (E.C.-D.); (Y.C.); (J.P.)
| | - Elise Courvoisier-Dezord
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France (E.C.-D.); (Y.C.); (J.P.)
| | - Sophie Guillier
- Aix Marseille University, INSERM, SSA, MCT, 13385 Marseille, France; (S.G.); (F.N.-R.); (J.-M.B.)
| | - Fabienne Neulat-Ripoll
- Aix Marseille University, INSERM, SSA, MCT, 13385 Marseille, France; (S.G.); (F.N.-R.); (J.-M.B.)
| | | | - Jean-Michel Bolla
- Aix Marseille University, INSERM, SSA, MCT, 13385 Marseille, France; (S.G.); (F.N.-R.); (J.-M.B.)
| | - Magali Casanova
- Aix-Marseille University, CNRS, LISM UMR7255, IMM FR3479, 13009 Marseille, France; (M.C.); (J.-F.C.); (S.C.)
| | - Jean-François Cavalier
- Aix-Marseille University, CNRS, LISM UMR7255, IMM FR3479, 13009 Marseille, France; (M.C.); (J.-F.C.); (S.C.)
| | - Stéphane Canaan
- Aix-Marseille University, CNRS, LISM UMR7255, IMM FR3479, 13009 Marseille, France; (M.C.); (J.-F.C.); (S.C.)
| | - Valérie Pique
- Aix Marseille University, University Avignon, CNRS, IRD, IMBE, 13013 Marseille, France; (A.D.M.); (V.P.)
| | - Yolande Charmasson
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France (E.C.-D.); (Y.C.); (J.P.)
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut 1107, Lebanon;
| | - Akram Hijazi
- Plateforme de Recherche et D’analyse en Sciences de L’environnement (EDST-PRASE), Beirut 1107, Lebanon;
| | - Josette Perrier
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France (E.C.-D.); (Y.C.); (J.P.)
| | - Marc Maresca
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, 13013 Marseille, France (E.C.-D.); (Y.C.); (J.P.)
| | - Maxime Robin
- Aix Marseille University, University Avignon, CNRS, IRD, IMBE, 13013 Marseille, France; (A.D.M.); (V.P.)
| |
Collapse
|
6
|
John D, George K, Radhakrishnan EK. A concise update on the synthetic transformation of aurones via asymmetric cycloaddition, annulation, and Michael/Mannich reactions. RSC Adv 2024; 14:6339-6359. [PMID: 38380237 PMCID: PMC10877098 DOI: 10.1039/d3ra08575a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
This review provides a comprehensive overview of the significance of aurone cores in organic chemistry, highlighting their crucial role as synthetic intermediates. With their innate electrophilic reactivity and convenient accessibility, aurone cores play a vital role in catalysing the development of novel methodologies and facilitating the creation of intricate compounds. The objective of this review is to present a current and insightful compilation that summarizes the progress in aurone synthetic transformations, focusing on diverse cycloaddition ([3 + 2], [4 + 2], [4 + 3], [10 + 2]) and annulation reactions.
Collapse
Affiliation(s)
- Deepa John
- Department of Chemistry, Vellore Institute of Technology Vellore India
| | - Kevin George
- Department of Chemistry, Vellore Institute of Technology Vellore India
| | | |
Collapse
|
7
|
Caburet J, Verdirosa F, Moretti M, Roulier B, Simoncelli G, Haudecoeur R, Ghazi S, Jamet H, Docquier JD, Boucherle B, Peuchmaur M. Aurones and derivatives as promising New Delhi metallo-β-lactamase (NDM-1) inhibitors. Bioorg Med Chem 2024; 97:117559. [PMID: 38109811 DOI: 10.1016/j.bmc.2023.117559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Bacterial resistance is undoubtedly one of the main public health concerns especially with the emergence of metallo-β-lactamases (MBLs) able to hydrolytically inactivate β-lactam antibiotics. Currently, there are no inhibitors of MBLs in clinical use to rescue antibiotic action and the New Delhi metallo-β-lactamase-1 (NDM-1) is still considered as one of the most relevant targets for inhibitor development. Following a fragment-based strategy to find new NDM-1 inhibitors, we identified aurone as a promising scaffold. A series of 60 derivatives were then evaluated and two of them were identified as promising inhibitors with Ki values as low as 1.7 and 2.5 µM. Moreover, these two most active compounds were able to potentiate meropenem in in vitro antimicrobial susceptibility assays. The molecular modelling provided insights about their likely interactions with the active site of NDM-1, thus enabling further improvement in the structure of this new inhibitor family.
Collapse
Affiliation(s)
| | - Federica Verdirosa
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, 53100 Siena, Italy
| | - Matis Moretti
- Univ. Grenoble Alpes, CNRS, DPM, 38000 Grenoble, France
| | | | - Giorgia Simoncelli
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, 53100 Siena, Italy
| | | | - Somayeh Ghazi
- Univ. Grenoble Alpes, CNRS, DPM, 38000 Grenoble, France
| | - Hélène Jamet
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France
| | - Jean-Denis Docquier
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, 53100 Siena, Italy; Laboratoire de Bactériologie Moléculaire, UR-InBioS, Université de Liège, 4000 Liège, Belgium
| | | | | |
Collapse
|
8
|
Saroha B, Kumar G, Arya P, Raghav N, Kumar S. Some morpholine tethered novel aurones: Design, synthesis, biological, kinetic and molecular docking studies. Bioorg Chem 2023; 140:106805. [PMID: 37634269 DOI: 10.1016/j.bioorg.2023.106805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
Enzymes are the biological macromolecules that have emerged as an important drug target as their upregulation/imbalance leads to various pathological conditions, such as inflammation, parasitic infection, Alzheimer's, cancer, and many others. Here, we designed and synthesized some morpholine tethered novel aurones and evaluated them as potential inhibitors for CTSB, α-amylase, lipase and activator for trypsin. All the newly synthesized compounds were fully characterized by various spectroscopic techniques (1H NMR, 13C NMR, HRMS) and the Z-configuration to them was assigned based on single crystal XRD data and 1H NMR chemical shift values. Further, the hybrids were evaluated for their intracellular (cathepsin B) and extracellular (trypsin, lipase, amylase) enzyme inhibition potencies. The in-vitro inhibition screening against cathepsin B revealed that most of the synthesized compounds are good competitive inhibitors (% inhibition = 22.91-75.04), with 6q (% inhibition = 75.04) and 6r (% inhibition = 71.13) as the eminent inhibitors of the series. At the same time, they exhibited weak to moderate inhibition towards amylase (% inhibition = 7.22-22.48) and lipase (% inhibition = 16.29-54.83). A significant trypsin activation (% activation = 107.42-196.47) was observed even at the micromolar concentration of the compounds. Furthermore, the drug-modeling studies showed a good correlation between the in-vitro experimental results and the calculated binding affinity of the screened compounds with all the tested enzymes. These findings are expected to provide a new lead in drug development for different pathological disorders wherever these enzymes are involved.
Collapse
Affiliation(s)
- Bhavna Saroha
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Gourav Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India; Department of Biomedical Engineering, Oregon Health & Science University (OHSU), 2730 S Moody Ave., Portland, OR 97201
| | - Priyanka Arya
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
9
|
Fatima M, Aslam S, Zafar AM, Irfan A, Khan MA, Ashraf M, Faisal S, Noreen S, Shazly GA, Shah BR, Bin Jardan YA. Exploring the Synthetic Chemistry of Phenyl-3-(5-aryl-2-furyl)- 2-propen-1-ones as Urease Inhibitors: Mechanistic Approach through Urease Inhibition, Molecular Docking and Structure-Activity Relationship. Biomedicines 2023; 11:2428. [PMID: 37760869 PMCID: PMC10525509 DOI: 10.3390/biomedicines11092428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Furan chalcone scaffolds belong to the most privileged and promising oxygen-containing heterocyclic class of compounds, which have a wide spectrum of therapeutic applications in the field of pharmaceutics, pharmacology, and medicinal chemistry. This research described the synthesis of a series of twelve novel and seven reported furan chalcone (conventional synthetic approach) analogues 4a-s through the application of microwave-assisted synthetic methodology and evaluated for therapeutic inhibition potential against bacterial urease enzyme. In the first step, a series of nineteen substituted 5-aryl-2-furan-2-carbaldehyde derivatives 3a-s were achieved in moderate to good yields (40-70%). These substituted 5-aryl-2-furan-2-carbaldehyde derivatives 3a-s were condensed with acetophenone via Claisen-Schmidt condensation to furnish 19 substituted furan chalcone scaffolds 4a-s in excellent yields (85-92%) in microwave-assisted synthetic approach, while in conventional methodology, these furan chalcone 4a-s were furnished in good yield (65-90%). Furan chalcone structural motifs 4a-s were characterized through elemental analysis and spectroscopic techniques. These nineteen (19)-afforded furan chalcones 4a-s were screened for urease inhibitory chemotherapeutic efficacy and most of the furan chalcones displayed promising urease inhibition activity. The most active urease inhibitors were 1-phenyl-3-[5-(2',5'-dichlorophenyl)-2-furyl]-2-propen-1-one 4h with an IC50 value of 16.13 ± 2.45 μM, and 1-phenyl- 3-[5-(2'-chlorophenyl)-2-furyl] -2-propen-1-one 4s with an IC50 value of 18.75 ± 0.85 μM in comparison with reference drug thiourea (IC50 = 21.25 ± 0.15 μM). These furan chalcone derivatives 4h and 4s are more efficient urease inhibitors than reference drug thiourea. Structure-activity relationship (SAR) revealed that the 2,5-dichloro 4h and 2-chloro 4s moiety containing furan chalcone derivatives may be considered as potential lead reagents for urease inhibition. The in silico molecular docking study results are in agreement with the experimental biological findings. The results of this study may be helpful in the future drug discovery and designing of novel efficient urease inhibitory agents from this biologically active class of furan chalcones.
Collapse
Affiliation(s)
- Miraj Fatima
- Department of Chemistry, The Women University, Multan 66000, Pakistan
| | - Samina Aslam
- Department of Chemistry, The Women University, Multan 66000, Pakistan
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ansa Madeeha Zafar
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Chemistry, Government Sadiq Women University, Bahawalpur 63100, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Misbahul Ain Khan
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Ashraf
- Department of Biotechnology and Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Shah Faisal
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan
| | - Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Gamal A. Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bakht Ramin Shah
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Szepe CK, Kafle A, Bhattarai S, Handy ST, Farone MB. Evaluation of the Antibacterial Effect of Aurone-Derived Triazoles on Staphylococcus aureus. Antibiotics (Basel) 2023; 12:1370. [PMID: 37760667 PMCID: PMC10525585 DOI: 10.3390/antibiotics12091370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Infections caused by antibiotic-resistant bacteria continue to pose a significant public health threat despite their overall decreasing numbers in the last two decades. One group of compounds fundamental to the search for new agents is low-cost natural products. In this study, we explored a group of newly synthesized novel aurone-derived triazole compounds to identify those with pharmaceutical potential as inhibitors of antibiotic-resistant Staphylococcus aureus. Using the broth microdilution method, antibacterial activities against methicillin-resistant S. aureus ATCC 43300 (MRSA) and methicillin-sensitive S. aureus ATCC 29213 (MSSA) were identified for four aurone-derived triazole compounds, AT106, AT116, AT125, and AT137, using the half-maximal inhibitory concentrations for the bacteria (IC50) and mammalian cell lines (CC50). Compounds AT125 and AT137 were identified to have pharmaceutical potential as the IC50 values against MRSA were 5.412 µM and 3.870 µM, whereas the CC50 values measured on HepG2 cells were 50.57 µM and 39.81 µM, respectively, resulting in selectivity indexes (SI) > 10. Compounds AT106 and AT116 were also selected for further study. IC50 values for these compounds were 5.439 µM and 3.178 µM, and the CC50 values were 60.33 µM and 50.87 µM, respectively; however, SI values > 10 were for MSSA only. Furthermore, none of the selected compounds showed significant hemolytic activity for human erythrocytes. We also tested the four compounds against S. aureus biofilms. Although AT116 and AT125 successfully disrupted MSSA biofilms, there was no measurable potency against MRSA biofilms. Checkerboard antibiotic assays to identify inhibitory mechanisms for these compounds indicated activity against bacterial cell membranes and cell walls, supporting the pharmaceutical potential for aurone-derived triazoles against antibiotic-resistant bacteria. Examining structure-activity relationships between the four compounds in this study and other aurone-derived triazoles in our library suggest that substitution with a halogen on either the salicyl ring or triazole aryl group along with triazoles having nitrile groups improves anti-Staphylococcal activity with the location of the functionality being very important.
Collapse
Affiliation(s)
- Csilla Klara Szepe
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA;
| | - Arjun Kafle
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA (S.T.H.)
| | - Shrijana Bhattarai
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA (S.T.H.)
| | - Scott T. Handy
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA (S.T.H.)
| | - Mary B. Farone
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA;
| |
Collapse
|
11
|
Calvillo-Páez V, Plascencia-Jatomea M, Ochoa-Terán A, Del-Toro-Sánchez CL, González-Vega RI, González-Martínez SM, Ochoa Lara K. Tetrandrine Derivatives as Promising Antibacterial Agents. ACS OMEGA 2023; 8:28156-28164. [PMID: 37576675 PMCID: PMC10413380 DOI: 10.1021/acsomega.3c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023]
Abstract
This work reports on the antibacterial activity of two tetrandrine derivatives, with acridine (MAcT) and anthracene (MAnT) units, against Gram-positive and Gram-negative bacteria of clinical importance by the broth microdilution method as well as their antioxidant activity against ABTS•+ and DPPH•+ radicals. Unlike natural tetrandrine, its derivatives inhibited bacterial growth, showing selectivity against Staphylococcus aureus with notable activity of MAnT (MIC = 0.035 μg/mL); this compound also has good activity against the ABTS•+ radical (IC50 = 4.59 μg/mL). Cell membrane integrity studies and reactive oxygen species (ROS) detection by fluorescent stains helped to understand possible mechanisms related to antibacterial activity, while electrophoretic mobility assays showed that the derivatives can bind to bacterial DNA plasmid. The results indicate that MAnT can induce a general state of oxidative stress in S. aureus and Escherichia coli, while MAcT induces an oxidative response in S. aureus. Complementary electrochemical studies were included.
Collapse
Affiliation(s)
- Viviana
I. Calvillo-Páez
- Centro
de Graduados e Investigación en Química, Tecnológico Nacional de México, Campus Tijuana, CP 22444 Tijuana, B.C., México
| | - Maribel Plascencia-Jatomea
- Departamento
de Investigación y Posgrado en Alimentos, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro, CP 83000 Hermosillo, Sonora, México
| | - Adrián Ochoa-Terán
- Centro
de Graduados e Investigación en Química, Tecnológico Nacional de México, Campus Tijuana, CP 22444 Tijuana, B.C., México
| | - Carmen L. Del-Toro-Sánchez
- Departamento
de Investigación y Posgrado en Alimentos, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro, CP 83000 Hermosillo, Sonora, México
| | - Ricardo I. González-Vega
- Departamento
de Investigación y Posgrado en Alimentos, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro, CP 83000 Hermosillo, Sonora, México
| | - Sandra M. González-Martínez
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro, CP 83000, Hermosillo, Sonora, México
| | - Karen Ochoa Lara
- Departamento
de Investigación en Polímeros y Materiales, Universidad de Sonora, Rosales y Encinas s/n, Col. Centro, CP 83000, Hermosillo, Sonora, México
| |
Collapse
|
12
|
Design, Synthesis, and Biological Evaluation of 3-Substituted-Indolin-2-One Derivatives as Potent Anti-Inflammatory Agents. Int J Mol Sci 2023; 24:ijms24032066. [PMID: 36768389 PMCID: PMC9916847 DOI: 10.3390/ijms24032066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
This study aimed to synthesize and evaluate the anti-inflammatory activity of 3-substituted-indolin-2-one derivatives. Cell viability of 3-substituted-indolin-2-one derivatives was measured with the EZ-Cytox reagent; interleukin (IL)-6, tumor necrosis factor (TNF)-α, and inducible NOS mRNA levels were measured using Taqman qRT-PCR; pro-inflammatory cytokine IL-6 and TNF-α levels were determined using ELISA kits; the phosphorylation of Akt, JNK, ERK, p38, p65, and IκB protein levels were measured by immunoblotting. Among the nineteen 3-substituted-indolin-2-one derivatives synthesized, 3-(3-hydroxyphenyl)-indolin-2-one showed the highest anti-inflammatory activity, inhibiting the nitric oxide production related to inflammation, suppressing the production of TNF-α and IL-6 in a concentration-dependent manner and mRNA expression. Moreover, 3-(3-hydroxyphenyl)-indolin-2-one significantly inhibited lipopolysaccharide (LPS)-induced signal pathways such as the Akt, MAPK, and NF-κB signaling pathways. Our findings revealed that a 3-substituted-indolin-2-one derivative, 3-(3-hydroxyphenyl)-indolin-2-one, possesses excellent anti-inflammatory activity and can be considered for future research.
Collapse
|
13
|
Al-Rooqi MM, Mughal EU, Raja QA, Hussein EM, Naeem N, Sadiq A, Asghar BH, Moussa Z, Ahmed SA. Flavonoids and related privileged scaffolds as potential urease inhibitors: a review. RSC Adv 2023; 13:3210-3233. [PMID: 36756398 PMCID: PMC9869662 DOI: 10.1039/d2ra08284e] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Infections caused by bacteria are a significant issue on a global scale, and imperative action is required to discover novel or improved therapeutic agents. Flavonoids are a class of plant-derived compounds that have a variety of potentially useful bioactivities. These activities include immediate antimicrobial properties, synergistic effect with antimicrobials, ferocious repression of pathogenicity, anti-urease activity etc. This review summarizes current studies concerning anti-urease actions of flavonoids as well as structural-activity correlation investigations of the flavonoid core structure. It is possible that if researchers investigate the many structural changes that may be made in flavonoid rings, they'll be able to build up novel compounds that have powerful and effective anti-urease properties.
Collapse
Affiliation(s)
- Munirah M Al-Rooqi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | | | | | - Essam M Hussein
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University 21955 Makkah Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University 71516 Assiut Egypt
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat-50700 Pakistan
| | - Amina Sadiq
- Department of Chemistry, Government College Women University Sialkot-51300 Pakistan
| | - Basim H Asghar
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University P.O. Box 15551, Al Ain Abu Dhabi United Arab Emirates
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University 21955 Makkah Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|
14
|
Roulier B, Rush I, Lazinski LM, Pérès B, Olleik H, Royal G, Fishman A, Maresca M, Haudecoeur R. Resorcinol-based hemiindigoid derivatives as human tyrosinase inhibitors and melanogenesis suppressors in human melanoma cells. Eur J Med Chem 2023; 246:114972. [PMID: 36462443 DOI: 10.1016/j.ejmech.2022.114972] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Human tyrosinase (hsTYR) catalyzes the key steps of melanogenesis, making it a privileged target for reducing melanin production in vivo. However, very few hsTYR inhibitors have been reported so far in the literature, whereas thousands of mushroom tyrosinase (abTYR) inhibitors are known. Yet, as these enzymes are actually very different, including at their active sites, there is an urgent need for new true hsTYR inhibitors in order to enable human-directed pharmacological and dermocosmetic applications without encountering the inefficiency and toxicity issues currently triggered by kojic acid or hydroquinone. Starting from the two most active compounds reported to date, i.e. a 2-hydroxypyridine-embedded aurone and thiamidol, we combined herein key structural elements and developed new nanomolar hsTYR inhibitors with cell-based activity. From a complete series of thirty-eight synthesized derivatives, excellent inhibition values were obtained for two compounds in both human melanoma cell lysates and purified hsTYR assays, and a promising improvement was observed in whole cell experiments.
Collapse
Affiliation(s)
- Brayan Roulier
- Univ. Grenoble Alpes, CNRS 5063, DPM, 38000, Grenoble, France
| | - Inbal Rush
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Leticia M Lazinski
- Univ. Grenoble Alpes, CNRS 5063, DPM, 38000, Grenoble, France; Univ. Grenoble Alpes, CNRS 5250, DCM, 38000, Grenoble, France
| | - Basile Pérès
- Univ. Grenoble Alpes, CNRS 5063, DPM, 38000, Grenoble, France
| | - Hamza Olleik
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, 13397, Marseille, France
| | - Guy Royal
- Univ. Grenoble Alpes, CNRS 5250, DCM, 38000, Grenoble, France
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Marc Maresca
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, 13397, Marseille, France
| | | |
Collapse
|
15
|
Li Y, Wu H, Zhao H, Tang D, Aisa HA, Hou X. Synthesis and Anti-Hepatocarcinoma Effects of Peracetyl Glycosyl Aurone Derivatives. RUSS J GEN CHEM+ 2023. [DOI: 10.1134/s1070363223010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
16
|
Akber Aisa H, Niu C, Wu H, Maimaitijiang A, Tang D, Xie B. Synthesis and Antitumor Activity of Heterocylic Aurone and Its Analogue Indanone Derivatives. HETEROCYCLES 2023. [DOI: 10.3987/com-22-14764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Lazinski LM, Royal G, Robin M, Maresca M, Haudecoeur R. Bioactive Aurones, Indanones, and Other Hemiindigoid Scaffolds: Medicinal Chemistry and Photopharmacology Perspectives. J Med Chem 2022; 65:12594-12625. [PMID: 36126323 DOI: 10.1021/acs.jmedchem.2c01150] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hemiindigoids comprise a range of natural and synthetic scaffolds that share the same aromatic hydrocarbon backbone as well as promising biological and optical properties. The encouraging therapeutic potential of these scaffolds has been unraveled by many studies over the past years and uncovered representants with inspiring pharmacophoric features such as the acetylcholinesterase inhibitor donezepil and the tubulin polymerization inhibitor indanocine. In this review, we summarize the last advances in the medicinal potential of hemiindigoids, with a special attention to molecular design, structure-activity relationship, ligand-target interactions, and mechanistic explanations covering their effects. As their strong fluorogenic potential and photoswitch behavior recently started to be highlighted and explored in biology, giving rise to the development of novel fluorescent probes and photopharmacological agents, we also discuss these properties in a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Leticia M Lazinski
- Université Grenoble Alpes, CNRS 5063, DPM, 38000 Grenoble, France.,Université Grenoble Alpes, CNRS 5250, DCM, 38000 Grenoble, France
| | - Guy Royal
- Université Grenoble Alpes, CNRS 5250, DCM, 38000 Grenoble, France
| | - Maxime Robin
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), Aix Marseille Université, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Marc Maresca
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | | |
Collapse
|
18
|
Li Y, Zhao H, Niu C, Aisa HA, Hou X. Synthesis and Antimicrobial Activity of Aurone Derivatives Containing Heterocyclic Substituents. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222080254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Khan AI, Nazir S, Ullah A, Haque MNU, Maharjan R, Simjee SU, Olleik H, Courvoisier-Dezord E, Maresca M, Shaheen F. Design, Synthesis and Characterization of [G10a]-Temporin SHa Dendrimers as Dual Inhibitors of Cancer and Pathogenic Microbes. Biomolecules 2022; 12:biom12060770. [PMID: 35740895 PMCID: PMC9221442 DOI: 10.3390/biom12060770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 05/29/2022] [Indexed: 02/05/2023] Open
Abstract
As the technologies for peptide synthesis and development continue to mature, antimicrobial peptides (AMPs) are being widely studied as significant contributors in medicinal chemistry research. Furthermore, the advancement in the synthesis of dendrimers’ design makes dendrimers wonderful nanostructures with distinguishing properties. This study foregrounds a temporin SHa analog, [G10a]-SHa, and its dendrimers as globular macromolecules possessing anticancer and antibacterial activities. These architectures of temporin SHa, named as [G10a]-SHa, its dendrimeric analogs [G10a]2-SHa and [G10a]3-SHa, and [G10a]2-SHa conjugated with a polymer molecule, i.e., Jeff-[G10a]2-SHa, were synthesized, purified on RP-HPLC and UPLC and fully characterized by mass, NMR spectroscopic techniques, circular dichroism, ultraviolet, infrared, dynamic light scattering, and atomic force microscopic studies. In pH- and temperature-dependent studies, all of the peptide dendrimers were found to be stable in the temperature range up to 40–60 °C and pH values in the range of 6–12. Biological-activity studies showed these peptide dendrimers possessed improved antibacterial activity against different strains of both Gram-positive and Gram-negative strains. Together, these dendrimers also possessed potent selective antiproliferative activity against human cancer cells originating from different organs (breast, lung, prostate, pancreas, and liver). The high hemolytic activity of [G10a]2-SHa and [G10a]3-SHa dendrimers, however, limits their use for topical treatment, such as in the case of skin infection. On the contrary, the antibacterial and anticancer activities of Jeff-[G10a]2-SHa, associated with its low hemolytic action, make it potentially suitable for systemic treatment.
Collapse
Affiliation(s)
- Arif Iftikhar Khan
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (A.I.K.); (S.N.); (A.U.); (M.N.u.H.)
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (R.M.); (S.U.S.)
| | - Shahzad Nazir
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (A.I.K.); (S.N.); (A.U.); (M.N.u.H.)
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (R.M.); (S.U.S.)
| | - Aaqib Ullah
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (A.I.K.); (S.N.); (A.U.); (M.N.u.H.)
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (R.M.); (S.U.S.)
| | - Muhammad Nadeem ul Haque
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (A.I.K.); (S.N.); (A.U.); (M.N.u.H.)
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (R.M.); (S.U.S.)
| | - Rukesh Maharjan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (R.M.); (S.U.S.)
| | - Shabana U. Simjee
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (R.M.); (S.U.S.)
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Hamza Olleik
- Aix-Marseille Univ., CNRS, Centrale Marseille, iSm2, 13013 Marseille, France; (H.O.); (E.C.-D.)
| | | | - Marc Maresca
- Aix-Marseille Univ., CNRS, Centrale Marseille, iSm2, 13013 Marseille, France; (H.O.); (E.C.-D.)
- Correspondence: (M.M.); (F.S.); Tel.: +33-0413945609 (M.M.); +92-3313859073 (F.S.)
| | - Farzana Shaheen
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (A.I.K.); (S.N.); (A.U.); (M.N.u.H.)
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; (R.M.); (S.U.S.)
- Correspondence: (M.M.); (F.S.); Tel.: +33-0413945609 (M.M.); +92-3313859073 (F.S.)
| |
Collapse
|
20
|
Liu X, Shen J, Zhu K. Antibacterial activities of plant-derived xanthones. RSC Med Chem 2022; 13:107-116. [PMID: 35308024 PMCID: PMC8864485 DOI: 10.1039/d1md00351h] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/20/2021] [Indexed: 07/26/2023] Open
Abstract
The increasing threat to global health posed by antibiotic resistance remains a serious concern. This troublesome scenario has steered a need for the discovery and evaluation of novel antibacterial agents. Natural products are the main sources of antimicrobials used in clinical practice, serving as a rich reservoir for the discovery of new antibiotics. Pharmaceutical phenolics especially xanthones widely exist in the plant kingdom, and are important plant metabolites. They possess versatile biological activities, including antiviral, antibacterial, neurotrophic, and anticancer. In the present study, we focus on the antibacterial activities of phytoxanthones and summarize their structures and sources, categories and drug-likeness evaluations, and antibacterial activities. A total of 226 different plant xanthones are identified through the NETs screening, and most of them are distributed in Clusiaceae family. These phytoxanthones are divided into four groups according to the intrinsic structural properties, including the most common simple xanthones and the majority of biprenylated ones. Moreover, their physicochemical parameters are calculated and the structure-activity relationships are discussed as well. These results indicate that the biprenylated xanthone derivatives may be promising antibacterial candidates and that the natural products of plants may be a poorly understood repository for the discovery of novel antibacterial agents.
Collapse
Affiliation(s)
- Xiaojia Liu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University Beijing 00193 China
| | - Jianzhong Shen
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University Beijing 00193 China
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, China Agricultural University Beijing 100193 China
| | - Kui Zhu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University Beijing 00193 China
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, China Agricultural University Beijing 100193 China
| |
Collapse
|
21
|
L-Proline-Based Natural Deep Eutectic Solvents as Efficient Solvents and Catalysts for the Ultrasound-Assisted Synthesis of Aurones via Knoevenagel Condensation. Catalysts 2022. [DOI: 10.3390/catal12030249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Aurones are minor flavonoids that possess a wide variety of bioactivity, including antioxidant, anticancer, and enzyme inhibitory activity. L-proline-based natural deep eutectic solvents (NaDES) were synthesized and applied as solvents and catalysts for the Knoevenagel condensation reaction between benzofuranone and substituted benzaldehydes to produce aurones in high yields and purity. The reaction between benzofuranone and vanillin served as the model reaction. After screening three NaDESs, and testing microwave, as well as ultrasound as energy sources, we concluded that the optimum results are obtained using L-proline/glycerol 1:2 as catalyst and solvent and ultrasound irradiation. The scope of the reaction was evaluated using a variety of benzaldehydes, and the corresponding aurones were obtained in moderate to satisfactory yields (57–89%) and high purity. An important additional feature of the described methodology is the recyclability and reusability of the NaDES, which was recycled and effectively reused after 6 cycles.
Collapse
|
22
|
Hirazawa S, Saito Y, Sagano M, Goto M, Nakagawa-Goto K. Chemical Space Expansion of Flavonoids: Induction of Mitotic Inhibition by Replacing Ring B with a 10π-Electron System, Benzo[ b]thiophene. JOURNAL OF NATURAL PRODUCTS 2022; 85:136-147. [PMID: 35026948 DOI: 10.1021/acs.jnatprod.1c00867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Natural products, which are enzymatically biosynthesized, have a broad range of biological activities. In particular, many flavonoids are known to contribute to human health with low toxicity. We previously reported that novel benzo[b]thiophenyl (BT) flavones with a 10π-electron BT ring B replacing the usual 6π-electron phenyl ring showed potent antiproliferative activity against human tumor cell lines. Interestingly, the activity profiles against cell cycle progression of the BT-flavones totally changed depending on the combination of substituents at the C-3 and C-5 positions. This finding encouraged an extension of these studies on the impact of BT to related flavonoids, such as chalcones, isoflavones, and aurones. Accordingly, 10 isoflavones, 29 chalcones, and four aurones were synthesized and evaluated for antiproliferative activity against five human tumor cell lines including a multi-drug-resistant cell line. Among these compounds, BT-isoflavone 7, BT-chalcones 48, 52, 57, 66, and 77, and BT-aurone 80 displayed significant antiproliferative effects against all tested tumor cell lines. The structure-antiproliferative activity relationships clearly demonstrated the importance of BT instead of phenyl as ring B for the isoflavone and chalcones, but not the aurones. Flow cytometry and immunocytochemical studies demonstrated that the active BT-flavonoids led to cell cycle arrest at the prometaphase by induction of multipolar spindle formation. The present studies should contribute greatly to the synthesis and functional analysis of biologically active flavonoid derivatives for chemical space expansion.
Collapse
Affiliation(s)
- Sachika Hirazawa
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yohei Saito
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Momoko Sagano
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Masuo Goto
- Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
| | - Kyoko Nakagawa-Goto
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
- Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
| |
Collapse
|
23
|
Sun ZG, Li ZN, Zhang JM, Hou XY, Yeh SM, Ming X. Recent Development of Flavonoids with Various Activities. Curr Top Med Chem 2022; 22:305-329. [PMID: 35040404 DOI: 10.2174/1568026622666220117111858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Flavonoids, a series of compounds with C6-C3-C6 structure, mostly originate from plant metabolism. Flavonoids have shown beneficial effects on many aspects of human physiology and health. Recently, many flavonoids with various activities have been discovered, which has led to more and more studies focusing on their physiological and pharmacodynamic activities. The anti-cancer and anti-viral activities especially have attracted the attention of many researchers. Therefore, the discovery and development of flavonoids as anti-disease drugs has great potential and may make significant contribution to fighting diseases. This review focus on the discovery and development of flavonoids in medicinal chemistry in recent years.
Collapse
Affiliation(s)
- Zhi-Gang Sun
- Central Laboratory, Linyi Central Hospital, No.17 Jiankang Road, Linyi 276400, China
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Zhi-Na Li
- Central Laboratory, Linyi Central Hospital, No.17 Jiankang Road, Linyi 276400, China
| | - Jin-Mai Zhang
- Room 205, BIO-X white house, Shanghai Jiao Tong University, No.1954 Huashan Road, Shanghai 200030, P.R. China
| | - Xiao-Yan Hou
- Qilu Pharmaceutical Co., Ltd, 8888 Lvyou Road, High-tech Zone, Jinan, 250104, P.R. China
| | - Stacy Mary Yeh
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Xin Ming
- Departments of Cancer Biology and Biomedical Engineering, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
24
|
Chen YJ, Xu HB, Liu H, Dong L. Highly-selective synthesis of functionalized spirobenzofuranones and diketones. Org Chem Front 2022. [DOI: 10.1039/d2qo00677d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient and atom-economical rhodium(iii)-catalyzed highly-selective hydroacylation for the synthesis of spirobenzofuranones and diketones has been successfully developed.
Collapse
Affiliation(s)
- Yin-Jun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hui-Bei Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hao Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
25
|
Aurones: A Golden Resource for Active Compounds. Molecules 2021; 27:molecules27010002. [PMID: 35011233 PMCID: PMC8746708 DOI: 10.3390/molecules27010002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/16/2022] Open
Abstract
Deemed as poorly represented in nature, aurones have been often overlooked by researchers compared to other members of the flavonoid superfamily. However, over the past two decades, they have been reassessed by the scientific community, who are increasingly appreciating their ability to modulate several biological pathways. This review summarizes the recent literature on this class of compounds, which has been analyzed from both a chemical and a functional point of view. Original articles, reviews and editorials featured in Pubmed and Scifinder over the last twenty years have been taken into account to provide the readers with a view of the chemical strategies to obtain them, their functional properties, and their potential of technological use. The resulting comprehensive picture aims at raising the awareness of these natural derivatives as effective drug candidates, fostering the development of novel synthetic analogues.
Collapse
|
26
|
Kostopoulou I, Tzani A, Polyzos NI, Karadendrou MA, Kritsi E, Pontiki E, Liargkova T, Hadjipavlou-Litina D, Zoumpoulakis P, Detsi A. Exploring the 2'-Hydroxy-Chalcone Framework for the Development of Dual Antioxidant and Soybean Lipoxygenase Inhibitory Agents. Molecules 2021; 26:2777. [PMID: 34066803 PMCID: PMC8125951 DOI: 10.3390/molecules26092777] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 12/28/2022] Open
Abstract
2'-hydroxy-chalcones are naturally occurring compounds with a wide array of bioactivity. In an effort to delineate the structural features that favor antioxidant and lipoxygenase (LOX) inhibitory activity, the design, synthesis, and bioactivity profile of a series of 2'-hydroxy-chalcones bearing diverse substituents on rings A and B, are presented. Among all the synthesized derivatives, chalcone 4b, bearing two hydroxyl substituents on ring B, was found to possess the best combined activity (82.4% DPPH radical scavenging ability, 82.3% inhibition of lipid peroxidation, and satisfactory LOX inhibition value (IC50 = 70 μM). Chalcone 3c, possessing a methoxymethylene substituent on ring A, and three methoxy groups on ring B, exhibited the most promising LOX inhibitory activity (IC50 = 45 μM). A combination of in silico techniques were utilized in an effort to explore the crucial binding characteristics of the most active compound 3c and its analogue 3b, to LOX. A common H-bond interaction pattern, orienting the hydroxyl and carbonyl groups of the aromatic ring A towards Asp768 and Asn128, respectively, was observed. Regarding the analogue 3c, the bulky (-OMOM) group does not seem to participate in a direct binding, but it induces an orientation capable to form H-bonds between the methoxy groups of the aromatic ring B with Trp130 and Gly247.
Collapse
Affiliation(s)
- Ioanna Kostopoulou
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (I.K.); (A.T.); (N.-I.P.); (M.-A.K.)
| | - Andromachi Tzani
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (I.K.); (A.T.); (N.-I.P.); (M.-A.K.)
| | - Nestor-Ioannis Polyzos
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (I.K.); (A.T.); (N.-I.P.); (M.-A.K.)
| | - Maria-Anna Karadendrou
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (I.K.); (A.T.); (N.-I.P.); (M.-A.K.)
| | - Eftichia Kritsi
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Avenue, 11635 Athens, Greece; (E.K.); (P.Z.)
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
| | - Eleni Pontiki
- Laboratory of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.P.); (T.L.); (D.H.-L.)
| | - Thalia Liargkova
- Laboratory of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.P.); (T.L.); (D.H.-L.)
| | - Dimitra Hadjipavlou-Litina
- Laboratory of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.P.); (T.L.); (D.H.-L.)
| | - Panagiotis Zoumpoulakis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48, Vas. Constantinou Avenue, 11635 Athens, Greece; (E.K.); (P.Z.)
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (I.K.); (A.T.); (N.-I.P.); (M.-A.K.)
| |
Collapse
|
27
|
Fu R, Lu Y, Yue G, Wu D, Xu L, Song H, Cao C, Yu X, Zong Y. Direct Synthesis of 3-Coumaranones with Calcium Carbide as an Acetylene Source. Org Lett 2021; 23:3141-3145. [PMID: 33819044 DOI: 10.1021/acs.orglett.1c00821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel synthesis method for the construction of 3-coumaranones from the reaction of two molecules, calcium carbide and salicylaldehyde, was reported. Various 2-methyl-2-vinylbenzofuran-3(2H)-ones could be obtained in moderate yields in the absence of a metal catalyst. The salient features of this protocol involve widely available starting materials, an inexpensive and easy-to-handle alkyne source, and a cost-efficient route. The reaction mechanism was verified by density functional theory calculations of possible intermediates and corresponding transition states.
Collapse
Affiliation(s)
- Rugang Fu
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, P. R. China
| | - Yongzheng Lu
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, P. R. China
| | - Guoren Yue
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, P. R. China
| | - Dongqing Wu
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, P. R. China
| | - Li Xu
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, P. R. China
| | - Hai Song
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, P. R. China
| | - Cheng Cao
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, P. R. China
| | - Xinghai Yu
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, P. R. China
| | - Yingxiao Zong
- Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, P. R. China
| |
Collapse
|
28
|
A simple and convenient synthesis of novel 9-arylidene-9,11-dihydro-8H-benzo[h]pyrano[3,4 -b]quinolin-8-ones. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04421-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Teymourinia H, Amiri O, Salavati-Niasari M. Synthesis and characterization of cotton-silver-graphene quantum dots (cotton/Ag/GQDs) nanocomposite as a new antibacterial nanopad. CHEMOSPHERE 2021; 267:129293. [PMID: 33348263 DOI: 10.1016/j.chemosphere.2020.129293] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Appearance of antibiotic resistance in bacteria is a convoluted topic, particularly in treating pestiferous immunodeficiency correlated diseases. The main objective of the current research is to fabricate antibacterial pads by utilizing of graphene quantum dots (GQDs) as a linker, stabilizing, and reduction agent of in situ synthesized Ag nanoparticles (Ag NPs) on cotton pad. Five different antibacterial pads including cotton/Ag pad, cotton/GQDs/Ag pad, cotton/Ag/GQDs pad, cotton/GQDs/Ag/GQDs pad, and cotton/Ag/GQDs/Ag were fabricated and their antibacterial activities were compared to those of as-synthesized Ag/GQDs nanocomposites. The results indicate that cotton/GQDs/Ag pad shows a very promising minimum inhibitory concentration(MIC) of 0.09 and 0.01 against S. aureus and E. coli, respectively. Using GQDs as a linker (cotton/GQDs/Ag) and as a stabilizing agent (cotton/Ag/GQDs) significantly improves the antibacterial activity of Ag NPs.
Collapse
Affiliation(s)
- Hakimeh Teymourinia
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box. 87317-51167, Iran; Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, 45331-55681, Zanjan, Iran
| | - Omid Amiri
- Department of Chemistry, College of Science, University of Raparin, Rania, Kurdistan Region, Iraq; Department of Chemistry, College of Science, International University of Erbil, Iraq
| | - Masoud Salavati-Niasari
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box. 87317-51167, Iran.
| |
Collapse
|
30
|
Zhang M, Yang L, Xia M, Ding J, Hong J, Shen Y. Synthesis of 4-Hydroxyaurones and Their Herbicidal Activities. HETEROCYCLES 2021. [DOI: 10.3987/com-20-14398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Sui G, Li T, Zhang B, Wang R, Hao H, Zhou W. Recent advances on synthesis and biological activities of aurones. Bioorg Med Chem 2020; 29:115895. [PMID: 33271454 DOI: 10.1016/j.bmc.2020.115895] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022]
Abstract
Aurones are naturally occurring structural isomerides of flavones that have diverse bioactivities including antiviral, antibacterial, antifungal, anti-inflammatory, antitumor, antimalarial, antioxidant, neuropharmacological activities and so on. They constitute an important class of pharmacologically active scaffolds that exhibit multiple biological activities via diverse mechanisms. This review article provides an update on the recent advances (2013-2020.4) in the synthesis and biological activities of these derivatives. In the cases where sufficient information is available, some important structure-activity relationships (SAR) of their biological activities were presented, and on the strength of our expertise in medicinal chemistry and careful analysis of the recent literature, for the potential of aurones as medicinal drugs is proposed.
Collapse
Affiliation(s)
- Guoqing Sui
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Tian Li
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Bingyu Zhang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Ruizhi Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Hongdong Hao
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Wenming Zhou
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
32
|
Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas AH, Jaremko M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020; 25:molecules25225243. [PMID: 33187049 PMCID: PMC7697716 DOI: 10.3390/molecules25225243] [Citation(s) in RCA: 544] [Impact Index Per Article: 108.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/25/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Flavonoids are phytochemical compounds present in many plants, fruits, vegetables, and leaves, with potential applications in medicinal chemistry. Flavonoids possess a number of medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties. They also have neuroprotective and cardio-protective effects. These biological activities depend upon the type of flavonoid, its (possible) mode of action, and its bioavailability. These cost-effective medicinal components have significant biological activities, and their effectiveness has been proved for a variety of diseases. The most recent work is focused on their isolation, synthesis of their analogs, and their effects on human health using a variety of techniques and animal models. Thousands of flavonoids have been successfully isolated, and this number increases steadily. We have therefore made an effort to summarize the isolated flavonoids with useful activities in order to gain a better understanding of their effects on human health.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Sidra Munir
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
- Correspondence: (S.L.B.); (M.J.)
| | - Noreen Khan
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Lubna Ghani
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir 13230, Pakistan;
| | - Benjamin Gabriel Poulson
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
- Correspondence: (S.L.B.); (M.J.)
| |
Collapse
|
33
|
Lim HJ, Han YT, Ahn JH, Jeon YD, Jeon H, Cha DS. Longevity effects of hispidol in Caenorhabditis elegans. Biofactors 2020; 46:1041-1048. [PMID: 33179346 DOI: 10.1002/biof.1695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/30/2020] [Indexed: 11/07/2022]
Abstract
In this study, we investigated the longevity effects of hispidol, a 6,4'-dihydroxyaurone, using the Caenorhabditis elegans model system. Our lifespan assay data revealed that hispidol could prolong the lifespan of wild-type worms under normal culture condition. Moreover, hispidol increased the survival rate of the worms against a heat stress condition through up-regulated expressions of HSP-16.2. Similarly, hispidol protected worms from paraquat-induced oxidative stress. We also found that the hispidol elevated the activities of antioxidant enzymes, thereby attenuating the generation of intracellular reactive oxygen species. These results suggest that the enhancement of lifespan and stress resistance by the hispidol treatment might be attributed to its strong in vivo antioxidant capacity and regulation of stress proteins. Further tests on the aging-related factors revealed that hispidol could regulate the speed of pharyngeal pumping, indicating the association of dietary restriction with the hispidol-mediated longevity. However, there were no significant alterations in the body length of the worms between the groups. We then investigated the effects of hispidol on body movement and lipofuscin accumulation in aged worms. Interestingly, these healthspan parameters were strongly improved by the hispidol treatment. Our genetic studies showed no significant change in the lifespan of the daf-16 null mutants by hispidol supplementation. In addition, enhanced nuclear translocation of DAF-16 was observed in the hispidol-fed DAF-16::GFP fused transgenic mutants, suggesting the requirement of DAF-16/FOXO activation for the longevity effect of hispidol.
Collapse
Affiliation(s)
- Hyun Joo Lim
- College of Pharmacy, Woosuk University, Jeonbuk, South Korea
| | - Young Taek Han
- College of Pharmacy, Dankook University, Cheonan, South Korea
| | - Ji-Hye Ahn
- College of Pharmacy, Woosuk University, Jeonbuk, South Korea
| | - Yong-Deok Jeon
- College of Pharmacy, Woosuk University, Jeonbuk, South Korea
| | - Hoon Jeon
- College of Pharmacy, Woosuk University, Jeonbuk, South Korea
| | - Dong Seok Cha
- College of Pharmacy, Woosuk University, Jeonbuk, South Korea
| |
Collapse
|
34
|
Olleik H, Yacoub T, Hoffer L, Gnansounou SM, Benhaiem-Henry K, Nicoletti C, Mekhalfi M, Pique V, Perrier J, Hijazi A, Baydoun E, Raymond J, Piccerelle P, Maresca M, Robin M. Synthesis and Evaluation of the Antibacterial Activities of 13-Substituted Berberine Derivatives. Antibiotics (Basel) 2020; 9:antibiotics9070381. [PMID: 32640578 PMCID: PMC7400437 DOI: 10.3390/antibiotics9070381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
The biological activities of berberine, a natural plant molecule, are known to be affected by structural modifications, mostly at position 9 and/or 13. A series of new 13-substituted berberine derivatives were synthesized and evaluated in term of antimicrobial activity using various microorganisms associated to human diseases. Contrarily to the original molecule berberine, several derivatives were found strongly active in microbial sensitivity tests against Mycobacterium, Candida albicans and Gram-positive bacteria, including naïve or resistant Bacillus cereus, Staphylococcus aureus and Streptococcus pyogenes with minimal inhibitory concentration (MIC) of 3.12 to 6.25 µM. Among the various Gram-negative strains tested, berberine's derivatives were only found active on Helicobacter pylori and Vibrio alginolyticus (MIC values of 1.5-3.12 µM). Cytotoxicity assays performed on human cells showed that the antimicrobial berberine derivatives caused low toxicity resulting in good therapeutic index values. In addition, a mechanistic approach demonstrated that, contrarily to already known berberine derivatives causing either membrane permeabilization, DNA fragmentation or interacting with FtsZ protein, active derivatives described in this study act through inhibition of the synthesis of peptidoglycan or RNA. Overall, this study shows that these new berberine derivatives can be considered as potent and safe anti-bacterial agents active on human pathogenic microorganisms, including ones resistant to conventional antibiotics.
Collapse
Affiliation(s)
- Hamza Olleik
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France; (H.O.); (C.N.); (M.M.); (J.P.)
- Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon;
| | - Taher Yacoub
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, 13397 Marseille, France; (T.Y.); (L.H.)
| | - Laurent Hoffer
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, 13397 Marseille, France; (T.Y.); (L.H.)
| | - Senankpon Martial Gnansounou
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, 13397 Marseille, France; (S.M.G.); (K.B.-H.); (V.P.); (P.P.)
- Laboratoire d’études et de Recherches en Chimie Appliquée (LERCA), Université d’Abomey-Calavi (UAC), Cotonou 01 BP 2009, Benin
| | - Kehna Benhaiem-Henry
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, 13397 Marseille, France; (S.M.G.); (K.B.-H.); (V.P.); (P.P.)
| | - Cendrine Nicoletti
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France; (H.O.); (C.N.); (M.M.); (J.P.)
| | - Malika Mekhalfi
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France; (H.O.); (C.N.); (M.M.); (J.P.)
| | - Valérie Pique
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, 13397 Marseille, France; (S.M.G.); (K.B.-H.); (V.P.); (P.P.)
| | - Josette Perrier
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France; (H.O.); (C.N.); (M.M.); (J.P.)
| | - Akram Hijazi
- Doctoral School of Science and Technology, Research Platform for Environmental Science (PRASE), Lebanese University, Beirut 5, Lebanon;
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut 1107-2020, Lebanon;
| | - Josette Raymond
- Hôpital Cochin, Service de Bactériologie, Université Paris 5, 75014 Paris, France;
| | - Philippe Piccerelle
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, 13397 Marseille, France; (S.M.G.); (K.B.-H.); (V.P.); (P.P.)
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France; (H.O.); (C.N.); (M.M.); (J.P.)
- Correspondence: (M.M.); (M.R.)
| | - Maxime Robin
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, 13397 Marseille, France; (S.M.G.); (K.B.-H.); (V.P.); (P.P.)
- Correspondence: (M.M.); (M.R.)
| |
Collapse
|
35
|
Madruga LYC, Sabino RM, Santos ECG, Popat KC, Balaban RDC, Kipper MJ. Carboxymethyl-kappa-carrageenan: A study of biocompatibility, antioxidant and antibacterial activities. Int J Biol Macromol 2020; 152:483-491. [PMID: 32109473 DOI: 10.1016/j.ijbiomac.2020.02.274] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/18/2022]
Abstract
Chemical modification of polysaccharides is an important route to enhance, develop or change polysaccharide properties. In this study, carboxymethylation of kappa-carrageenan (KC) with monochloroacetic acid was performed to achieve different degrees of substitution (DS) of carboxymethyl-kappa-carrageenan (CMKC). The degree of substitution ranged from 0.8 to 1.6 and was calculated from the 1H NMR spectra. The chemical structure of the CMKCs was further characterized by FT-IR, and 13C NMR. FT-IR confirmed the carboxymethylation. Carboxymethylation increased viscosity of KC in water and decreased viscosity of KC in synthetic human sweat. Tests with human adipose derived stem cells showed higher viability and lower cytotoxicity for CMKCs when compared to KC. CMKCs showed no hemolytic activity to human red blood cells. CMKCs have increased antioxidant activity compared to KC. In antibacterial assays, CMKCs with DS of 0.8, 1.0 and 1.2 exhibited growth inhibition against Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa. CMKC with DS ranging from 1.0 to 1.2 are good candidate biomaterials for cell-contacting applications.
Collapse
Affiliation(s)
- Liszt Y C Madruga
- Institute of Chemistry, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Laboratory of Immunoparasitology, College of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Roberta M Sabino
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO, United States
| | - Elizabeth C G Santos
- Laboratory of Immunoparasitology, College of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Ketul C Popat
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO, United States; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States; School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Rosangela de C Balaban
- Institute of Chemistry, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Matt J Kipper
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO, United States; School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States; Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, United States.
| |
Collapse
|
36
|
Olleik H, Baydoun E, Perrier J, Hijazi A, Raymond J, Manzoni M, Dupuis L, Pauleau G, Goudard Y, Villéon BDL, Goin G, Sockeel P, Choudhary MI, Pasquale ED, Nadeem-Ul-Haque M, Ali H, Khan AI, Shaheen F, Maresca M. Temporin-SHa and Its Analogs as Potential Candidates for the Treatment of Helicobacter pylori. Biomolecules 2019; 9:biom9100598. [PMID: 31614561 PMCID: PMC6843786 DOI: 10.3390/biom9100598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/27/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori is one of the most prevalent pathogens colonizing 50% of the world's population and causing gastritis and gastric cancer. Even with triple and quadruple antibiotic therapies, H. pylori shows increased prevalence of resistance to conventional antibiotics and treatment failure. Due to their pore-forming activity, antimicrobial peptides (AMP) are considered as a good alternative to conventional antibiotics, particularly in the case of resistant bacteria. In this study, temporin-SHa (a frog AMP) and its analogs obtained by Gly to Ala substitutions were tested against H. pylori. Results showed differences in the antibacterial activity and toxicity of the peptides in relation to the number and position of D-Ala substitution. Temporin-SHa and its analog NST1 were identified as the best molecules, both peptides being active on clinical resistant strains, killing 90-100% of bacteria in less than 1 h and showing low to no toxicity against human gastric cells and tissue. Importantly, the presence of gastric mucins did not prevent the antibacterial effect of temporin-SHa and NST1, NST1 being in addition resistant to pepsin. Taken together, our results demonstrated that temporin-SHa and its analog NST1 could be considered as potential candidates to treat H. pylori, particularly in the case of resistant strains.
Collapse
Affiliation(s)
- Hamza Olleik
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France.
- Department of Biology, American University of Beirut, Beirut-1107 2020, Lebanon.
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut-1107 2020, Lebanon
| | - Josette Perrier
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Akram Hijazi
- Doctoral School of Science and Technology, Research Platform for Environmental Science (PRASE), Lebanese University, Beirut 5, Lebanon
| | - Josette Raymond
- Université Paris 5, Hôpital Cochin, Service de bactériologie, 75014 Paris, France
| | - Marine Manzoni
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Lucas Dupuis
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Ghislain Pauleau
- Departement of Digestive, Endocrine and Metabolic Surgery, Hôpital Laveran, Military Health Service, 13013 Marseille, France
| | - Yvain Goudard
- Departement of Digestive, Endocrine and Metabolic Surgery, Hôpital Laveran, Military Health Service, 13013 Marseille, France
| | - Bruno de La Villéon
- Departement of Digestive, Endocrine and Metabolic Surgery, Hôpital Laveran, Military Health Service, 13013 Marseille, France
| | - Géraldine Goin
- Departement of Digestive, Endocrine and Metabolic Surgery, Hôpital Laveran, Military Health Service, 13013 Marseille, France
| | - Philippe Sockeel
- Departement of Digestive, Endocrine and Metabolic Surgery, Hôpital Laveran, Military Health Service, 13013 Marseille, France
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Eric Di Pasquale
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | - Muhammad Nadeem-Ul-Haque
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Hunain Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Arif Iftikhar Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Farzana Shaheen
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France.
| |
Collapse
|
37
|
Comparative Structure-Activity Analysis of the Antimicrobial Activity, Cytotoxicity, and Mechanism of Action of the Fungal Cyclohexadepsipeptides Enniatins and Beauvericin. Toxins (Basel) 2019; 11:toxins11090514. [PMID: 31484420 PMCID: PMC6784244 DOI: 10.3390/toxins11090514] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 11/17/2022] Open
Abstract
Filamentous fungi, although producing noxious molecules such as mycotoxins, have been used to produce numerous drugs active against human diseases such as paclitaxel, statins, and penicillin, saving millions of human lives. Cyclodepsipeptides are fungal molecules with potentially adverse and positive effects. Although these peptides are not novel, comparative studies of their antimicrobial activity, toxicity, and mechanism of action are still to be identified. In this study, the fungal cyclohexadepsipeptides enniatin (ENN) and beauvericin (BEA) were assessed to determine their antimicrobial activity and cytotoxicity against human cells. Results showed that these peptides were active against Gram-positive bacteria, Mycobacterium, and fungi, but not against Gram-negative bacteria. ENN and BEA had a limited hemolytic effect, yet were found to be toxic at low doses to nucleated human cells. Both peptides also interacted with bacterial lipids, causing low to no membrane permeabilization, but induced membrane depolarization and inhibition of macromolecules synthesis. The structure-activity analysis showed that the chemical nature of the side chains present on ENN and BEA (either iso-propyl, sec-butyl, or phenylmethyl) impacts their interaction with lipids, antimicrobial action, and toxicity.
Collapse
|
38
|
Campaniço A, Carrasco MP, Njoroge M, Seldon R, Chibale K, Perdigão J, Portugal I, Warner DF, Moreira R, Lopes F. Azaaurones as Potent Antimycobacterial Agents Active against MDR- and XDR-TB. ChemMedChem 2019; 14:1537-1546. [PMID: 31294529 DOI: 10.1002/cmdc.201900289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/19/2019] [Indexed: 12/31/2022]
Abstract
Herein we report the screening of a small library of aurones and their isosteric counterparts, azaaurones and N-acetylazaaurones, against Mycobacterium tuberculosis. Aurones were found to be inactive at 20 μm, whereas azaaurones and N-acetylazaaurones emerged as the most potent compounds, with nine derivatives displaying MIC99 values ranging from 0.4 to 2.0 μm. In addition, several N-acetylazaaurones were found to be active against multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical M. tuberculosis isolates. The antimycobacterial mechanism of action of these compounds remains to be determined; however, a preliminary mechanistic study confirmed that they do not inhibit the mycobacterial cytochrome bc1 complex. Additionally, microsomal metabolic stability and metabolite identification studies revealed that N-acetylazaaurones are deacetylated to their azaaurone counterparts. Overall, these results demonstrate that azaaurones and their N-acetyl counterparts represent a new entry in the toolbox of chemotypes capable of inhibiting M. tuberculosis growth.
Collapse
Affiliation(s)
- André Campaniço
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Marta P Carrasco
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Mathew Njoroge
- Division of Clinical Pharmacology, Department of Medicine, Drug Discovery and Development Centre (H3D), University of Cape Town, Observatory, 7925, South Africa
| | - Ronnett Seldon
- Department of Chemistry, South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, 7701, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa.,Department of Chemistry, South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, 7701, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa
| | - João Perdigão
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Isabel Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Digby F Warner
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa.,Department of Pathology, SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, University of Cape Town, Rondebosch, 7701, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Rondebosch, 7701, South Africa
| | - Rui Moreira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Francisca Lopes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| |
Collapse
|