1
|
Kučerová-Chlupáčová M. Systematic Review on 1,2,3-Oxadiazoles, 1,2,4-Oxadiazoles, and 1,2,5-Oxadiazoles in the Antimycobacterial Drug Discovery. ChemMedChem 2025; 20:e202400971. [PMID: 39846226 DOI: 10.1002/cmdc.202400971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 01/24/2025]
Abstract
Tuberculosis remains a leading global health threat, exacerbated by the emergence of multi-drug-resistant strains. The search for novel therapeutic agents is critical in addressing this challenge. This review systematically summarizes the potential of oxadiazole derivatives as promising candidates in antimycobacterial drug discovery. We focus on various classes of oxadiazoles, especially 1,2,3-oxadiazoles, 1,2,4-oxadiazoles, and 1,2,5-s in structure-activity relationship studies are discussed, emphasizing the mechanisms of antimycobacterial action. Additionally, the synergistic potential of 1,2,4-oxadiazoles in enhancing the efficacy of existing tuberculosis treatment with ethionamide is also discussed. By integrating insights from recent research, this review aims to provide a comprehensive overview of the role of oxadiazoles in the fight against tuberculosis, paving the way for future investigations and the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Marta Kučerová-Chlupáčová
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203/8, 50003, Hradec Králové, Czech Republic
| |
Collapse
|
2
|
Kumar P, Singampalli A, Bandela R, Srimounika B, Rajyalakshmi SI, Devi A, Nanduri S, Venkata Madhavi Y. Spirocyclic compounds: potential drug leads in the fight against Mycobacterium tuberculosis. Future Med Chem 2025; 17:819-837. [PMID: 40103373 PMCID: PMC12026180 DOI: 10.1080/17568919.2025.2479413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
TB drug discovery needs scientists' attention since drug resistance in TB, including extensively drug-resistant TB (XDR-TB) and multidrug-resistant TB (MDR-TB), is a major healthcare concern. Since millions of fatalities from tuberculosis are recorded each year, there is an urgent need to discover new anti-tubercular medications that will either eradicate or control the disease. Spiro compounds have garnered a lot of attention in medicinal chemistry these days because of various biological activities mainly because of their adaptability and structural resemblance to significant pharmacophores. This article overviews the synthesis and activity of spirocyclic compounds as anti-tubercular agents. Both synthesized and naturally occurring spiro chemicals exhibit antitubercular properties. The promising antitubercular potential shown by some of the spirocyclic compounds has attracted scientists to explore them further to develop molecules with improved pharmacodynamic and pharmacokinetic properties and new mechanisms of action with enhanced safety and efficacy in tuberculosis. The current review covers the exploration of spiro compounds from the year 2004 to 2024 for the combat of Tuberculosis. This review gives the comprehensive advancements in this scaffold which would help the logical design of powerful, less toxic, and more effective spirocyclic anti-TB medicinal molecules.
Collapse
Affiliation(s)
- Pardeep Kumar
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Anuradha Singampalli
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rani Bandela
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Bellapukonda Srimounika
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Sugali Indravath Rajyalakshmi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ankita Devi
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Yaddanapudi Venkata Madhavi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
3
|
Vinogradova L, Komarova K, Lukin A, Zhuravlev M, Deniskin D, Poliakova A, Chudinov M, Gureev M, Dogonadze M, Vinogradova T, Rogacheva E, Kraeva L, Porozov Y, Korzhikov-Vlakh V. You Win Some, You Lose Some: Modifying the Molecular Periphery of Nitrofuran-Tagged Diazaspirooctane Reshapes Its Antibacterial Activity Profile. Int J Mol Sci 2024; 26:207. [PMID: 39796065 PMCID: PMC11720470 DOI: 10.3390/ijms26010207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
The use of the concept of privileged structures significantly accelerates the search for new leads and their optimization. 6-(methylsulfonyl)-8-(4-methyl-4H-1,2,4-triazol-3-yl)-2-(5-nitro-2-furoyl)-2,6-diazaspiro[3.4]octane 1 has been identified as a lead, with MICs of 0.0124-0.0441 μg/mL against MTb multiresistant strains. Several series of structural analogues have been synthesized, including variations in the periphery and simplifications of their scaffolds. All synthesized compounds were tested against the MTb H37Rv strain and ESKAPE panel of pathogens using serial broth dilutions. However, an attempt to optimize structure of 1 did not lead to the development of more active compounds which can work against MTb, but to substances with high activity against S. aureus. Induced-fit docking and MM-GBSA calculations determined a change in the likely biotarget from deazaflavin-dependent nitroreductase to azoreductases. The privileged nature of the scaffold was demonstrated by the detection of a different type of activity.
Collapse
Affiliation(s)
- Lyubov Vinogradova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia; (L.V.); (K.K.); (A.L.); (M.Z.); (D.D.); (A.P.)
| | - Kristina Komarova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia; (L.V.); (K.K.); (A.L.); (M.Z.); (D.D.); (A.P.)
| | - Alexey Lukin
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia; (L.V.); (K.K.); (A.L.); (M.Z.); (D.D.); (A.P.)
| | - Maxim Zhuravlev
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia; (L.V.); (K.K.); (A.L.); (M.Z.); (D.D.); (A.P.)
| | - Dmitry Deniskin
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia; (L.V.); (K.K.); (A.L.); (M.Z.); (D.D.); (A.P.)
| | - Anastasia Poliakova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia; (L.V.); (K.K.); (A.L.); (M.Z.); (D.D.); (A.P.)
| | - Mikhail Chudinov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia; (L.V.); (K.K.); (A.L.); (M.Z.); (D.D.); (A.P.)
| | - Maxim Gureev
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg 194064, Russia;
| | - Marine Dogonadze
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, Saint Petersburg 191036, Russia; (M.D.); (T.V.)
| | - Tatiana Vinogradova
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, Saint Petersburg 191036, Russia; (M.D.); (T.V.)
| | - Elizaveta Rogacheva
- Pasteur Institute of Epidemiology and Microbiology, Saint Petersburg 197101, Russia; (E.R.); (L.K.)
| | - Lyudmila Kraeva
- Pasteur Institute of Epidemiology and Microbiology, Saint Petersburg 197101, Russia; (E.R.); (L.K.)
| | - Yuri Porozov
- Laboratory of Angiopathology, The Institute of General Pathology and Pathophysiology, Moscow 125315, Russia;
- Advitam Laboratory, 11108 Belgrade, Serbia
| | - Viktor Korzhikov-Vlakh
- Department of Medical Chemistry, Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia
| |
Collapse
|
4
|
Valcheva V, Mileva M, Dogonadze M, Dobreva A, Mokrousov I. Antimycobacterial Activity of Essential Oils from Bulgarian Rosa Species Against Phylogenomically Different Mycobacterium tuberculosis Strains. Pharmaceutics 2024; 16:1393. [PMID: 39598517 PMCID: PMC11597806 DOI: 10.3390/pharmaceutics16111393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
In this study, we aimed to assess the activity of the essential oils from four Bulgarian oil-bearing roses Rosa damascena Mill., R. alba L., R. centifolia L., and R. gallica L., on the reference strain Mycobacterium tuberculosis H37Rv and clinical M. tuberculosis strains of the Beijing and Latin-American Mediterraneum genotypes. The chemical composition of the essential oils was determined by gas chromatography (GC-FID/MS). Minimal inhibitory concentrations (MIC) were determined using the resazurin method. R. alba oil showed the highest inhibitory activity when tested on all strains of different phylogenetic origins with MIC in the range of 0.16-0.31 mg/mL, while R. gallica oil was the least active (MIC 0.62-1.25 mg/mL). The obtained results show heterogeneity of rose oil action on different mycobacterial strains and we hypothesize that the combined level of geraniol and nerol is a key factor that underlies the antimycobacterial action of the rose oils. Strain Beijing 396 was relatively more susceptible to the rose oils probably due to multiple and likely deleterious mutations in its efflux pump genes. Two clinical MDR strains have likely developed during their previous adaptation to anti-TB drugs certain drug tolerance mechanisms that also permitted them to demonstrate intrinsic tolerance to the essential oils. Further research should investigate a possible synergistic action of the new-generation anti-TB drugs and the most promising rose oil extracts on the large panel of different strains.
Collapse
Affiliation(s)
- Violeta Valcheva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria;
| | - Milka Mileva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria;
| | - Marine Dogonadze
- Laboratory of Microbiology, Biochemistry and Immunogenetics, St. Petersburg Research Institute of Phthisiopulmonology, 2-4 Ligovsky Prospect, 191036 St. Petersburg, Russia;
| | - Ana Dobreva
- Institute for Roses and Aromatic Plants, Agricultural Academy, 49 Osvobojdenie Blvd., 6100 Kazanlak, Bulgaria;
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, 14 Mira Str., 197101 St. Petersburg, Russia
- Henan International Joint Laboratory of Children’s Infectious Diseases, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital Zhengzhou Children’s Hospital, Zhengzhou 450012, China
| |
Collapse
|
5
|
Komarova K, Vinogradova L, Lukin A, Zhuravlev M, Deniskin D, Chudinov M, Gureev M, Dogonadze M, Zabolotnykh N, Vinogradova T, Lavrova A, Yablonskiy P. The Nitrofuran-Warhead-Equipped Spirocyclic Azetidines Show Excellent Activity against Mycobacterium tuberculosis. Molecules 2024; 29:3071. [PMID: 38999023 PMCID: PMC11243650 DOI: 10.3390/molecules29133071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
A series of 21 new 7'H-spiro[azetidine-3,5'-furo [3,4-d]pyrimidine]s substituted at the pyrimidine ring second position were synthesized. The compounds showed high antibacterial in vitro activity against M. tuberculosis. Two compounds had lower minimum inhibitory concentrations against Mtb (H37Rv strain) compared with isoniazid. The novel spirocyclic scaffold shows excellent properties for anti-tuberculosis drug development.
Collapse
Affiliation(s)
- Kristina Komarova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia
| | - Lyubov Vinogradova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia
| | - Alexey Lukin
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia
| | - Maxim Zhuravlev
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia
| | - Dmitry Deniskin
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia
| | - Mikhail Chudinov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia
| | - Maxim Gureev
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave 4, 194064 Saint Petersburg, Russia
| | - Marine Dogonadze
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, 191036 Saint Petersburg, Russia
| | - Natalia Zabolotnykh
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, 191036 Saint Petersburg, Russia
| | - Tatiana Vinogradova
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, 191036 Saint Petersburg, Russia
| | - Anastasia Lavrova
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, 191036 Saint Petersburg, Russia
- Sophya Kovalevskaya North-West Mathematical Research Center, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| | - Petr Yablonskiy
- Department of Hospital Surgery, Faculty of Medicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| |
Collapse
|
6
|
Berida T, McKee SR, Chatterjee S, Manning DL, Li W, Pandey P, Tripathi SK, Mreyoud Y, Smirnov A, Doerksen RJ, Jackson M, Ducho C, Stallings CL, Roy S. Discovery, Synthesis, and Optimization of 1,2,4-Triazolyl Pyridines Targeting Mycobacterium tuberculosis. ACS Infect Dis 2023; 9:2282-2298. [PMID: 37788674 PMCID: PMC10807233 DOI: 10.1021/acsinfecdis.3c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The rise in multidrug resistant tuberculosis cases underscores the urgent need to develop new treatment strategies for tuberculosis. Herein, we report the discovery and synthesis of a new series of compounds containing a 3-thio-1,2,4-triazole moiety that show inhibition of Mycobacterium tuberculosis (Mtb) growth and survival. Structure-activity relationship studies led us to identify several potent analogs displaying low micromolar to nanomolar inhibitory activity, specifically against Mtb. The potent analogs demonstrated no cytotoxicity in mammalian cells at over 100 times the effective concentration required in Mtb and were bactericidal against Mtb during infection of macrophages. In the exploratory ADME investigations, we observed suboptimal ADME characteristics, which prompted us to identify potential metabolic liabilities for further optimization. Our preliminary investigations into the mechanism of action suggest that this series is not engaging the promiscuous targets that arise from many phenotypic screens. We selected for resistant mutants with the nanomolar potent nitro-containing compound 20 and identified resistant isolates with mutations in genes required for coenzyme F420 biosynthesis and the nitroreductase Ddn. This suggests that the aromatic nitro-1,2,4-triazolyl pyridines are activated by F420-dependent Ddn activity, similar to the nitro-containing TB drug pretomanid. We were able to circumvent the requirement for F420-dependent Ddn activity using compounds that contained non-nitro groups, identifying a key feature to be modified to avoid this predominant resistance mechanism. These studies provide the foundation for the development of a new class of 1,2,4-triazole compounds for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Tomayo Berida
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Samuel R McKee
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Shamba Chatterjee
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Destinee L Manning
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Pankaj Pandey
- National Center for Natural Products Research, University of Mississippi, University, Mississippi 38677, United States
| | - Siddharth Kaushal Tripathi
- National Center for Natural Products Research, University of Mississippi, University, Mississippi 38677, United States
| | - Yassin Mreyoud
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Asya Smirnov
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Robert J Doerksen
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, Colorado 80523, United States
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken 66123, Germany
| | - Christina L Stallings
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Sudeshna Roy
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
7
|
Rogacheva E, Kraeva L, Lukin A, Vinogradova L, Komarova K, Chudinov M, Gureev M, Chupakhin E. 5-Nitrofuran-Tagged Oxazolyl Pyrazolopiperidines: Synthesis and Activity against ESKAPE Pathogens. Molecules 2023; 28:6491. [PMID: 37764267 PMCID: PMC10537382 DOI: 10.3390/molecules28186491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
A series of eight 5-nitrofuran-tagged oxazolyl tetrahydropyrazolopyridines (THPPs) has been prepared in six stages with excellent regioselectivity. The testing of these compounds against pathogens of the ESKAPE panel showed a good activity of lead compound 1-(2-methoxyethyl)-5-(5-nitro-2-furoyl)-3-(1,3-oxazol-5-yl)-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c] pyridine (13g), which is superior to nitrofurantoin. These results confirmed the benefit of combining a THPP scaffold with a nitrofuran warhead. Certain structure-activity relationships were established in the course of this study which were rationalized by the induced-fit docking experiments in silico.
Collapse
Affiliation(s)
- Elizaveta Rogacheva
- Pasteur Institute of Epidemiology and Microbiology, Saint Petersburg 197101, Russia; (E.R.)
| | - Lyudmila Kraeva
- Pasteur Institute of Epidemiology and Microbiology, Saint Petersburg 197101, Russia; (E.R.)
| | - Alexey Lukin
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia
| | - Lyubov Vinogradova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia
| | - Kristina Komarova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia
| | - Mikhail Chudinov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Moscow 119454, Russia
| | - Maxim Gureev
- Laboratory of Bio- and Chemoinformatics, I. M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- Molecular Modeling Laboratory, HSE University, Saint-Petersburg 190121, Russia
| | - Evgeny Chupakhin
- Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia
| |
Collapse
|
8
|
Lukin A, Komarova K, Vinogradova L, Dogonadze M, Vinogradova T, Yablonsky P, Kazantsev A, Krasavin M. Periphery Exploration around 2,6-Diazaspiro[3.4]Octane Core Identifies a Potent Nitrofuran Antitubercular Lead. Molecules 2023; 28:molecules28062529. [PMID: 36985501 PMCID: PMC10056547 DOI: 10.3390/molecules28062529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
A small set of twelve compounds of a nitrofuran carboxamide chemotype was elaborated from a readily available 2,6-diazaspiro[3.4]octane building block, exploring diverse variants of the molecular periphery, including various azole substituents. The in vitro inhibitory activities of the synthesized compounds were assessed against Mycobacterium tuberculosis H37Rv. As a result, a remarkably potent antitubercular lead displaying a minimal inhibitory concentration of 0.016 μg/mL was identified.
Collapse
Affiliation(s)
- Alexei Lukin
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia
| | - Kristina Komarova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia
| | - Lyubov Vinogradova
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119454 Moscow, Russia
| | - Marine Dogonadze
- Saint Petersburg Research Institute of Phthisiopulmonology, 2-4 Ligovsky Prospekt, 191036 Saint Petersburg, Russia
| | - Tatiana Vinogradova
- Saint Petersburg Research Institute of Phthisiopulmonology, 2-4 Ligovsky Prospekt, 191036 Saint Petersburg, Russia
| | - Piotr Yablonsky
- Saint Petersburg Research Institute of Phthisiopulmonology, 2-4 Ligovsky Prospekt, 191036 Saint Petersburg, Russia
| | - Alexander Kazantsev
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, 198504 Peterhof, Russia
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, 198504 Peterhof, Russia
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
- Correspondence:
| |
Collapse
|
9
|
Lukin A, Komarova K, Vinogradova L, Rogacheva E, Kraeva L, Dogonadge M, Vinogradova T, Krasavin M. Urea derivatives of spirocyclic piperidines endowed with antibacterial activity. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Mokrousov I, Slavchev I, Solovieva N, Dogonadze M, Vyazovaya A, Valcheva V, Masharsky A, Belopolskaya O, Dimitrov S, Zhuravlev V, Portugal I, Perdigão J, Dobrikov GM. Molecular Insight into Mycobacterium tuberculosis Resistance to Nitrofuranyl Amides Gained through Metagenomics-like Analysis of Spontaneous Mutants. Pharmaceuticals (Basel) 2022; 15:ph15091136. [PMID: 36145357 PMCID: PMC9504009 DOI: 10.3390/ph15091136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
We performed synthesis of new nitrofuranyl amides and investigated their anti-TB activity and primary genetic response of mycobacteria through whole-genome sequencing (WGS) of spontaneous resistant mutants. The in vitro activity was assessed on reference strain Mycobacterium tuberculosis H37Rv. The most active compound 11 was used for in vitro selection of spontaneous resistant mutants. The same mutations in six genes were detected in bacterial cultures grown under increased concentrations of 11 (2×, 4×, 8× MIC). The mutant positions were presented as mixed wild type and mutant alleles while increasing the concentration of the compound led to the semi-proportional and significant increase in mutant alleles. The identified genes belong to different categories and pathways. Some of them were previously reported as mediating drug resistance or drug tolerance, and counteracting oxidative and nitrosative stress, in particular: Rv0224c, fbiC, iniA, and Rv1592c. Gene-set interaction analysis revealed a certain weak interaction for gene pairs Rv1592–Rv1639c and Rv1592–Rv0224c. To conclude, this study experimentally demonstrated a multifaceted primary genetic response of M. tuberculosis to the action of nitrofurans. All three 11-treated subcultures independently presented the same six SNPs, which suggests their non-random occurrence and likely causative relationship between compound action and possible resistance mechanism.
Collapse
Affiliation(s)
- Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, 197101 St. Petersburg, Russia
- Henan International Joint Laboratory of Children’s Infectious Diseases, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
- Correspondence: (I.M.); (G.M.D.)
| | - Ivaylo Slavchev
- Institute of Organic Chemistry with Centre of Phytochemistry, Acad. G. Bonchev Street, bl. 9, 1113 Sofia, Bulgaria
| | - Natalia Solovieva
- St. Petersburg Research Institute of Phthisiopulmonology, 191036 St. Petersburg, Russia
| | - Marine Dogonadze
- St. Petersburg Research Institute of Phthisiopulmonology, 191036 St. Petersburg, Russia
| | - Anna Vyazovaya
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, 197101 St. Petersburg, Russia
| | - Violeta Valcheva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 26, 1113 Sofia, Bulgaria
| | - Aleksey Masharsky
- Resource Center “Bio-bank Center”, Research Park of St. Petersburg State University, 198504 St. Petersburg, Russia
| | - Olesya Belopolskaya
- Resource Center “Bio-bank Center”, Research Park of St. Petersburg State University, 198504 St. Petersburg, Russia
| | - Simeon Dimitrov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 26, 1113 Sofia, Bulgaria
| | - Viacheslav Zhuravlev
- St. Petersburg Research Institute of Phthisiopulmonology, 191036 St. Petersburg, Russia
| | - Isabel Portugal
- iMed.ULisboa–Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, 1649004 Lisbon, Portugal
| | - João Perdigão
- iMed.ULisboa–Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, 1649004 Lisbon, Portugal
| | - Georgi M. Dobrikov
- Institute of Organic Chemistry with Centre of Phytochemistry, Acad. G. Bonchev Street, bl. 9, 1113 Sofia, Bulgaria
- Correspondence: (I.M.); (G.M.D.)
| |
Collapse
|
11
|
Novel 5-Nitrofuran-Tagged Imidazo-Fused Azines and Azoles Amenable by the Groebke–Blackburn–Bienaymé Multicomponent Reaction: Activity Profile against ESKAPE Pathogens and Mycobacteria. Biomedicines 2022; 10:biomedicines10092203. [PMID: 36140307 PMCID: PMC9496245 DOI: 10.3390/biomedicines10092203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
A chemically diverse set of 13 5-nitrofuran-tagged heterocyclic compounds has been prepared via the Groebke–Blackburn–Bienaymé multicomponent reaction. The testing of these compounds against the so-called ESKAPE panel of pathogens identified an apparent lead compound—N-cyclohexyl-2-(5-nitrofuran-2-yl)imidazo[1,2-a]pyridine-3-amine (4a)—which showed an excellent profile against Enterobacter cloacae, Staphylococcus aureus, Klebsiella pneumoniae, and Enterococcus faecalis (MIC 0.25, 0.06, 0.25 and 0.25 µg/mL, respectively). Its antibacterial profile and practically convenient synthesis warrant further pre-clinical development. Certain structure-activity relationships were established in the course of this study which were rationalized by the flexible docking experiments in silico. The assessment of antitubercular potential of the compounds synthesized against drug sensitive H37v strain of Mycobacterium tuberculosis revealed little potential of the imidazo-fused products of the Groebke–Blackburn–Bienaymé multicomponent reaction as chemotherapeutic agents against this pathogen.
Collapse
|
12
|
Exploration of Spirocyclic Derivatives of Ciprofloxacin as Antibacterial Agents. Molecules 2022; 27:molecules27154864. [PMID: 35956812 PMCID: PMC9370040 DOI: 10.3390/molecules27154864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 11/19/2022] Open
Abstract
The previously reported as well as newly synthesized derivatives of the 1-oxa-9-azaspiro[5.5]undecane were employed in the synthesis of thirty-six derivatives of ciprofloxacin using commercially available 7-chloro-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid and the literature protocol involving the preparation of boron chelate complex to facilitate nucleophilic aromatic substitution. All new fluoroquinolone derivatives were tested against two gram-positive as well as three gram-negative strains of bacteria. With the activity spectrum of the new derivatives being substantially narrower than that of ciprofloxacin, compounds were distinctly active against two of the five strains: gram-negative Acinetobacter baumannii 987® and gram-positive Bacillus cereus 138®. Towards these two strains, a large group of compounds displayed equal or higher potency than ciprofloxacin.
Collapse
|
13
|
Slavchev IM, Mitrev Y, Shivachev B, Valcheva V, Dogonadze M, Solovieva N, Vyazovaya A, Mokrousov I, Link W, Jiménez L, Cautain B, Mackenzie TA, Portugal I, Lopes F, Capela R, Perdigão J, Dobrikov GM. Synthesis, Characterization and Complex Evaluation of Antibacterial Activity and Cytotoxicity of New Arylmethylidene Ketones and Pyrimidines with Camphane Skeletons. ChemistrySelect 2022. [DOI: 10.1002/slct.202201339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ivaylo M. Slavchev
- Institute of Organic Chemistry with Centre of Phytochemistry Bulgarian Academy of Sciences bl. 9, Acad. G. Bonchev str. Sofia 1113 Bulgaria
| | - Yavor Mitrev
- Institute of Organic Chemistry with Centre of Phytochemistry Bulgarian Academy of Sciences bl. 9, Acad. G. Bonchev str. Sofia 1113 Bulgaria
| | - Boris Shivachev
- Institute of Mineralogy and Crystallography Bulgarian Academy of Sciences, bl. 107, Acad. G. Bonchev str. Sofia 1113 Bulgaria
| | - Violeta Valcheva
- Stephan Angeloff Institute of Microbiology Bulgarian Academy of Sciences bl. 26, Acad. G. Bonchev str. Sofia 1113 Bulgaria
| | - Marine Dogonadze
- St. Petersburg Research Institute of Phthisiopulmonology St. Petersburg Russia
| | - Natalia Solovieva
- St. Petersburg Research Institute of Phthisiopulmonology St. Petersburg Russia
- Laboratory of Molecular Epidemiology and Evolutionary Genetics St. Petersburg Pasteur Institute St. Petersburg Russia
| | - Anna Vyazovaya
- Laboratory of Molecular Epidemiology and Evolutionary Genetics St. Petersburg Pasteur Institute St. Petersburg Russia
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics St. Petersburg Pasteur Institute St. Petersburg Russia
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4 28029 Madrid Spain
| | - Lucía Jiménez
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4 28029 Madrid Spain
| | - Bastien Cautain
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores de Andalucía Parque Tecnológico de Ciencias de la Salud Avda. del Conocimiento 34 18016 Granada Spain
| | - Thomas A. Mackenzie
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores de Andalucía Parque Tecnológico de Ciencias de la Salud Avda. del Conocimiento 34 18016 Granada Spain
| | - Isabel Portugal
- iMed.ULisboa – Instituto de Investigação do Medicamento Faculdade de Farmácia Universidade de Lisboa Lisboa Portugal
| | - Francisca Lopes
- iMed.ULisboa – Instituto de Investigação do Medicamento Faculdade de Farmácia Universidade de Lisboa Lisboa Portugal
| | - Rita Capela
- iMed.ULisboa – Instituto de Investigação do Medicamento Faculdade de Farmácia Universidade de Lisboa Lisboa Portugal
| | - João Perdigão
- iMed.ULisboa – Instituto de Investigação do Medicamento Faculdade de Farmácia Universidade de Lisboa Lisboa Portugal
| | - Georgi M. Dobrikov
- Institute of Organic Chemistry with Centre of Phytochemistry Bulgarian Academy of Sciences bl. 9, Acad. G. Bonchev str. Sofia 1113 Bulgaria
| |
Collapse
|
14
|
Chen H, Wang B, Li P, Yan H, Li G, Huang H, Lu Y. The optimization and characterization of functionalized sulfonamides derived from sulfaphenazole against Mycobacterium tuberculosis with reduced CYP 2C9 inhibition. Bioorg Med Chem Lett 2021; 40:127924. [PMID: 33705901 DOI: 10.1016/j.bmcl.2021.127924] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/08/2021] [Accepted: 02/25/2021] [Indexed: 01/02/2023]
Abstract
In this study, a series of sulfonamide compounds was designed and synthesized through the systematic optimization of the antibacterial agent sulfaphenazole for the treatment of Mycobacterium tuberculosis (M. tuberculosis). Preliminary results indicate that the 4-aminobenzenesulfonamide moiety plays a key role in maintaining antimycobacterial activity. Compounds 10c, 10d, 10f and 10i through the optimization on phenyl ring at the R2 site on the pyrazole displayed promising antimycobacterial activity paired with low cytotoxicity. In particular, compound 10d displayed good activity (MIC = 5.69 μg/mL) with low inhibition of CYP 2C9 (IC50 > 10 μM), consequently low potential risk of drug-drug interaction. These promising results provide new insight into the combination regimen using sulfonamide as one component for the treatment of M. tuberculosis.
Collapse
Affiliation(s)
- Hui Chen
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Bin Wang
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, PR China
| | - Peng Li
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation & Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, PR China
| | - Hong Yan
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Gang Li
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation & Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, PR China.
| | - Haihong Huang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation & Chinese Academy of Medical Sciences Key Laboratory of Anti-DR TB Innovative Drug Research, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, PR China.
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Department of Pharmacology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, PR China.
| |
Collapse
|
15
|
Tarasenko MV, Kotlyarova VD, Baykov SV, Shetnev AA. 2-(1,2,4-Oxadiazol-5-yl)anilines Based on Amidoximes and Isatoic Anhydrides: Synthesis and Structure Features. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221050030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Isonicotinoyl hydrazones of pyridoxine derivatives: synthesis and antimycobacterial activity. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02705-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Baikov SV, Trukhanova YA, Tarasenko MV, Kinzhalov MA. Synthesis and Study of the Structure of Palladium(II) Acyclic
Diaminocarbene Complexes Containing a 1,2,4-Oxadiazole Moiety. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220100126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Chuprun S, Dar’in D, Rogacheva E, Kraeva L, Levin O, Manicheva O, Dogonadze M, Vinogradova T, Bakulina O, Krasavin M. Mutually Isomeric 2- and 4-(3-nitro-1,2,4-triazol-1-yl)pyrimidines Inspired by an Antimycobacterial Screening Hit: Synthesis and Biological Activity against the ESKAPE Panel of Pathogens. Antibiotics (Basel) 2020; 9:antibiotics9100666. [PMID: 33019787 PMCID: PMC7601023 DOI: 10.3390/antibiotics9100666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022] Open
Abstract
Starting from the structure of antimycobacterial screening hit OTB-021 which was devoid of activity against ESKAPE pathogens, we designed, synthesized and tested two mutually isomeric series of novel simplified analogs, 2- and 4-(3-nitro-1,2,4-triazol-1-yl)pyrimidines, bearing various amino side chains. These compounds demonstrated a reverse bioactivity profile being inactive against M. tuberculosis while inhibiting the growth of all ESKAPE pathogens (with variable potency patterns) except for Gram-negative P. aeruginosa. Reduction potentials (E1/2, V) measured for selected compounds by cyclic voltammetry were tightly grouped in the -1.3--1.1 V range for a reversible single-electron reduction. No apparent correlation between the E1/2 values and the ESKAPE minimum inhibitory concentrations was established, suggesting possible significance of other factors, besides the compounds' reduction potential, which determine the observed antibacterial activity. Generally, more negative E1/2 values were displayed by 2-(3-nitro-1,2,4-triazol-1-yl)pyrimidines, which is in line with the frequently observed activity loss on moving the 3-nitro-1,2,4-triazol-1-yl moiety from position 4 to position 2 of the pyrimidine nucleus.
Collapse
Affiliation(s)
- Sergey Chuprun
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (S.C.); (D.D.); (O.L.); (O.B.)
| | - Dmitry Dar’in
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (S.C.); (D.D.); (O.L.); (O.B.)
| | - Elizaveta Rogacheva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101 Saint Petersburg, Russia; (E.R.); (L.K.)
| | - Liudmila Kraeva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101 Saint Petersburg, Russia; (E.R.); (L.K.)
| | - Oleg Levin
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (S.C.); (D.D.); (O.L.); (O.B.)
| | - Olga Manicheva
- Saint Petersburg Research Institute of Phthisiopulmonology, 2-4 Ligovsky Prospekt, 191036 Saint Petersburg, Russia; (O.M.); (M.D.); (T.V.)
| | - Marine Dogonadze
- Saint Petersburg Research Institute of Phthisiopulmonology, 2-4 Ligovsky Prospekt, 191036 Saint Petersburg, Russia; (O.M.); (M.D.); (T.V.)
| | - Tatiana Vinogradova
- Saint Petersburg Research Institute of Phthisiopulmonology, 2-4 Ligovsky Prospekt, 191036 Saint Petersburg, Russia; (O.M.); (M.D.); (T.V.)
| | - Olga Bakulina
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (S.C.); (D.D.); (O.L.); (O.B.)
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (S.C.); (D.D.); (O.L.); (O.B.)
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
- Correspondence: ; Tel.: +7-931-3617-872; Fax: +7-812-428-6939
| |
Collapse
|
19
|
Zn(OTf)2-catalyzed arenehydrazination of protected propargylamines leading to 3-amidoindoles. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Design and synthesis of sulfur cross-linked 1,3,4-oxadiazole-nitro(furan/thiophene)-propenones as dual inhibitors of inflammation and tuberculosis: molecular docking and Hirshfeld surface analysis. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02507-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|