1
|
Reyes Y, Larrey EK, Pathak R, Veisaga ML, Barbieri MA, Ward S, Kumar A, Sevilla MD, Adhikary A, Wnuk SF. Azido derivatives of sesquiterpene lactones: Synthesis, anticancer proliferation, and chemistry of nitrogen-centered radicals. RESULTS IN CHEMISTRY 2024; 9:101643. [PMID: 39498431 PMCID: PMC11533910 DOI: 10.1016/j.rechem.2024.101643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Sesquiterpene lactones (SLs) such as parthenolide (PTL) and dehydroleucodine (DhL) selectively kill cancer cells without exerting normal tissue toxicity, potentially due to presence of α-methylene-γ-lactone (αMγL) fragment. We hypothesize that the addition of an azido group to the αMγL fragment of PTL or DhL further augments their anticancer properties as well as radiation sensitivity of cancer cells. Azido-SLs containing the azido group at the C14 methyl position of PTL (i.e., azido-melampomagnolide B, AzMMB) while preserving the mechanistically crucial exomethylene unit of αMγL fragment were also prepared. Sham-irradiated (i.e., unirradiated control) or irradiated human breast cancer cells (MCF7) were treated with different concentrations of azido-PTL (AzPTL) or azido-DhL (AzDhL) along with parental SLs. Proliferation rate of MCF7 cells were measured by MTT-assay, and their colony forming ability was determined by colony formation assay. Both AzPTL and AzDhL significantly suppress proliferation rate and colony forming ability of MCF-7 cells. AzPTL suppressed colony forming ability, not cellular proliferation, following irradiation to a greater extent than PTL at lower concentrations (5 and 10 μM). Electron spin resonance (ESR) studies were performed employing gamma-irradiated homogeneous supercooled aqueous solutions to investigate radical formation through addition of radiation-mediated prehydrated electrons to the azide group of AzPTL and AzDhL and to follow subsequent reactions of these radicals. In AzPTL, formation of a tertiary carbon-centered radical plausibly via a metastable aminyl radical was observed, whereas AzDhL produced both π-aminyl and α-azidoalkyl radicals. These radicals may contribute to the antitumor activities of AzPTL and AzDhL.
Collapse
Affiliation(s)
- Yahaira Reyes
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA
| | - Enoch K. Larrey
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Rupak Pathak
- Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Maria L. Veisaga
- Department of Biological Sciences, Florida International University, Miami, Florida 33199, USA
| | - Manuel A. Barbieri
- Department of Biological Sciences, Florida International University, Miami, Florida 33199, USA
| | - Samuel Ward
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, USA
| | - Anil Kumar
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, USA
| | - Michael D. Sevilla
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, USA
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, USA
| | - Stanislaw F. Wnuk
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA
| |
Collapse
|
2
|
Ma L, Li M, Lv J, Yuan Q, Yin X, Lu W, Lin W, Wang P, Cui J, Lv Q, Liu J, Hu L. Design, synthesis, and biological evaluation of novel sesquiterpene lactone derivatives as PKM2 activators with potent anti-ulcerative colitis activities. Eur J Med Chem 2024; 272:116426. [PMID: 38718622 DOI: 10.1016/j.ejmech.2024.116426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/27/2024]
Abstract
Pyruvate kinase isoform 2 (PKM2) is closely related to the regulation of Th17/Treg balance, which is considered to be an effective strategy for UC therapy. Parthenolide (PTL), a natural product, only possesses moderate PKM2-activating activity. Thus, five series of PTL derivatives are designed and synthesized to improve PKM2-activated activities and anti-UC abilities. Through detailed structure optimization, B4 demonstrates potent T-cell anti-proliferation activity (IC50 = 0.43 μM) and excellent PKM2-activated ability (AC50 = 0.144 μM). Subsequently, through mass spectrometry analysis, B4 is identified to interact with Cys423 of PKM2 via covalent-bond. Molecular docking and molecular dynamic simulation results reveal that the trifluoromethoxy of B4 forms a stronger hydrophobic interaction with Ala401, Pro402, and Ile403. In addition, B4 has a significant effect only on Th17 cell differentiation, thereby regulating the Th17/Treg balance. The effect of B4 on Th17/Treg imbalance can be attributed to inhibition of PKM2 dimer translocation and suppression of glucose metabolism. Finally, B4 can notably ameliorate the symptoms of dextran sulfate sodium (DSS)-induced colitis in mouse model in vivo. Thus, B4 is confirmed as a potent PKM2 activator, and has the potential to develop as a novel anti-UC agent.
Collapse
Affiliation(s)
- Lingyu Ma
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mengting Li
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiahao Lv
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qingxin Yuan
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xunkai Yin
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenyu Lu
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weijiang Lin
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ping Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jian Cui
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qi Lv
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Jian Liu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China; School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Wang N, Zhang L, Yu J, Chang K, Fan M, Liu Z, Ma L, Cao J, Huang G. Identification of an Alepterolic Acid Derivative as a Potent Anti-Breast-Cancer Agent via Inhibition of the Akt/p70 S6K Signaling Pathway. Chem Biodivers 2024; 21:e202301248. [PMID: 37739929 DOI: 10.1002/cbdv.202301248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/24/2023]
Abstract
Alepterolic acid is a diterpene occurring in the fern Aleuritopteris argentea with potential biological activity that warrants further structural modification. In the present work, sixteen alepterolic acid derivatives were synthesized and evaluated for their anticancer activities. Among them, N-[m-(trifluoromethoxy)phenyl] alepterolamide displayed comparable activity (IC50=4.20±0.21 μM) in MCF-7 cells. Moreover, mechanistic investigations indicated this compound was significantly capable of diminishing cell proliferation and viability of MCF-7 cells. After treatment with N-[m-(trifluoromethoxy)phenyl] alepterolamide, a significant increase in cleaved caspase-9, cleaved caspase-3, cleaved poly (ADP-ribose) polymerase (PARP) and Bax/Bcl2 ratio were observed in MCF-7 cells, leading to caspase-dependent apoptotic pathways. Further studies showed this compound promoted cellular apoptosis and inhibited migration in MCF-7 cells via modulation of the Akt/p70S6K signaling pathway. All these results revealed the potential of N-[m-(trifluoromethoxy)phenyl] alepterolamide as an appealing therapeutic drug candidate for breast cancer.
Collapse
Affiliation(s)
- Nina Wang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, China
| | - Lei Zhang
- College of Life Sciences, Shanghai Normal University, Shanghai, 201418, P.R. China
| | - Junjie Yu
- College of Life Sciences, Shanghai Normal University, Shanghai, 201418, P.R. China
| | - Kaili Chang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, China
| | - Minghui Fan
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, China
| | - Zi Liu
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, China
| | - Liang Ma
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, China
| | - Jianguo Cao
- College of Life Sciences, Shanghai Normal University, Shanghai, 201418, P.R. China
| | - Guozheng Huang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, China
- College of Life Sciences, Shanghai Normal University, Shanghai, 201418, P.R. China
| |
Collapse
|
4
|
Duan X, Liu N, Lv K, Wang J, Li M, Zhang Y, Huo X, Bao S, Shen Z, Zhang X. Synthesis and Anti-Inflammatory Activity of Ferulic Acid-Sesquiterpene Lactone Hybrids. Molecules 2024; 29:936. [PMID: 38474447 DOI: 10.3390/molecules29050936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/17/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Acute lung injury (ALI) is a respiratory failure disease associated with high mortality rates in patients. The primary pathological damage is attributed to the excessive release of pro-inflammatory mediators in pulmonary tissue. However, specific therapy for ALI has not been developed. In this study, a series of novel ferulic acid-parthenolide (FA-PTL) and ferulic acid-micheliolide (FA-MCL) hybrid derivatives were designed, synthesized, and evaluated for their anti-inflammatory activities in vitro. Compounds 2, 4, and 6 showed pronounced anti-inflammatory activity against LPS-induced expression of pro-inflammatory cytokines in vitro. Importantly, compound 6 displayed good water solubility, and treatment of mice with compound 6 (10 mg/kg) significantly prevented weight loss and ameliorated inflammatory cell infiltration and edema in lung tissue, as well as improving the alveolar structure. These results suggest that compound 6 (((1aR,7aS,8R,10aS,10bS,E)-8-((dimethylamino)methyl)-1a-methyl-9-oxo-1a,2,3,6,7,7a,8,9,10a,10b-decahydrooxireno[2',3':9,10]cyclodeca[1,2-b]furan-5-yl)methyl (E)-3-(4-hydroxy-3-methoxyphenyl)acrylate 2-hydroxypropane-1,2,3-tricarboxylate) might be considered as a lead compound for further evaluation as a potential anti-ALI agent.
Collapse
Affiliation(s)
- Xiyan Duan
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Ning Liu
- School of Nursing, Henan University of Science and Technology, Luoyang 471003, China
| | - Ke Lv
- The State Key Laboratory of Medicinal Chemical Biology & College of Chemistry, Nankai University, Tianjin 300071, China
| | - Junqi Wang
- School of Chemistry & Chemical Engineering, Henan University of Science and Technology, Luoyang 471003, China
| | - Mingyue Li
- College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Yanwei Zhang
- Accendatech Company, Ltd., Tianjin 300384, China
| | | | - Shiqi Bao
- Accendatech Company, Ltd., Tianjin 300384, China
| | - Zhuo Shen
- Accendatech Company, Ltd., Tianjin 300384, China
| | - Xuemei Zhang
- Accendatech Company, Ltd., Tianjin 300384, China
| |
Collapse
|
5
|
Chen T, Chen X, Liu L, Zhang Q, Ding Y. Synthesis of melampomagnolide B derivatives as potential anti-Triple Negative Breast Cancer agents. Eur J Med Chem 2024; 264:116024. [PMID: 38104376 DOI: 10.1016/j.ejmech.2023.116024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most malignant and aggressive subtype of breast cancer. Currently, the treatment options to TNBC are limited and the discovery of new drugs and novel therapeutic strategies for treatment of TNBC is urgently needed. In this study, a series of melampomagnolide B (MMB) derivatives were designed, synthesized, and evaluated for their anti-TNBC activities. Compound 7 and 13a showed highly potent activity against different TNBC cells with IC50 values ranging from 0.37 μM to 1.52 μM, which demonstrated 3.6- to 54-fold improvement comparing to the parent compound MMB. The phenotypic effect revealed that compound 7 and 13a could inhibit metastasis, induce apoptosis and arrest cell cycle distribution of TNBC cells. Furthermore, the mechanism research indicated compounds 7 and 13a bound IKKβ and inhibited the IKKβ-mediated phosphorylation of IκB and p65, then inhibited the nuclear translocation of p65 and eventually regulated the genes related to metastasis, apoptosis and cell cycle under NF-κB control. Moreover, compound 7 inhibited the tumor growth in vivo, and the weights of spleens and livers were also reduced compared with control group which indicated that compound 7 could inhibit metastasis of TNBC in vivo. These findings indicate that compound 7 may be used as a promising lead compound for ultimate discovery of anti-TNBC drug.
Collapse
Affiliation(s)
- Tianyang Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300350, People's Republic of China
| | - Xiaoping Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300350, People's Republic of China
| | - Lingling Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300350, People's Republic of China
| | - Quan Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300350, People's Republic of China.
| | - Yahui Ding
- College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
6
|
Huang LT, Li TJ, Li ML, Luo HY, Wang YB, Wang JH. Untargeted lipidomic analysis and network pharmacology for parthenolide treated papillary thyroid carcinoma cells. BMC Complement Med Ther 2023; 23:130. [PMID: 37095470 PMCID: PMC10123985 DOI: 10.1186/s12906-023-03944-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/29/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND With fast rising incidence, papillary thyroid carcinoma (PTC) is the most common head and neck cancer. Parthenolide, isolated from traditional Chinese medicine, inhibits various cancer cells, including PTC cells. The aim was to investigate the lipid profile and lipid changes of PTC cells when treated with parthenolide. METHODS Comprehensive lipidomic analysis of parthenolide treated PTC cells was conducted using a UHPLC/Q-TOF-MS platform, and the changed lipid profile and specific altered lipid species were explored. Network pharmacology and molecular docking were performed to show the associations among parthenolide, changed lipid species, and potential target genes. RESULTS With high stability and reproducibility, a total of 34 lipid classes and 1736 lipid species were identified. Lipid class analysis indicated that parthenolide treated PTC cells contained higher levels of fatty acid (FA), cholesterol ester (ChE), simple glc series 3 (CerG3) and lysophosphatidylglycerol (LPG), lower levels of zymosterol (ZyE) and Monogalactosyldiacylglycerol (MGDG) than controlled ones, but with no significant differences. Several specific lipid species were changed significantly in PTC cells treated by parthenolide, including the increasing of phosphatidylcholine (PC) (12:0e/16:0), PC (18:0/20:4), CerG3 (d18:1/24:1), lysophosphatidylethanolamine (LPE) (18:0), phosphatidylinositol (PI) (19:0/20:4), lysophosphatidylcholine (LPC) (28:0), ChE (22:6), and the decreasing of phosphatidylethanolamine (PE) (16:1/17:0), PC (34:1) and PC (16:0p/18:0). Four key targets (PLA2G4A, LCAT, LRAT, and PLA2G2A) were discovered when combining network pharmacology and lipidomics. Among them, PLA2G2A and PLA2G4A were able to bind with parthenolide confirmed by molecular docking. CONCLUSIONS The changed lipid profile and several significantly altered lipid species of parthenolide treated PTC cells were observed. These altered lipid species, such as PC (34:1), and PC (16:0p/18:0), may be involved in the antitumor mechanisms of parthenolide. PLA2G2A and PLA2G4A may play key roles when parthenolide treated PTC cells.
Collapse
Affiliation(s)
- Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Jun Li
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming-Lin Li
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Han-Yong Luo
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Bing Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Jia-He Wang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
7
|
Dogra A, Kumar J. Biosynthesis of anticancer phytochemical compounds and their chemistry. Front Pharmacol 2023; 14:1136779. [PMID: 36969868 PMCID: PMC10034375 DOI: 10.3389/fphar.2023.1136779] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/13/2023] [Indexed: 03/12/2023] Open
Abstract
Cancer is a severe health issue, and cancer cases are rising yearly. New anticancer drugs have been developed as our understanding of the molecular mechanisms behind diverse solid tumors, and metastatic malignancies have increased. Plant-derived phytochemical compounds target different oncogenes, tumor suppressor genes, protein channels, immune cells, protein channels, and pumps, which have attracted much attention for treating cancer in preclinical studies. Despite the anticancer capabilities of these phytochemical compounds, systemic toxicity, medication resistance, and limited absorption remain more significant obstacles in clinical trials. Therefore, drug combinations of new phytochemical compounds, phytonanomedicine, semi-synthetic, and synthetic analogs should be considered to supplement the existing cancer therapies. It is also crucial to consider different strategies for increased production of phytochemical bioactive substances. The primary goal of this review is to highlight several bioactive anticancer phytochemical compounds found in plants, preclinical research, their synthetic and semi-synthetic analogs, and clinical trials. Additionally, biotechnological and metabolic engineering strategies are explored to enhance the production of bioactive phytochemical compounds. Ligands and their interactions with their putative targets are also explored through molecular docking studies. Therefore, emphasis is given to gathering comprehensive data regarding modern biotechnology, metabolic engineering, molecular biology, and in silico tools.
Collapse
|
8
|
Deng H, Xu Q, Guo HY, Huang X, Chen F, Jin L, Quan ZS, Shen QK. Application of cinnamic acid in the structural modification of natural products: A review. PHYTOCHEMISTRY 2023; 206:113532. [PMID: 36470328 DOI: 10.1016/j.phytochem.2022.113532] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Natural products can generally exhibit a variety of biological activities, but most show mediocre performance in preliminary activity evaluation. Natural products often require structural modification to obtain promising lead compounds. Cinnamic acid (CA) is readily available and has diverse biological activities and low cytotoxicity. Introducing CA into natural products may improve their performance, enhance biological activity, and reduce toxic side effect. Herein, we aimed to discuss related applications of CA in the structural modification of natural products and provide a theoretical basis for future derivatization and drug development of natural products. Published articles, web databases (PubMed, Science Direct, SCI Finder, and CNKI), and clinical trial websites (https://clinicaltrials.gov/) related to natural products and CA derivatives were included in the discussion. Based on the inclusion criteria, 128 studies were selected and discussed herein. Screening natural products of CA derivatives allowed for classification by their biological activities. The full text is organized according to the biological activities of the derivatives, with the following categories: anti-tumor, neuroprotective, anti-diabetic, anti-microbial, anti-parasitic, anti-oxidative, anti-inflammatory, and other activities. The biological activity of each CA derivative is discussed in detail. Notably, most derivatives exhibited enhanced biological activity and reduced cytotoxicity compared with the lead compound. CA has various advantages and can be widely used in the synthesis of natural product derivatives to enhance the properties of drug candidates or lead compounds.
Collapse
Affiliation(s)
- Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Qian Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Fener Chen
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Lili Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
9
|
LIU X, WANG X. Recent advances on the structural modification of parthenolide and its derivatives as anticancer agents. Chin J Nat Med 2022; 20:814-829. [DOI: 10.1016/s1875-5364(22)60238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 11/23/2022]
|
10
|
Discovery of α-methylene-γ-lactone-δ-epoxy derivatives with anti-cancer activity: synthesis, SAR study, and biological activity. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02925-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Peng W, Tang W, Li JD, He RQ, Luo JY, Chen ZX, Zeng JH, Hu XH, Zhong JC, Li Y, Ma FC, Xie TY, Huang SN, Ge LY. Downregulation of the enhancer of zeste homolog 1 transcriptional factor predicts poor prognosis of triple-negative breast cancer patients. PeerJ 2022; 10:e13708. [PMID: 35846880 PMCID: PMC9285492 DOI: 10.7717/peerj.13708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/19/2022] [Indexed: 01/17/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer and lacks effective biomarkers. This study seeks to unravel the expression status and the prospective transcriptional mechanisms of EZH1/EZH2 in TNBC tissue samples. Moreover, another objective of this study is to reveal the prognostic molecular signatures for risk stratification in TNBC patients. Methods To determine the expression status of EZH1/EZH2 in TNBC tissue samples, microarray analysis and immunohistochemistry were performed on in house breast cancer tissue samples. External mRNA expression matrices were used to verify its expression patterns. Furthermore, the prospective transcriptional mechanisms of EZH1/EZH2 in TNBC were explored by performing differential expression analysis, co-expression analysis, and chromatin immunoprecipitation sequencing analysis. Kaplan-Meier survival analysis and univariate Cox regression analysis were utilized to detect the prognostic molecular signatures in TNBC patients. Nomogram and time-dependent receiver operating characteristic curves were plotted to predict the risk stratification ability of the prognostic-signatures-based Cox model. Results In-house TMAs (66 TNBC vs. 106 non-TNBC) and external gene microarrays, as well as RNA-seq datasets (1,135 TNBC vs. 6,198 non-TNBC) results, confirmed the downregulation of EZH1 at both the protein and mRNA levels (SMD = -0.59 [-0.80, -0.37]), as is opposite to that of EZH2 (SMD = 0.74 [0.40, 1.08]). The upregulated transcriptional target genes of EZH1 were significantly aggregated in the cell cycle pathway, where CCNA2, CCNB1, MAD2L1, and PKMYT1 were determined as key transcriptional targets. Additionally, the downregulated transcriptional targets of EZH2 were enriched in response to the hormone, where ESR1 was identified as the hub gene. The six-signature-based prognostic model produced an impressive performance in this study, with a training AUC of 0.753, 0.981, and 0.977 at 3-, 5-, and 10-year survival probability, respectively. Conclusion EZH1 downregulation may be a key modulator in the progression of TNBC through negative transcriptional regulation by targeting CCNA2, CCNB1, MAD2L1, and PKMYT1.
Collapse
Affiliation(s)
- Wei Peng
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wei Tang
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Jian-Di Li
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jia-Yuan Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zu-Xuan Chen
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiang-Hui Zeng
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangxi Medical University/Nanning Second People’s Hospital, Nanning, Guangxi, China
| | - Xiao-Hua Hu
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jin-Cai Zhong
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yang Li
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fu-Chao Ma
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tian-Yi Xie
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Lian-Ying Ge
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| |
Collapse
|
12
|
An T, Yin H, Lu Y, Liu F. The Emerging Potential of Parthenolide Nanoformulations in Tumor Therapy. Drug Des Devel Ther 2022; 16:1255-1272. [PMID: 35517982 PMCID: PMC9063801 DOI: 10.2147/dddt.s355059] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/05/2022] [Indexed: 12/21/2022] Open
Abstract
Plant-derived sesquiterpene lactones are promising natural sources for the discovery of anti-cancer drugs. As an extensively studied sesquiterpene lactone, the tumor suppression effect of parthenolide (PTL) has been clarified by targeting a number of prominent signaling pathways and key protein regulators in carcinogenesis. Notably, PTL was also the first small molecule reported to eradicate cancer stem cells. Nevertheless, the clinical application of PTL as an antitumor agent remains limited, owing to some disadvantages such as low water solubility and poor bioavailability. Thus, nanomedicine has attracted much interest because of its great potential for transporting poorly soluble drugs to desired body sites. In view of the significant advantages over their free small-molecule counterparts, nanoparticle delivery systems appear to be a potential solution for addressing the delivery of hydrophobic drugs, including PTL. In this review, we summarized the key anticancer mechanisms underlined by PTL as well as engineered PTL nanoparticles synthesized to date. Therefore, PTL nanoformulations could be an alternative strategy to maximize the therapeutic value of PTL.
Collapse
Affiliation(s)
- Tao An
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, People's Republic of China
| | - Huanhuan Yin
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, People's Republic of China
| | - Yanting Lu
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, People's Republic of China
| | - Feng Liu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, People's Republic of China.,Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center (SDATC), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
13
|
Liao M, Qin R, Huang W, Zhu HP, Peng F, Han B, Liu B. Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: a revisited perspective from molecular mechanisms to targeted therapies. J Hematol Oncol 2022; 15:44. [PMID: 35414025 PMCID: PMC9006445 DOI: 10.1186/s13045-022-01260-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of human breast cancer with one of the worst prognoses, with no targeted therapeutic strategies currently available. Regulated cell death (RCD), also known as programmed cell death (PCD), has been widely reported to have numerous links to the progression and therapy of many types of human cancer. Of note, RCD can be divided into numerous different subroutines, including autophagy-dependent cell death, apoptosis, mitotic catastrophe, necroptosis, ferroptosis, pyroptosis and anoikis. More recently, targeting the subroutines of RCD with small-molecule compounds has been emerging as a promising therapeutic strategy, which has rapidly progressed in the treatment of TNBC. Therefore, in this review, we focus on summarizing the molecular mechanisms of the above-mentioned seven major RCD subroutines related to TNBC and the latest progress of small-molecule compounds targeting different RCD subroutines. Moreover, we further discuss the combined strategies of one drug (e.g., narciclasine) or more drugs (e.g., torin-1 combined with chloroquine) to achieve the therapeutic potential on TNBC by regulating RCD subroutines. More importantly, we demonstrate several small-molecule compounds (e.g., ONC201 and NCT03733119) by targeting the subroutines of RCD in TNBC clinical trials. Taken together, these findings will provide a clue on illuminating more actionable low-hanging-fruit druggable targets and candidate small-molecule drugs for potential RCD-related TNBC therapies.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Fu Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Liang JJ, Yu WL, Yang L, Qin KM, Yin YP, Li D, Ni YH, Yan JJ, Zhong YX, Deng ZX, Hong K. Synthesis and structure-activity relationship study of a potent MHO7 analogue as potential anti-triple negative breast cancer agent. Eur J Med Chem 2022; 236:114313. [DOI: 10.1016/j.ejmech.2022.114313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/26/2022]
|
15
|
Liu X, Wang C, Li S, Qu L, Yin F, Lu D, Luo H, Chen X, Luo Z, Cui N, Wang X, Kong L. Parthenolide Derivatives as PKM2 Activators Showing Potential in Colorectal Cancer. J Med Chem 2021; 64:17304-17325. [PMID: 34847663 DOI: 10.1021/acs.jmedchem.1c01380] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As a vital kinase in the glycolysis system, PKM2 is extensively expressed in colorectal cancer (CRC) to support the energy and biosynthetic needs. In this study, we designed a series of parthenolide (PTL) derivatives through a stepwise structure optimization, and an excellent derivate 29e showed good activity on PKM2 (AC50 = 86.29 nM) and displayed significant antiproliferative activity against HT29 (IC50 = 0.66 μM) and SW480 (IC50 = 0.22 μM) cells. 29e decreased the expression of total PKM2, prevented nucleus translocation of PKM2 dimer, and inhibited PKM2/STAT3 signaling pathway. 29e remarkably increased OCR and decreased the extracellular acidification rate (ECAR). The antiproliferative effect of 29e depended on PKM2, and the Cys424 of PKM2 was the key binding site. Furthermore, 29e significantly suppressed tumor growth in the HT29 xenograft model without obvious toxicity. These outcomes demonstrate that 29e is a promising drug candidate for the treatment of CRC.
Collapse
Affiliation(s)
- Xingchen Liu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Cheng Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shang Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lailiang Qu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Fucheng Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Dehua Lu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Heng Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xinye Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Zhongwen Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ningjie Cui
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
16
|
Zeng B, Cheng Y, Zheng K, Liu S, Shen L, Hu J, Li Y, Pan X. Design, synthesis and in vivo anticancer activity of novel parthenolide and micheliolide derivatives as NF-κB and STAT3 inhibitors. Bioorg Chem 2021; 111:104973. [PMID: 34004586 DOI: 10.1016/j.bioorg.2021.104973] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 01/20/2023]
Abstract
Parthenolide and micheliolide have attracted great attention in anticancer research due to their unique activities. In this study, thirteen parthenolide derivatives and twenty-three micheliolide derivatives were synthesized. Most synthesized compounds showed higher cytotoxicity than parthenolide or micheliolide. The in vivo anticancer activity of several representative compounds was evaluated in mice. One micheliolide derivative, 9-oxomicheliolide (43), showed promising in vivo antitumor activity compared with clinical drugs cyclophosphamide or temozolomide. Compound 43 was particularly effective against glioblastoma, with its tumor inhibition rate in mice comparable to the drug temozolomide. The discovery of compound 43 also demonstrates the feasibility of developing anticancer micheliolide derivatives by modification at C-9 position. Anticancer mechanism studies revealed that 9-oxomicheliolide exhibited inhibition effect against NF-κB and STAT3 signaling pathways, as well as induction effects of cell apoptosis. It is postulated that 9-oxomicheliolide is likely to be a modulator of the immune system, which regulates the anticancer immune responses.
Collapse
Affiliation(s)
- Binglin Zeng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Yu Cheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Kailu Zheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Shuoxiao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Longying Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Yan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| | - Xiandao Pan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
17
|
Ding Y, Chen X, Liu C, Ge W, Wang Q, Hao X, Wang M, Chen Y, Zhang Q. Identification of a small molecule as inducer of ferroptosis and apoptosis through ubiquitination of GPX4 in triple negative breast cancer cells. J Hematol Oncol 2021; 14:19. [PMID: 33472669 PMCID: PMC7816340 DOI: 10.1186/s13045-020-01016-8] [Citation(s) in RCA: 265] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND TNBC is the most aggressive breast cancer with higher recurrence and mortality rate than other types of breast cancer. There is an urgent need for identification of therapeutic agents with unique mode of action for overcoming current challenges in TNBC treatment. METHODS Different inhibitors were used to study the cell death manner of DMOCPTL. RNA silencing was used to evaluate the functions of GPX4 in ferroptosis and apoptosis of TNBC cells and functions of EGR1 in apoptosis. Immunohistochemical assay of tissue microarray were used for investigating correlation of GPX4 and EGR1 with TNBC. Computer-aided docking and small molecule probe were used for study the binding of DMOCPTL with GPX4. RESULTS DMOCPTL, a derivative of natural product parthenolide, exhibited about 15-fold improvement comparing to that of the parent compound PTL for TNBC cells. The cell death manner assay showed that the anti-TNBC effect of DMOCPTL mainly by inducing ferroptosis and apoptosis through ubiquitination of GPX4. The probe of DMOCPTL assay indicated that DMOCPTL induced GPX4 ubiquitination by directly binding to GPX4 protein. To the best of our knowledge, this is the first report of inducing ferroptosis through ubiquitination of GPX4. Moreover, the mechanism of GPX4 regulation of apoptosis is still obscure. Here, we firstly reveal that GPX4 regulated mitochondria-mediated apoptosis through regulation of EGR1 in TNBC cells. Compound 13, the prodrug of DMOCPTL, effectively inhibited the growth of breast tumor and prolonged the lifespan of mice in vivo, and no obvious toxicity was observed. CONCLUSIONS These findings firstly revealed novel manner to induce ferroptosis through ubiquitination of GPX4 and provided mechanism for GPX4 inducing mitochondria-mediated apoptosis through up-regulation of EGR1 in TNBC cells. Moreover, compound 13 deserves further studies as a lead compound with novel mode of action for ultimate discovery of effective anti-TNBC drug.
Collapse
Affiliation(s)
- Yahui Ding
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Xiaoping Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Can Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Weizhi Ge
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Qin Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Xin Hao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Mengmeng Wang
- Accendatech Company, Ltd., Tianjin, 300384, People's Republic of China
| | - Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
| | - Quan Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
| |
Collapse
|
18
|
Ren Y, Kinghorn AD. Development of Potential Antitumor Agents from the Scaffolds of Plant-Derived Terpenoid Lactones. J Med Chem 2020; 63:15410-15448. [PMID: 33289552 PMCID: PMC7812702 DOI: 10.1021/acs.jmedchem.0c01449] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Naturally occurring terpenoid lactones and their synthetic derivatives have attracted increasing interest for their promising antitumor activity and potential utilization in the discovery and design of new antitumor agents. In the present perspective article, selected plant-derived five-membered γ-lactones and six-membered δ-lactones that occur with terpenoid scaffolds are reviewed, with their structures, cancer cell line cytotoxicity and in vivo antitumor activity, structure-activity relationships, mechanism of action, and the potential for developing cancer chemotherapeutic agents discussed in each case. The compounds presented include artemisinin (ART, 1), parthenolide (PTL, 2), thapsigargin (TPG, 3), andrographolide (AGL, 4), ginkgolide B (GKL B, 5), jolkinolide B (JKL B, 6), nagilactone E (NGL E, 7), triptolide (TPL, 8), bruceantin (BRC, 9), dichapetalin A (DCT A, 10), and limonin (LMN, 11), and their naturally occurring analogues and synthetic derivatives. It is hoped that this contribution will be supportive of the future development of additional efficacious anticancer agents derived from natural products.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
19
|
Islam R, Lam KW. Recent progress in small molecule agents for the targeted therapy of triple-negative breast cancer. Eur J Med Chem 2020; 207:112812. [DOI: 10.1016/j.ejmech.2020.112812] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
|
20
|
In silico studies of some 2-anilinopyrimidine derivatives as anti-triple-negative breast cancer agents. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1186/s43088-020-00041-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Breast cancer is a major form of health problem on the globe and the second cause of death related to cancer amidst women. A prediction of about 1 to 1.3 million cases on cancer of the breast are detected yearly globally. Triple-negative type of breast cancers (TNBCs) are described by the lack of human epidermal growth factor receptor 2 (HER2), estrogen receptor (ER), and progesterone receptor (PR). TNBCs metastasize to the central nervous system and lungs regularly. Such metastatic actions reduce the life expectancy of patients with TNBC than patients with non-TNBC due to non-enhanced inhibitor compounds. The purpose of this research was to explore the anti-proliferative activities of 2-anilinopyrimidine derivatives against triple-negative cancer cell line MDA-MB-468 via in silico studies like QSAR and molecular docking studies to further design and develop new anti-breast cancer drug with high potency and low toxicity.
Results
The quantitative structure–activity relationship QSAR model predicts the bioactivities of the compounds, and molecular docking studies comprehend the interaction between the derivatives (ligand) and thyroid hormone (TRβ1) (receptor). Model 4 was chosen as the best model from the statistical assessment; R2 = 0.8760, R2adj = 0.8451, Q2 = 0.6141, and R2pred of 0.5390. From the external validation of the QSAR model, the coefficient of the mean effect on the model parameters indicates that decreasing (VR1_Dzv and MOMI-R) and increasing (SpMin1_Bh and C3SP3) would increase the anti-proliferative activities (pIC50) of the compounds. The molecular docking studies revealed that ligands 15 and 18 had the highest docking scores of − 7.3 and − 7.4 kcal/mol with thyroid hormone receptor (TRβ1). The ligands had docking scores better than the standard anti-breast cancer drug gefitinib (− 5.3 kcal/mol).
Conclusions
The results indicate that model 4 can be used in developing new 2-anilinopyrimidine derivatives, with better anti-breast cancer prediction activity and performance. It was proved that some series of 2-anilinopyrimidine derivative compounds bind tightly to the receptor, stabilizing the receptor (TRβ1) which is evident from the receptor–ligand interactions, and these compounds would serve as the most promising inhibitors against TRβ1. This shows a breakthrough for pharmaceutical researchers in designing and developing new anti-triple-negative breast cancer drugs.
Collapse
|
21
|
Metabonomic study of the intervention effects of Parthenolide on anti-thyroid cancer activity. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1150:122179. [PMID: 32506011 DOI: 10.1016/j.jchromb.2020.122179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 05/01/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Thyroid cancer is the most common endocrine malignant tumor in the world, and its incidence is increasing. Although the mortality rate of thyroid cancer is low, its persistence/recurrence rate is high. In addition, some patients with thyroid cancer fail to respond to radiation. Therefore, it is urgent need to develop a novel treatment for thyroid cancer. Parthenolide (PTL), a traditional Chinese medicine Tanacetum parthenium extract, has shown encouraging effects in anti-tumor, anti-inflammatory and anti-malaria. However, it is unclear whether PTL has an anti-thyroid cancer effect and its possible mechanism of action. In the recent years, metabonomics has been widely used in tumors research to explore the pharmacological mechanism of drugs, but few studies used metabonomics to investigate the pharmacological effects of PTL in thyroid tumors. In order to comprehensively reveal the mechanism and effects of PTL on anti-thyroid tumors, metabonomics combined cell biological research methods were conducted. The results showed that PTL promote apoptosis of thyroid cancer cells (TPC-1) in a concentration-dependent manner. The metabolic differences between the PTL group and the control group were compared by metabonomics, and 31 potential metabolites were identified. These metabolites were mainly involved in the tricarboxylic acid cycle, amino acid metabolism, choline metabolism and lipid metabolism. These results implied that PTL may inhibit the proliferation and development of thyroid carcinoma by accelerating oxidation emergency response, inhibiting adenosine triphosphate (ATP) synthesis and metabolic imbalance. The results of this study revealed that PTL can be an effective and potential drug for the treatment of thyroid cancer.
Collapse
|
22
|
Jin X, Lu X, Zhang Z, Lv H. Indocyanine Green-Parthenolide Thermosensitive Liposome Combination Treatment for Triple-Negative Breast Cancer. Int J Nanomedicine 2020; 15:3193-3206. [PMID: 32440118 PMCID: PMC7211433 DOI: 10.2147/ijn.s245289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/14/2020] [Indexed: 12/31/2022] Open
Abstract
Background Certain patients with triple-negative breast cancer cannot tolerate the serious adverse effects of cytotoxic chemotherapy agents, which significantly affect the disease prognosis. Purpose Research into the combined use of photosensitizers and non-cytotoxic antineoplastic drugs for the safe treatment of triple-negative breast cancer is vital. Methods In this study, the photosensitizer indocyanine green and the natural drug parthenolide were co-loaded into thermosensitive liposomes. Under a near-infrared irradiation, indocyanine green reached excitation levels, releasing heat, and the liposome underwent a phase transition, releasing the drug were researched. Results Thus, indocyanine green and parthenolide exert synergistic antineoplastic effects. In the nude mice xenograft MDA-MB-231 tumor model, the tumor inhibition rate of indocyanine green-parthenolide thermosensitive liposomes was approximately 2.08-fold than that of paclitaxel and demonstrated a good initial safety evaluation. Conclusion Photosensitizers and non-cytotoxic antineoplastic agents in combination with nanoscale carriers should be further investigated for the treatment of tumors.
Collapse
Affiliation(s)
- Xin Jin
- Department of Hospital Pharmacy, Suqian First Hospital, Suqian 223800, People's Republic of China.,Department of Pharmaceutics, Suqian Clinical College of Xuzhou Medical University, Suqian 223800, People's Republic of China
| | - Xinyue Lu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Zhenhai Zhang
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine Affiliated with Nanjing University of Chinese Medicine, Nanjing 210000, People's Republic of China
| | - Huixia Lv
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
23
|
Jiang Q, Zhu Z, Shou P, Teng F, Zhu Y, Zhao H, Yang B. Targeting pharmacophore with probe-reactivity-guided fractionation to precisely identify electrophilic sesquiterpenes and its activity of anti-TNBC. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:322-332. [PMID: 31849131 DOI: 10.1002/pca.2898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Innovative strategy is urgently needed to precisely discover novel natural products as lead compounds for development of new drugs against orphan diseases such as triple-negative breast cancer (TNBC). Herein, we describe a targeting pharmacophore with probe-reactivity-guided strategy for the discovery of electrophilic sesquiterpene (ES), a class of bioactive natural product. OBJECTIVE This study aimed to identify pharmacophore, based on pharmacophore with probe-reactivity-guided strategy for precisely discovering ESs from ethyl acetate extract of Eupatorium chinense L. (EEEChL) METHODOLOGY: MTT assay combined with ultra-performance liquid chromatography (UPLC) analysis was used to identify pharmacophore. UPLC-mass spectrometry (MS) was applied to carefully compare the intrinsic reactivity characteristics of two chemoselective nucleophilic probes: glutathione (GSH) and 4-bromothiophenol (BTP) reaction with ESs. ESs was isolated and identified from EEEChL by phytochemical methods. Furthermore, stoichiometric ratio and binding site of one typical ES 8β-[4'-hydroxytigloyloxy]-5-desoxy-8-desacyleuparotin (HDDE) reaction with BTP were studied by UPLC-quadrupole time-of-flight (Q-TOF)-MS and two-dimensional nuclear magnetic resonance (NMR). RESULTS Eleven ESs were identified from EEEChL, MTT assay illustrated that all of the 11 ESs possess fairly good anti-TNBC activity CONCLUSIONS: Electrophilic groups were confirmed as pharmacophore of bioactive compounds contained in EEEChL. An optimised halogenated aromatic probe BTP furnishes ES-BTP conjugates that are highly conspicuous via MS by virtue of a unique isotopic bromine signature, conjugates also have a considerable separation on C18 column. The new probe-reactivity-guided strategy can effectively improve the traditional bioassay-guided approaches, and significantly increase the probability of obtaining designated bioactive compounds.
Collapse
Affiliation(s)
- QingLi Jiang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou, 311402, P. R. China
| | - ZhiHui Zhu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou, 311402, P. R. China
| | - PanTing Shou
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou, 311402, P. R. China
| | - Fei Teng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou, 311402, P. R. China
| | - Ying Zhu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou, 311402, P. R. China
| | - HuaJun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou, 311402, P. R. China
| | - Bo Yang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, No. 260 Baichuan Street, Hangzhou, 311402, P. R. China
| |
Collapse
|
24
|
He H, Liu Z, Wang W, Jiang X. Synthesis and cytotoxic evaluation of halogenated α-exo-methylene-lactones. Bioorg Med Chem 2020; 28:115281. [PMID: 31889606 DOI: 10.1016/j.bmc.2019.115281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/03/2019] [Accepted: 12/18/2019] [Indexed: 11/26/2022]
Abstract
α-exo-Methylene-γ-butyrolactones and α-exo-methylene-δ-valerolactones constitute an important group of natural and bioactive products. A simple and general protocol of halolactonization of dienoic acids to obtain various α-exo-methylene-lactones in excellent yields is described. The resulting halogenated α-exo-methylene-lactones were found to exhibit potent cytotoxic activities.
Collapse
Affiliation(s)
- Haoquan He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zheng Liu
- Foshan Stomatology Hospital, School of Stomatology and Medicine, Foshan University, Foshan 528000, China
| | - Wei Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiaojian Jiang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
25
|
Ding Y, Xue Q, Liu S, Hu K, Wang D, Wang T, Li Y, Guo H, Hao X, Ge W, Zhang Y, Li A, Li J, Chen Y, Zhang Q. Identification of Parthenolide Dimers as Activators of Pyruvate Kinase M2 in Xenografts of Glioblastoma Multiforme in Vivo. J Med Chem 2020; 63:1597-1611. [DOI: 10.1021/acs.jmedchem.9b01328] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yahui Ding
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People’s Republic of China
| | - Qingqing Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People’s Republic of China
| | - Shuo Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People’s Republic of China
| | - Kai Hu
- College of Medicine, Nankai University, 94 Weijin Road, Tianjin 3000710, People’s Republic of China
| | - Da Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People’s Republic of China
| | - Tianpeng Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People’s Republic of China
| | - Ye Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People’s Republic of China
| | - Hongyu Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People’s Republic of China
| | - Xin Hao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People’s Republic of China
| | - Weizhi Ge
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People’s Republic of China
| | - Yan Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People’s Republic of China
| | - Ang Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People’s Republic of China
| | - Jing Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People’s Republic of China
| | - Yue Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People’s Republic of China
| | - Quan Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People’s Republic of China
| |
Collapse
|
26
|
Freund RRA, Gobrecht P, Fischer D, Arndt HD. Advances in chemistry and bioactivity of parthenolide. Nat Prod Rep 2020; 37:541-565. [DOI: 10.1039/c9np00049f] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
(−)-Parthenolide is a germacrane sesquiterpene lactone, available in ample amounts from the traditional medical plant feverfew (Tanacetum parthenium).
Collapse
Affiliation(s)
- Robert R. A. Freund
- Institut für Organische Chemie und Makromolekulare Chemie
- Friedrich-Schiller-Universität
- D-07743 Jena
- Germany
| | - Philipp Gobrecht
- Lehrstuhl für Zellphysiologie
- Ruhr-Universität Bochum
- D-44780 Bochum
- Germany
| | - Dietmar Fischer
- Lehrstuhl für Zellphysiologie
- Ruhr-Universität Bochum
- D-44780 Bochum
- Germany
| | - Hans-Dieter Arndt
- Institut für Organische Chemie und Makromolekulare Chemie
- Friedrich-Schiller-Universität
- D-07743 Jena
- Germany
| |
Collapse
|
27
|
|