1
|
Valastyan JS, Shine EE, Mook RA, Bassler BL. Inhibitors of the PqsR Quorum-Sensing Receptor Reveal Differential Roles for PqsE and RhlI in Control of Phenazine Production. ACS Chem Biol 2025. [PMID: 40366200 DOI: 10.1021/acschembio.5c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Pseudomonas aeruginosa is a leading cause of hospital-acquired infections and it is resistant to many current antibiotic therapies, making development of new antimicrobial treatments imperative. The cell-to-cell communication process called quorum sensing controls P. aeruginosa pathogenicity. Quorum sensing relies on the production, release, and group-wide detection of extracellular signal molecules called autoinducers. Quorum sensing enables bacteria to synchronize group behaviors. P. aeruginosa possesses multiple quorum-sensing systems that control overlapping regulons, including some required for virulence and biofilm formation. Interventions that target P. aeruginosa quorum-sensing receptors are considered a fruitful avenue to pursue for new therapeutic advances. Here, we developed a P. aeruginosa strain that carries a bioluminescent reporter fused to a target promoter that is controlled by two P. aeruginosa quorum-sensing receptors. The receptors are PqsR, which binds and responds to the autoinducer called PQS (2-heptyl-3-hydroxy-4(1H)-quinolone) and RhlR, which binds and responds to the autoinducer called C4-HSL (C4-homoserine lactone). We used this reporter strain to screen >100,000 compounds with the aim of identifying inhibitors of either or both the PqsR and RhlR quorum-sensing receptors. We report results for 30 PqsR inhibitors from this screen. All of the identified compounds inhibit PqsR with IC50 values in the nanomolar to low micromolar range and they are readily docked into the autoinducer binding site of the PqsR crystal structure, suggesting they function competitively. The majority of hits identified are not structurally related to previously reported PqsR inhibitors. Recently, RhlR was shown to rely on the accessory protein PqsE for full function. Specifically, RhlR controls different subsets of genes depending on whether or not it is bound to PqsE, however, the consequences of differential regulation on the quorum-sensing output response have not been defined. PqsR regulates pqsE. That feature of the system enabled us to exploit our new set of PqsR inhibitors to show that RhlR requires PqsE to activate the biosynthetic genes for pyocyanin, a key P. aeruginosa virulence factor, while C4-HSL is dispensable. These results highlight the promise of inhibition of PqsR as a possible P. aeruginosa therapeutic to suppress production of factors under RhlR-PqsE control.
Collapse
Affiliation(s)
- Julie S Valastyan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
| | - Emilee E Shine
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert A Mook
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
| |
Collapse
|
2
|
Zhang ZS, Zhao DS, Zhu D, Guan M, Xiong LT, He Z, Li Y, Shi Y, Xu ZL, Deng X, Cui ZN. Design, Synthesis, and Biological Evaluation of Asymmetrical Disulfides Based on Garlic Extract as Pseudomonas aeruginosa pqs Quorum Sensing Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5850-5859. [PMID: 40014758 DOI: 10.1021/acs.jafc.4c12713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Pseudomonas aeruginosa is a widely encountered bacterium linked to the deterioration of food products and represents a notable concern for public health safety. Disulfides serve as significant pharmacologically active scaffolds exhibiting antibacterial, antiviral, and anticancer properties; however, reports on their activity as quorum sensing inhibitors (QSIs) against P. aeruginosa are limited. In our work, asymmetrical disulfides were designed and synthesized, utilizing natural products, such as allicin, ajoene, diallyl disulfide (DADS), hordenine, and cinnamic acid, as lead compounds. By screening for lasB, rhlA, and pqsA promoter activity, two highly effective QSIs were identified. Compounds 7d and 4c show effectiveness in reducing the synthesis of different virulence factors, the creation of biofilms, and movement capabilities. Subsequent validation using the Galleria mellonella larvae model confirmed their robust in vivo efficacy. Moreover, their combination with antibiotics markedly augmented the antibacterial activity. Mechanism studies employed by transcriptome analysis, quantitative reverse transcription-PCR (qRT-PCR), surface plasmon resonance, and molecular docking demonstrate that compound 7d disrupts the quorum sensing system by interacting with PqsR. These findings suggest that our disulfide derivatives hold promise for treating P. aeruginosa infections.
Collapse
Affiliation(s)
- Zhao-Sheng Zhang
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science &Technology Normal University, Nanchang 330013, China
| | - Dong-Sheng Zhao
- Department of Pharmacy, Quanzhou Medical College, Quanzhou 362100, China
| | - Di Zhu
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Mingming Guan
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Lan-Tu Xiong
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Zhe He
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yasheng Li
- Department of Infectious Diseases, Anhui Province Key Laboratory of Infectious Diseases & Anhui Center for Surveillance of Bacterial Resistance, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yu Shi
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ze-Ling Xu
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| | - Zi-Ning Cui
- State Key Laboratory of Green Pesticide, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Tu Y, Li H, Huo J, Gou L, Wen X, Yu X, Zhang X, Zeng J, Li Y. Disrupting the bacterial language: quorum quenching and its applications. Crit Rev Microbiol 2025:1-15. [PMID: 39973173 DOI: 10.1080/1040841x.2025.2466472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/21/2025]
Abstract
Quorum sensing (QS) is a bacterial communication method closely linked with population density and regulates biofilm formation and the secretion of virulence factors through the release, recognition, and prompt response to small molecule signals. At low cell density, each bacterium produces a low concentration of QS signals that diffuse or are actively transported into the external environment. The accumulated QS signals in the external environment reach a threshold concentration when the bacterial population attains a certain density, enabling effective recognition and interaction of bacterial QS signals with their receptors. This leads to coordinated gene expression and various biological activities across the bacterial population. Targeting the QS system presents a promising strategy to hinder biofilm formation and virulence factor secretion, providing a potential approach to control bacterial growth and reproduction. This study aims to analyze the intercellular mechanisms of quorum quenching (QQ), which focuses on disrupting bacterial signal molecules to keep their concentration below the threshold and preventing the expression of specific pathogenic factors. The applications of QQ in different fields are also reviewed, underscoring its potential as a novel treatment for bacterial infections.
Collapse
Affiliation(s)
- Yeting Tu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hanyu Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiachen Huo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lichen Gou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaomin Yu
- Department of Emergency Medicine, West China Hospital, Sichuan University/Nursing Key Laboratory of Sichuan Province, West China School of Nursing, Sichuan University, Chengdu, China
| | - Xiaorui Zhang
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Valastyan JS, Shine EE, Mook RA, Bassler BL. Inhibitors of the PqsR Quorum-Sensing Receptor Reveal Differential Roles for PqsE and RhlI in Control of Phenazine Production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637488. [PMID: 39990374 PMCID: PMC11844427 DOI: 10.1101/2025.02.10.637488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Pseudomonas aeruginosa is a leading cause of hospital-acquired infections and it is resistant to many current antibiotic therapies, making development of new anti-microbial treatments imperative. The cell-to-cell communication process called quorum sensing controls P. aeruginosa pathogenicity. Quorum sensing relies on the production, release, and group-wide detection of extracellular signal molecules called autoinducers. Quorum sensing enables bacteria to synchronize group behaviors. P. aeruginosa possesses multiple quorum-sensing systems that control overlapping regulons, including those required for virulence and biofilm formation. Interventions that target P. aeruginosa quorum-sensing receptors are considered a fruitful avenue to pursue for new therapeutic advances. Here, we developed a P. aeruginosa strain that carries a bioluminescent reporter fused to a target promoter that is controlled by two P. aeruginosa quorum-sensing receptors. The receptors are PqsR, which binds and responds to the autoinducer called PQS (2-heptyl-3-hydroxy-4(1H)-quinolone) and RhlR, which binds and responds to the autoinducer called C4-HSL (C4-homoserine lactone). We used this reporter strain to screen >100,000 compounds with the aim of identifying inhibitors of either or both the PqsR and RhlR quorum-sensing receptors. We report results for 30 PqsR inhibitors from this screen. All of the identified compounds inhibit PqsR with IC50 values in the nanomolar to low micromolar range and they are readily docked into the autoinducer binding site of the PqsR crystal structure, suggesting they function competitively. The majority of hits identified are not structurally related to previously reported PqsR inhibitors. Recently, RhlR was shown to rely on the accessory protein PqsE for full function. Specifically, RhlR controls different subsets of genes depending on whether it is bound to PqsE or to C4-HSL, however, the consequences of differential regulation on the quorum-sensing output response have not been defined. PqsR regulates pqsE. That feature of the system enabled us to exploit our new set of PqsR inhibitors to show that RhlR requires PqsE to activate the biosynthetic genes for pyocyanin, a key P. aeruginosa virulence factor, while C4-HSL is dispensable. These results highlight the promise of inhibition of PqsR as a possible P. aeruginosa therapeutic to suppress production of factors under RhlR-PqsE control.
Collapse
Affiliation(s)
- Julie S Valastyan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
| | - Emilee E Shine
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert A Mook
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
| |
Collapse
|
5
|
Xie Y, Shi Y, Wang L, Li C, Wu M, Xu J. Outer membrane vesicle contributes to the Pseudomonas aeruginosa resistance to antimicrobial peptides in the acidic airway of bronchiectasis patients. MedComm (Beijing) 2025; 6:e70084. [PMID: 39896756 PMCID: PMC11782972 DOI: 10.1002/mco2.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/29/2024] [Accepted: 11/23/2024] [Indexed: 02/04/2025] Open
Abstract
Pseudomonas aeruginosa is the predominant pathogen causing chronic infection in the airway of patients with bronchiectasis (BE), a chronic respiratory disease with high prevalence worldwide. Environmental factors are vital for bacterial successful colonization. Here, with sputa and bronchoalveolar lavage fluids, we determined that the concentration of airway antimicrobial peptide LL-37 and lactate was elevated in BE patients, especially in those infected with P. aeruginosa. The in vitro antibacterial assay revealed the bactericidal activity of LL-37 against the clinical P. aeruginosa isolates, which were dampened in the acidic condition. P. aeruginosa production of outer membrane vesicles (OMVs) enhanced in the lactate-adjusted acidic condition. Transcriptomic analysis suggested that OMVs induce the hyperproduction of the chemical compound 2-heptyl-4-quinolone (HHQ) in the bacterial population, which was verified by high-performance liquid chromatography. The positively charged HHQ interfered with the binding of LL-37 to bacterial cell membrane, potentiating the P. aeruginosa resistance to LL-37. To our knowledge, this is a new resistance mechanism of P. aeruginosa against antimicrobial peptides and may provide theoretical support for the development of new antibacterial therapies.
Collapse
Affiliation(s)
- Yingzhou Xie
- Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of MedicineTongji UniversityShanghaiChina
| | - Yi‐Han Shi
- Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of MedicineTongji UniversityShanghaiChina
| | - Le‐Le Wang
- Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of MedicineTongji UniversityShanghaiChina
| | - Cheng‐Wei Li
- Department of Pulmonary and Critical Care MedicineHuashan Hospital, Fudan UniversityShanghaiChina
| | - Min Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, and Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Jin‐Fu Xu
- Shanghai Pulmonary Hospital, Institute of Respiratory Medicine, School of MedicineTongji UniversityShanghaiChina
- Department of Respiratory and Critical Care MedicineHuadong Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
6
|
Hassan RM, Yehia H, El-Behairy MF, El-Azzouny AAS, Aboul-Enein MN. Design and synthesis of new quinazolinone derivatives: investigation of antimicrobial and biofilm inhibition effects. Mol Divers 2025; 29:21-42. [PMID: 38656598 PMCID: PMC11785708 DOI: 10.1007/s11030-024-10830-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/25/2024] [Indexed: 04/26/2024]
Abstract
New quinazolin-4-ones 9-32 were synthesized in an attempt to overcome the life-threatening antibiotic resistance phenomenon. The antimicrobial screening revealed that compounds 9, 15, 16, 18, 19, 20 and 29 are the most broad spectrum antimicrobial agents in this study with safe profile on human cell lines. Additionally, compounds 19 and 20 inhibited biofilm formation in Pseudomonas aeruginosa, which is regulated by quorum sensing system, at sub-minimum inhibitory concentrations (sub-MICs) with IC50 values 3.55 and 6.86 µM, respectively. By assessing other pseudomonal virulence factors suppression, it was found that compound 20 decreased cell surface hydrophobicity compromising bacterial cells adhesion, while both compounds 19 and 20 curtailed the exopolysaccharide production which constitutes the major component of the matrix binding biofilm components together. Also, at sub-MICs Pseudomonas cells twitching motility was impeded by compounds 19 and 20, a trait which augments the cells pathogenicity and invasion potential. Molecular docking study was performed to further evaluate the binding mode of candidates 19 and 20 as inhibitors of P. aeruginosa quorum sensing transcriptional regulator PqsR. The achieved results demonstrate that both compounds bear promising potential for discovering new anti-biofilm and quorum quenching agents against Pseudomonas aeruginosa without triggering resistance mechanisms as the normal bacterial life cycle is not disturbed.
Collapse
Affiliation(s)
- Rasha Mohamed Hassan
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt.
| | - Heba Yehia
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Mohammed F El-Behairy
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, 32897, Sadat City, Egypt
| | - Aida Abdel-Sattar El-Azzouny
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Mohamed Nabil Aboul-Enein
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt.
| |
Collapse
|
7
|
Arami N, Tajani AS, Hashemi M, Rezaei T, Ghodsi R, Soheili V, Bazzaz BSF. Targeted inhibition of PqsR in Pseudomonas aeruginosa PAO1 quorum-sensing network by chalcones as promising antibacterial compounds. Mol Biol Rep 2025; 52:175. [PMID: 39883336 DOI: 10.1007/s11033-025-10270-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/16/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Pseudomonas aeruginosa's inherent and adapted resistance makes this pathogen a serious problem for antimicrobial treatments. Furthermore, its biofilm formation ability is the most critical armor against antimicrobial therapy, and the virulence factors, on the other hand, contribute to fatal infection and other recalcitrant phenotypic characteristics. These capabilities are harmonized through cell-cell communication called Quorum Sensing (QS), which results in gene expression regulation via three major interconnected circuits: las, rhl, and pqs system. Pqs circuit specificity in P. aeruginosa made this system an attractive target for antipseudomonal therapy. The current study focuses on novel chalcone derivatives that attenuate P. aeruginosa's pathogenicity by inhibiting the QS system. Chalcones are included in the flavonoid class of phenolic compounds. This family forms one of the greatest groups of bioactive natural products. METHOD The chalcone derivatives's potential activity against the QS system was evaluated through biofilm inhibition, decreased virulence factors production, and gene expression. RESULTS Among all the tested compounds, 5H and NMe2 chalcone derivatives reduced biofilm formation by 60.9% and 78.9%, respectively, and virulence factors production, including pyocyanin (decreased by 5H 30.9% and NMe2 30.7%) and pyoverdine (decreased by 5H 47.1% and NMe2 56.9%) and the QS gene expression (LasR, RhlR, and PqsR) more effectively than other derivatives. CONCLUSION These chalcone compounds can be used as a supplement besides antimicrobial chemotherapy to attenuate pseudomonas pathogenicity.
Collapse
Affiliation(s)
- Negin Arami
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amineh Sadat Tajani
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Hashemi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Technology Institute, Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tahoura Rezaei
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bibi Sedigheh Fazly Bazzaz
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Bouasla N, Abderrahmane S, Obeizi Z, Sarah M, Saoudi A. Antimicrobial Activity of ZnS and ZnO-TOP Nanoparticles Againts Pathogenic Bacteria. Chem Biodivers 2024; 21:e202400724. [PMID: 39183440 DOI: 10.1002/cbdv.202400724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/28/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
This study aims to synthesize ZnS nanoparticles (NPs) and investigate their biocidal effects, along with those of ZnO-Trioctylphosphine (ZnO-TOP) NPs, on various pathogenic microbes. The NPs were synthesized via the polyol method using the forced hydrolysis of zinc acetate. They were characterized by XRD and TEM. The average sizes of ZnS and ZnO-TOP are 3.63 nm and 16.28 nm, respectively. The antimicrobial activities were assessed using agar-well diffusion, minimum inhibitory concentration (MIC), and biofilm inhibition. The results showed that ZnS and ZnO-TOP NPs have potent antimicrobial activity against all tested pathogen microbes. A zone of maximum inhibition (ZMI) of 20±0.54 and 22±0.26 was observed in the case of ZnS for Acinetobacter baumannii and Candida albicans, respectively. For ZnO-TOP, a ZMI of 20±0.15 and 20±0.19 is obtained for Pseudomonas. aeruginosa ATCC 27853 and A. baumannii, respectively. Percentages of biofilm inhibition at 128 μg/ml were notably high for Enterococcus faecalis (96.83 % with ZnO-TOP and 91.17 % with ZnS) and Staphylococcus aureus (87.27 % with ZnO-TOP and 76.37 % with ZnS). The results suggest that ZnS and ZnO-TOP nanoparticles have promising potential as effective antimicrobial agents, especially against biofilm-forming pathogens, indicating their potential for future use in treating microbial infections.
Collapse
Affiliation(s)
- Nabila Bouasla
- Université Chadli Bendjedid-El Tarf, B.P 73, El Taref, 36000, Algeria
- Surface Engineering Laboratory (L.I.S), Faculty of Sciences, Badji Mokhtar -Annaba University, P.o.Box 12, Annaba 23000, Algeria, Annaba, 23000, Algeria
| | - Sihem Abderrahmane
- Surface Engineering Laboratory (L.I.S), Faculty of Sciences, Badji Mokhtar -Annaba University, P.o.Box 12, Annaba 23000, Algeria, Annaba, 23000, Algeria
| | - Zahra Obeizi
- Laboratory of Biochemistry and Applied Microbiology, Department of Biochemistry, Faculty of Sciences, University of Badji Mokhtar, Annaba, 23000, Algeria
| | - Messast Sarah
- Surface Engineering Laboratory (L.I.S), Faculty of Sciences, Badji Mokhtar -Annaba University, P.o.Box 12, Annaba 23000, Algeria, Annaba, 23000, Algeria
- Materials physicochemical laboratory, sciences and Technology faculty, Department of physics, Chadli Bendjedid-El Tarf University, B.P 73, 36000, EL Tarf, Algeria
| | - Adel Saoudi
- Centre de Recherche Scientifique et Technique en Analyses Physico- Chimiques (CRAPC), Zone Industrielle, BP 384, Bou-Ismail, Tipaza, Algérie
| |
Collapse
|
9
|
Rodríguez-Urretavizcaya B, Vilaplana L, Marco MP. Strategies for quorum sensing inhibition as a tool for controlling Pseudomonas aeruginosa infections. Int J Antimicrob Agents 2024; 64:107323. [PMID: 39242051 DOI: 10.1016/j.ijantimicag.2024.107323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Antibiotic resistance is one of the most important concerns in global health today. A growing number of infections are becoming harder to treat with conventional drugs and fewer new antibiotics are being developed. In this context, strategies based on blocking or attenuating virulence pathways that do not focus on eradication of bacteria are potential therapeutic approaches that should reduce the selective pressure exerted on the pathogen. This virulence depletion can be achieved by inhibiting the conserved quorum sensing (QS) system, a mechanism that enables bacteria to communicate with one another in a density-dependent manner. QS regulates gene expression, leading to the activation of important processes such as virulence and biofilm formation. This review highlights the approaches reported so far for disrupting different steps of the QS system of the multiresistant pathogen Pseudomonas aeruginosa. The authors describe different types of molecules (including enzymes, natural and synthetic small molecules, and antibodies) already identified as P. aeruginosa quorum quenchers (QQs) or QS inhibitors (QSIs), grouped according to the QS circuit that they block (Las, Rhl, Pqs and some examples from the controversial pathway Iqs). The discovery of new QQs and QSIs is expected to help reduce antibiotic doses, or at least to provide options that act as adjuvants to enhance the effect of antibiotic treatment. Moreover, this article outlines the advantages and possible drawbacks of each strategy and provides perspectives on the potential developments in this field in the future.
Collapse
Affiliation(s)
- Bárbara Rodríguez-Urretavizcaya
- Nanobiotechnology for diagnostics group (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Lluïsa Vilaplana
- Nanobiotechnology for diagnostics group (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - M-Pilar Marco
- Nanobiotechnology for diagnostics group (Nb4D), Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| |
Collapse
|
10
|
Chen KZM, Vu LM, Vollmer AC. Cultivation in long-term simulated microgravity is detrimental to pyocyanin production and subsequent biofilm formation ability of Pseudomonas aeruginosa. Microbiol Spectr 2024; 12:e0021124. [PMID: 39162544 PMCID: PMC11448113 DOI: 10.1128/spectrum.00211-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/27/2024] [Indexed: 08/21/2024] Open
Abstract
Pseudomonas aeruginosa forms aggregates known as biofilms. Previous studies have shown that when P. aeruginosa is cultivated in space, thicker and structurally different biofilms are formed than from those grown on Earth. We investigated how microgravity, simulated in a laboratory setting, influenced the growth, colonization, and virulence potentials of a P. aeruginosa PA14 wild-type strain, as well as two surface attachment-defective (sad) mutants altered at crucial biofilm-forming steps: flgK and pelA. Using high-aspect ratio rotating-wall vessel (HARV) bioreactors, P. aeruginosa bacteria were grown to stationary phase under prolonged (6 days) exposure to simulated microgravity or normal gravity conditions. After the exposure, the capacity of the culture to form biofilms was measured. Additionally, pigment (pyocyanin) formed by each culture during the incubation was extracted and quantified. We demonstrate that the first prolonged exposure to low-shear modeled microgravity (LSMMG) and without nutrient replenishment significantly diminishes wild-type P. aeruginosa PA14 biofilm formation abilities after exposure and pyocyanin production during exposure, while the mutant strains exhibit differing outcomes for both properties. IMPORTANCE Given plans for humans to engage in prolonged space travel, we investigated biofilm and pigment/virulence factor formation in Pseudomonas aeruginosa when cultivated in microgravity. These bacteria are opportunistic pathogens in immunocompromised individuals. Previous studies of space travelers have shown some immune system diminutions. Hence, our studies shed some light on how prolonged cultivation of bacteria in simulated microgravity conditions affect their growth characteristics.
Collapse
Affiliation(s)
| | - Linda My Vu
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Baltimore, Maryland, USA
| | - Amy Cheng Vollmer
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, USA
| |
Collapse
|
11
|
Boakye A, Seidu MP, Adomako A, Laryea MK, Borquaye LS. Marine-Derived Furanones Targeting Quorum-Sensing Receptors in Pseudomonas aeruginosa: Molecular Insights and Potential Mechanisms of Inhibition. Bioinform Biol Insights 2024; 18:11779322241275843. [PMID: 39246683 PMCID: PMC11378241 DOI: 10.1177/11779322241275843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/30/2024] [Indexed: 09/10/2024] Open
Abstract
The quorum-sensing (QS) machinery in disease-causing microorganisms is critical in developing antibiotic resistance. In Pseudomonas aeruginosa, QS is involved in biofilm formation, virulence factors production, and general tolerance to antimicrobials. Owing to the major role QS plays, interference in the process is probably a facile route to overcome antimicrobial resistance. Some furanone-derived compounds from marine sources have shown promising anti-QS activity. However, their protein targets and potential mechanisms of action have not been explored. To elucidate their potential protein targets in this study, marine metabolites with furanone backbones similar to their cognitive autoinducers (AIs) were screened against various QS receptors (LasR, RhlR, and PqsR) using molecular docking and molecular dynamics (MD) simulation techniques. The order by which the compounds bind to the receptors follows LasR > RhlR > PqsR. Compounds exhibited remarkable stability against LasR and RhlR, likely because the AIs of these receptors are structural analogs of furanones. Furanones with shorter alkyl side chains bound strongly against RhlR. The presence of halogens improved binding against various receptors. PqsR, with its hydrophobic-binding site and structurally different AIs, showed weaker binding. This study provides a molecular basis for the design of potent antagonists against QS receptors using marine-derived furanones.
Collapse
Affiliation(s)
- Aaron Boakye
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Alice Adomako
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Michael Konney Laryea
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Lawrence Sheringham Borquaye
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Central Laboratory, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
12
|
Sebastian S, Rohila Y, Meenakshi, Ansari A, Sengupta S, Kumar D, Srivastava N, Kumar L, Gupta MK. Anti-quorum sensing activity of α-amidoamides against Agrobacterium tumefaciensNT1: Insights from molecular docking and dynamic investigations to synergistic approach of metronidazole release from gel formulations. Microb Pathog 2024; 193:106787. [PMID: 38992510 DOI: 10.1016/j.micpath.2024.106787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
A unique approach is imperative for the development of drugs aimed at inhibiting various stages of infection, rather than solely focusing on bacterial viability. Among the array of unconventional targets explored for formulating novel antimicrobial medications, blocking the quorum-sensing (QS) system emerges as a highly effective and promising strategy against a variety of pathogenic microbes. In this investigation, we have successfully assessed nine α-aminoamides for their anti-QS activity using Agrobacterium tumefaciensNT1 as a biosensor strain. Among these compounds, three (2, 3and, 4) have been identified as potential anti-QS candidates. Molecular docking studies have further reinforced these findings, indicating that these compounds exhibit favorable pharmacokinetic profiles. Additionally, we have assessed the ligand's stability within the protein's binding pocket using molecular dynamics (MD) simulations and MMGBSA analysis. Further, combination of antiquorum sensing properties with antibiotics viaself-assembly represents a promising approach to enhance antibacterial efficacy, overcome resistance, and mitigate the virulence of bacterial pathogens. The release study also reflects a slow and gradual release of the metronidazole at both pH 6.5 and pH 7.4, avoiding the peaks and troughs associated with more immediate release formulations.
Collapse
Affiliation(s)
- Sharol Sebastian
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Yajat Rohila
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Meenakshi
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Azaj Ansari
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India.
| | - Sounok Sengupta
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, Himachal Pradesh, India; Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, Himachal Pradesh, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, Himachal Pradesh, India.
| | - Namita Srivastava
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173229, Himachal Pradesh, India
| | - Lokender Kumar
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173229, Himachal Pradesh, India; Cancer Biology Laboratory, Raj Khosla Centre for Cancer Research, Shoolini University, Solan, 173229, Himachal Pradesh, India
| | - Manoj K Gupta
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India.
| |
Collapse
|
13
|
Baumgartner JT, McCaughey CS, Fleming HS, Lentz AR, Sanchez LM, McKinnie SMK. Vanadium-dependent haloperoxidases from diverse microbes halogenate exogenous alkyl quinolone quorum sensing signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606109. [PMID: 39131370 PMCID: PMC11312541 DOI: 10.1101/2024.07.31.606109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Site-selective vanadium-dependent haloperoxidases (VHPOs) are a unique enzyme family that catalyze selective halogenation reactions previously characterized within bacterial natural product biosynthetic pathways. However, the broader chemical roles and biological distribution of these halogenases remains to be explored. Using bioinformatic methods, we have defined a VHPO subfamily that regioselectively brominates alkyl quinolone (AQ) quorum sensing molecules. In vitro AQ halogenation activity was demonstrated from phylogenetically distinct bacteria lacking established AQ biosynthetic pathways and sourced from diverse environments. AQ-VHPOs show high sequence and biochemical similarities with negligible genomic synteny or biosynthetic gene cluster co-localization. Exposure of VHPO-containing microbes to synthetic AQs or established bacterial producers identifies the chemical and spatial response to subvert their bacteriostatic effects. The characterization of novel homologs from bacterial taxa without previously demonstrated vanadium enzymology suggests VHPO-mediated AQ bromination is a niche to manipulate the chemical ecology of microbial communities.
Collapse
|
14
|
Zhang F, Fang H, Zhao Y, Zhao B, Qin S, Wang Y, Guo Y, Liu J, Xu T. A membrane-targeting magnolol derivative for the treatment of methicillin-resistant Staphylococcus aureus infections. Front Microbiol 2024; 15:1385585. [PMID: 38827157 PMCID: PMC11140843 DOI: 10.3389/fmicb.2024.1385585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
Multidrug-resistant bacterial infections are a major global health challenge, especially the emergence and rapid spread of methicillin-resistant Staphylococcus aureus (MRSA) urgently require alternative treatment options. Our study has identified that a magnolol derivative 6i as a promising agent with significant antibacterial activity against S. aureus and clinical MRSA isolates (MIC = 2-8 μg/mL), showing high membrane selectivity. Unlike traditional antibiotics, 6i demonstrated rapid bactericidal efficiency and a lower propensity for inducing bacterial resistance. Compound 6i also could inhibit biofilm formation and eradicate bacteria within biofilms. Mechanistic studies further revealed that 6i could target bacterial cell membranes, disrupting the integrity of the cell membrane and leading to increased DNA leakage, resulting in potent antibacterial effects. Meanwhile, 6i also showed good plasma stability and excellent biosafety. Notably, 6i displayed good in vivo antibacterial activity in a mouse skin abscess model of MRSA-16 infection, which was comparable to the positive control vancomycin. These findings indicated that the magnolol derivative 6i possessed the potential to be a novel anti-MRSA infection agent.
Collapse
Affiliation(s)
- Fushan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Fang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuxin Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Buhui Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Yu Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Yong Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Jifeng Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Ting Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
15
|
Xiao H, Li J, Yang D, Du J, Li J, Lin S, Zhou H, Sun P, Xu J. Multidimensional Criteria for Virtual Screening of PqsR Inhibitors Based on Pharmacophore, Docking, and Molecular Dynamics. Int J Mol Sci 2024; 25:1869. [PMID: 38339148 PMCID: PMC10856439 DOI: 10.3390/ijms25031869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Pseudomonas aeruginosa is a clinically challenging pathogen due to its high resistance to antibiotics. Quorum sensing inhibitors (QSIs) have been proposed as a promising strategy to overcome this resistance by interfering with the bacterial communication system. Among the potential targets of QSIs, PqsR is a key regulator of quorum sensing in Pseudomonas aeruginosa. However, the current research on PqsR inhibitors is limited by the lack of diversity in the chemical structures and the screening methods. Therefore, this study aims to develop a multidimensional screening model for PqsR inhibitors based on both ligand- and receptor-based approaches. First, a pharmacophore model was constructed from a training set of PqsR inhibitors to identify the essential features and spatial arrangement for the activity. Then, molecular docking and dynamics simulations were performed to explore the core interactions between PqsR inhibitors and their receptor. The results indicate that an effective PqsR inhibitor should possess two aromatic rings, one hydrogen bond acceptor, and two hydrophobic groups and should form strong interactions with the following four amino acid residues: TYR_258, ILE_236, LEU_208, and GLN_194. Moreover, the docking score and the binding free energy should be lower than -8 kcal/mol and -40 kcal/mol, respectively. Finally, the validity of the multidimensional screening model was confirmed by a test set of PqsR inhibitors, which showed a higher accuracy than the existing screening methods based on single characteristics. This multidimensional screening model would be a useful tool for the discovery and optimization of PqsR inhibitors in the future.
Collapse
Affiliation(s)
- Haichuan Xiao
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (H.X.); (J.L.); (D.Y.); (J.D.); (J.L.); (S.L.); (H.Z.)
| | - Jiahao Li
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (H.X.); (J.L.); (D.Y.); (J.D.); (J.L.); (S.L.); (H.Z.)
| | - Dongdong Yang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (H.X.); (J.L.); (D.Y.); (J.D.); (J.L.); (S.L.); (H.Z.)
| | - Jiarui Du
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (H.X.); (J.L.); (D.Y.); (J.D.); (J.L.); (S.L.); (H.Z.)
| | - Jie Li
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (H.X.); (J.L.); (D.Y.); (J.D.); (J.L.); (S.L.); (H.Z.)
| | - Shuqi Lin
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (H.X.); (J.L.); (D.Y.); (J.D.); (J.L.); (S.L.); (H.Z.)
| | - Haibo Zhou
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (H.X.); (J.L.); (D.Y.); (J.D.); (J.L.); (S.L.); (H.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Pinghua Sun
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (H.X.); (J.L.); (D.Y.); (J.D.); (J.L.); (S.L.); (H.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China
| | - Jun Xu
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (H.X.); (J.L.); (D.Y.); (J.D.); (J.L.); (S.L.); (H.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
16
|
Miao ZY, Zhang XY, Yang MH, Huang YJ, Lin J, Chen WM. 3-Hydroxypyridin-4(1 H)-one Derivatives as pqs Quorum Sensing Inhibitors Attenuate Virulence and Reduce Antibiotic Resistance in Pseudomonas aeruginosa. J Med Chem 2023; 66:15823-15846. [PMID: 37978953 DOI: 10.1021/acs.jmedchem.3c01328] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The development of quorum sensing inhibitors capable of decreasing the production of virulence factors is an effective strategy to overcome resistance in Pseudomonas aeruginosa due to the less selective pressure exerted on bacteria. In this study, a series of 3-hydroxypyridin-4(1H)-one derivatives bearing a 4-aminomethyl-1,2,3-triazole linker were designed and synthesized as antivirulence agents against P. aeruginosa. The most potent derivative 16e was identified as a selective inhibitor of the pqs system (IC50 = 3.7 μM) and its related virulence factor pyocyanin (IC50 = 2.7 μM). In addition, 16e exhibited moderate biofilm inhibition and significant inhibition of P. aeruginosa motility phenotypes with low cytotoxicity. Compound 16e showed an obvious antibacterial synergistic effect in combination with antibiotics such as ciprofloxacin and tobramycin in in vitro and in vivo Caenorhabditis elegans infection models. Overall, the excellent antivirulence properties of compound 16e make it a potential antibiotic adjuvant for the treatment of P. aeruginosa infections that may be advanced into preclinical development in the future.
Collapse
Affiliation(s)
- Zhi-Ying Miao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Xiao-Yi Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Ming-Han Yang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Yong-Jun Huang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Jing Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| | - Wei-Min Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, #855 Xingye Avenue, Guangzhou 511400, China
| |
Collapse
|
17
|
Liu J, Meng Y, Yang MH, Zhang XY, Zhao JF, Sun PH, Chen WM. Design, synthesis and biological evaluation of novel 3-hydroxypyridin-4(1H)-ones based hybrids as Pseudomonas aeruginosa biofilm inhibitors. Eur J Med Chem 2023; 259:115665. [PMID: 37506546 DOI: 10.1016/j.ejmech.2023.115665] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a gram-negative pathogenic bacterium, often causative drug-resistance related human infections, given its great capacity to form bioflm. It uses three major quorum sensing (QS) systems, las, rhl, and pqs, to regulate the expression of genes related to virulence and biofilm formation. Consequently, strategies for inhibiting QS have garnered considerable attention as antimicrobial therapies. In this study, we designed and synthesized several 3-hydroxypyridin-4(1H)-one hybrids and assessed their potential as the inhibitors of P. aeruginosa biofilm formation. The most active compound identified was 12h; it exhibited satisfactory biofilm inhibitory activity (IC50: 10.59 ± 1.17 μM). Mechanistic studies revealed that 12h significantly inhibited the fluorescence of the PAO1-lasB-gfp and PAO1-pqsA-gfp fluorescent reporter strains and the production of Las-regulated (elastase) and Pqs-regulated (pyocyanin) virulence factors. These findings indicate that 12h inhibited biofilm formation by suppressing the expression of lasB and pqsA, thereby inactivating the las and pqs pathways. Furthermore, 12h improved the antibiotic susceptibility of P. aeruginosa and reduced the acute virulence of this bacterium in the African green monkey kidney cell line Vero. In conclusion, 3-hydroxypyridin-4(1H)-one hybrids, such as 12h, represent a promising class of antibacterial agents against P. aeruginosa.
Collapse
Affiliation(s)
- Jun Liu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, PR China; College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Ying Meng
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Ming-Han Yang
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Xiao-Yi Zhang
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jian-Fu Zhao
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, PR China.
| | - Ping-Hua Sun
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, PR China; College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Wei-Min Chen
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
18
|
Chen Y, Ye Z, Zhen W, Zhang L, Min X, Wang Y, Liu F, Su M. Design and synthesis of broad-spectrum antimicrobial amphiphilic peptidomimetics to combat drug-resistance. Bioorg Chem 2023; 140:106766. [PMID: 37572534 DOI: 10.1016/j.bioorg.2023.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
The gradual depletion of antibiotic discovery pipeline makes the antibiotic resistance a difficult clinical problem and a global health emergency. The membrane-active antimicrobial peptides (AMPs) attracted much attention due to a lower tendency to bacterial resistance than traditional antibiotics. However, some immanent drawbacks of AMPs may hamper their application in combating antibiotic resistance in the long run, such as susceptible to enzymatic degradation and low cell permeability. Herein, we report the design and synthesis of a novel series of amphiphilic peptidomimetics, from which we identified compounds that exhibited potent antimicrobial activity against a panel of clinically relevant Gram-positive and Gram-negative bacteria strains. The most potent compound 20 (SD-110-12) is able to kill intracellular bacterial pathogens and prevent the development of bacterial resistance under the tested conditions by targeting cell membranes. Additionally, compound 20 (SD-110-12) obtains good in vivo efficacy that is comparative to vancomycin by eradicating MRSA and suppressing inflammation in a mice infected skin wound model, demonstrating its promising therapeutic potential.
Collapse
Affiliation(s)
- Yating Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Zifan Ye
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wenteng Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Lu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Xiangyang Min
- Department of Clinical Laboratory Medicine, Yangpu Hospital of Tongji University, Shanghai 200000, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| | - Ma Su
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
19
|
Carullo G, Di Bonaventura G, Rossi S, Lupetti V, Tudino V, Brogi S, Butini S, Campiani G, Gemma S, Pompilio A. Development of Quinazolinone Derivatives as Modulators of Virulence Factors of Pseudomonas aeruginosa Cystic Fibrosis Strains. Molecules 2023; 28:6535. [PMID: 37764311 PMCID: PMC10536951 DOI: 10.3390/molecules28186535] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Pseudomonas aeruginosa (PA), one of the ESKAPE pathogens, is an opportunistic Gram-negative bacterium responsible for nosocomial infections in humans but also for infections in patients affected by AIDS, cancer, or cystic fibrosis (CF). Treatment of PA infections in CF patients is a global healthcare problem due to the ability of PA to gain antibiotic tolerance through biofilm formation. Anti-virulence compounds represent a promising approach as adjuvant therapy, which could reduce or eliminate the pathogenicity of PA without impacting its growth. Pyocyanin is one of the virulence factors whose production is modulated by the Pseudomonas quinolone signal (PQS) through its receptor PqsR. Different PqsR modulators have been synthesized over the years, highlighting this new powerful therapeutic strategy. Based on the promising structure of quinazolin-4(3H)-one, we developed compounds 7a-d, 8a,b, 9, 10, and 11a-f able to reduce biofilm formation and the production of virulence factors (pyocyanin and pyoverdine) at 50 µM in two PA strains responsible for CF acute and chronic infections. The developed compounds did not reduce the cell viability of IB3-1 bronchial CF cells, and computational studies confirmed the potential ability of novel compounds to act as potential Pqs system modulators.
Collapse
Affiliation(s)
- Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.C.); (S.R.); (V.T.); (S.B.); (G.C.)
| | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (G.D.B.); (V.L.); (A.P.)
| | - Sara Rossi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.C.); (S.R.); (V.T.); (S.B.); (G.C.)
| | - Veronica Lupetti
- Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (G.D.B.); (V.L.); (A.P.)
| | - Valeria Tudino
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.C.); (S.R.); (V.T.); (S.B.); (G.C.)
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy;
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.C.); (S.R.); (V.T.); (S.B.); (G.C.)
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.C.); (S.R.); (V.T.); (S.B.); (G.C.)
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (G.C.); (S.R.); (V.T.); (S.B.); (G.C.)
| | - Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (G.D.B.); (V.L.); (A.P.)
| |
Collapse
|
20
|
Thakur M, Khushboo, Kumar Y, Yadav V, Pramanik A, Dubey KK. Understanding resistance acquisition by Pseudomonas aeruginosa and possible pharmacological approaches in palliating its pathogenesis. Biochem Pharmacol 2023; 215:115689. [PMID: 37481132 DOI: 10.1016/j.bcp.2023.115689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Pseudomonas aeruginosa can utilize various virulence factors necessary for host infection and persistence. These virulence factors include pyocyanin, proteases, exotoxins, 2-heptyl-4-hydroxyquinoline N-oxide (HQNO), phospholipases, and siderophores that enable the bacteria to cause severe infections in immunocompromised individuals. P. aeruginosa falls into the category of nosocomial pathogens that are typically resistant to available antibiotics and therapeutic approaches. P. aeruginosa bio-film formation is a major concern in hospitals because it can cause chronic infection and increase the risk of mortality. Therefore, the development of new strategies to disrupt biofilm formation and improve antibiotic efficacy for the treatment of P. aeruginosa infections is crucial. Anti-biofilm and anti-quorum sensing (QS) activity can be viewed as an anti-virulence approach to control the infectious nature of P. aeruginosa. Inhibition of QS and biofilm formation can be achieved through pharmacological approaches such as phytochemicals and essential oils, which have shown promising results in laboratory studies. A regulatory protein called LasR plays a key role in QS signaling to coordinate gene expression. Designing an antagonist molecule that mimics the natural autoinducer might be the best approach for LasR inhibition. Here we reviewed the mechanism behind antibiotic resistance and alternative approaches to combat the pathogenicity of P. aeruginosa.
Collapse
Affiliation(s)
- Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Khushboo
- Department of Biotechnology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Yatin Kumar
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Avijit Pramanik
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Kashyap Kumar Dubey
- Biomanufacturing and Process Development Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi-67, India.
| |
Collapse
|
21
|
Shandil S, Yu TT, Sabir S, Black DS, Kumar N. Synthesis of Novel Quinazolinone Analogues for Quorum Sensing Inhibition. Antibiotics (Basel) 2023; 12:1227. [PMID: 37508323 PMCID: PMC10376653 DOI: 10.3390/antibiotics12071227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
As bacteria continue to develop resistance mechanisms against antimicrobials, an alternative method to tackle this global concern must be developed. As the pqs system is the most well-known and responsible for biofilm and pyocyanin production, quinazolinone inhibitors of the pqs system in P. aeruginosa were developed. Molecular docking following a rationalised medicinal chemistry approach was adopted to design these analogues. An analysis of docking data suggested that compound 6b could bind with the key residues in the ligand binding domain of PqsR in a similar fashion to the known antagonist M64. The modification of cyclic groups at the 3-position of the quinazolinone core, the introduction of a halogen at the aromatic core and the modification of the terminal group with aromatic and aliphatic chains were investigated to guide the synthesis of a library of 16 quinazolinone analogues. All quinazolinone analogues were tested in vitro for pqs inhibition, with the most active compounds 6b and 6e being tested for biofilm and growth inhibition in P. aeruginosa (PAO1). Compound 6b displayed the highest pqs inhibitory activity (73.4%, 72.1% and 53.7% at 100, 50 and 25 µM, respectively) with no bacterial growth inhibition. However, compounds 6b and 6e only inhibited biofilm formation by 10% and 5%, respectively.
Collapse
Affiliation(s)
- Sahil Shandil
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Tsz Tin Yu
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Shekh Sabir
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - David StC Black
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Naresh Kumar
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
22
|
Tamfu AN, Kocak G, Ceylan O, Citak F, Bütün V, Çiçek H. Synthesis of cross‐linked diazaborine‐based polymeric microparticles with antiquorum sensing, anti‐swarming, antimicrobial, and antibiofilm properties. J Appl Polym Sci 2023. [DOI: 10.1002/app.53631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Alfred Ngenge Tamfu
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries University of Ngaoundere Ngaoundere Cameroon
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School Mugla Sitki Kocman University Mugla Turkey
| | - Gökhan Kocak
- Department of Chemistry and Chemical Process Technologies, Vocational School of Higher Education Adiyaman University Adiyaman Turkey
| | - Ozgur Ceylan
- Food Quality Control and Analysis Program, Ula Ali Kocman Vocational School Mugla Sitki Kocman University Mugla Turkey
| | - Funda Citak
- Department of Chemistry, Faculty of Science Eskisehir Osmangazi University Eskisehir Turkey
| | - Vural Bütün
- Department of Chemistry, Faculty of Science Eskisehir Osmangazi University Eskisehir Turkey
| | - Hüseyin Çiçek
- Department of Chemistry, Faculty of Science Mugla Sitki Kocman University Mugla Turkey
| |
Collapse
|
23
|
Cheng W, Xu T, Cui L, Xue Z, Liu J, Yang R, Qin S, Guo Y. Discovery of Amphiphilic Xanthohumol Derivatives as Membrane-Targeting Antimicrobials against Methicillin-Resistant Staphylococcus aureus. J Med Chem 2023; 66:962-975. [PMID: 36584344 DOI: 10.1021/acs.jmedchem.2c01793] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Infections caused by multidrug-resistant (MDR) bacteria are increasing worldwide, and with limited clinically available antibiotics, it is urgent to develop new antimicrobials to combat these MDR bacteria. Here, a class of novel amphiphilic xanthohumol derivatives were prepared using a building-block approach. Bioactivity assays showed that the molecule IV15 not only exhibited a remarkable antibacterial effect against clinical methicillin-resistant Staphylococcus aureus (MRSA) isolates (MICs: 1-2 μg/mL) but also had the advantages of rapid bactericidal properties, low toxicity, good plasma stability, and not readily inducing bacterial resistance. Mechanistic studies indicated that IV15 has good membrane-targeting ability and can bind to phosphatidylglycerol and cardiolipin in bacterial membranes, thus disrupting the bacterial cell membranes and causing increased intracellular reactive oxygen species and leakage of proteins and DNA, eventually resulting in bacterial death. Notably, IV15 exhibited remarkable in vivo anti-MRSA efficacy, superior to vancomycin, making it a potential candidate to combat MRSA infections.
Collapse
Affiliation(s)
- Wanqing Cheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Ting Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Liping Cui
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zihan Xue
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Jifeng Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Ruige Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Yong Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan Province, China
| |
Collapse
|
24
|
Novel quinazolinone disulfide analogues as pqs quorum sensing inhibitors against Pseudomonas aeruginosa. Bioorg Chem 2023; 130:106226. [DOI: 10.1016/j.bioorg.2022.106226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/09/2022] [Accepted: 10/21/2022] [Indexed: 11/18/2022]
|
25
|
Walesch S, Birkelbach J, Jézéquel G, Haeckl FPJ, Hegemann JD, Hesterkamp T, Hirsch AKH, Hammann P, Müller R. Fighting antibiotic resistance-strategies and (pre)clinical developments to find new antibacterials. EMBO Rep 2022; 24:e56033. [PMID: 36533629 PMCID: PMC9827564 DOI: 10.15252/embr.202256033] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Antibacterial resistance is one of the greatest threats to human health. The development of new therapeutics against bacterial pathogens has slowed drastically since the approvals of the first antibiotics in the early and mid-20th century. Most of the currently investigated drug leads are modifications of approved antibacterials, many of which are derived from natural products. In this review, we highlight the challenges, advancements and current standing of the clinical and preclinical antibacterial research pipeline. Additionally, we present novel strategies for rejuvenating the discovery process and advocate for renewed and enthusiastic investment in the antibacterial discovery pipeline.
Collapse
Affiliation(s)
- Sebastian Walesch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Joy Birkelbach
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Gwenaëlle Jézéquel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Julian D Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Thomas Hesterkamp
- Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany,Helmholtz International Lab for Anti‐InfectivesSaarbrückenGermany
| | - Peter Hammann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany,Helmholtz International Lab for Anti‐InfectivesSaarbrückenGermany
| |
Collapse
|
26
|
Tripathi S, Purchase D, Govarthanan M, Chandra R, Yadav S. Regulatory and innovative mechanisms of bacterial quorum sensing-mediated pathogenicity: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:75. [PMID: 36334179 DOI: 10.1007/s10661-022-10564-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/29/2022] [Indexed: 06/16/2023]
Abstract
Quorum sensing (QS) is a system of bacteria in which cells communicate with each other; it is linked to cell density in the microbiome. The high-density colony population can provide enough small molecular signals to enable a range of cellular activities, gene expression, pathogenicity, and antibiotic resistance that cause damage to the hosts. QS is the basis of chronic illnesses in human due to microbial sporulation, expression of virulence factors, biofilm formation, secretion of enzymes, or production of membrane vesicles. The transfer of antimicrobial resistance gene (ARG) among antibiotic resistance bacteria is a major public health concern. QS-mediated biofilm is a hub for ARG horizontal gene transfer. To develop innovative approach to prevent microbial pathogenesis, it is essential to understand the role of QS especially in response to environmental stressors such as exposure to antibiotics. This review provides the latest knowledge on the relationship of QS and pathogenicity and explore the novel approach to control QS via quorum quenching (QQ) using QS inhibitors (QSIs) and QQ enzymes. The state-of-the art knowledge on the role of QS and the potential of using QQ will help to overcome the threats of rapidly emerging bacterial pathogenesis.
Collapse
Affiliation(s)
- Sonam Tripathi
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226025, UP, India
| | - Diane Purchase
- Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, The Burroughs, Hendon, London, NW4 4BT, UK
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, South Korea
| | - Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226025, UP, India.
| | - Sangeeta Yadav
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226025, UP, India.
- Department of Botany, Vaishno Devi Prashikshan Mahavidyalaya, Gondahi, Kunda, Pratapgarh, India.
| |
Collapse
|
27
|
Shakour N, Taheri E, Rajabian F, Tarighi S, Soheili V, Hadizadeh F. Evaluating the Antivirulence Effects of New Thiazolidinedione Compounds Against Pseudomonas aeruginosa PAO1. Microb Drug Resist 2022; 28:1003-1018. [PMID: 36219761 DOI: 10.1089/mdr.2022.0134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes several serious health problems and numerous forms of virulence. During the treatment of P. aeruginosa infections, the development of multidrug-resistant isolates creates significant clinical problems. Using antivirulence compounds to disrupt pathogenicity rather than killing the bacterium may be an interesting strategy to overcome this problem, because less harsh conditions will exist for the development of resistance. To reduce pathogenicity and biofilm formation, newly synthesized analogs of imidazolyl (8n) and previously synthesized analogs (8a-8m) with a similar backbone [the 5-(imidazolyl-methyl) thiazolidinediones] were tested against pyoverdine and pyocyanin production, protease activity, and biofilm formation. Compared to the positive control group, the best compounds reduced the production of pyoverdine (8n) by 89.57% and pyocyanin (8i) by 22.68%, and protease activity (8n) by 2.80% for PAO1 strain, at a concentration of 10 μM. Moreover, the biofilm formation assay showed a reduction of 87.94% (8i) for PAO1, as well as 30.53% (8d) and 44.65% (8m) for 1074 and 1707 strains, respectively. The compounds used in this study did not show any toxicity in the human dermal fibroblasts and 4T1 cells (viability higher than 90%). The in silico study of these compounds revealed that their antivirulence activity could be due to their interaction with the PqsR, PqsE, and LasR receptors.
Collapse
Affiliation(s)
- Neda Shakour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Taheri
- Laboratory of Phytopathology, Department of Crop Protection, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh Rajabian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Tarighi
- Laboratory of Phytopathology, Department of Crop Protection, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Jia T, Liu D, Bi X, Li M, Cai Z, Fu J, Liu Z, Wu P, Ke X, Jia A, Zhang G, Li G, Yang L. The AhR ligand phthiocol and vitamin K analogs as Pseudomonas aeruginosa quorum sensing inhibitors. Front Microbiol 2022; 13:896687. [PMID: 36187967 PMCID: PMC9515472 DOI: 10.3389/fmicb.2022.896687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) protein senses microbial-secreted metabolites to trigger the host's innate immune system. The Pseudomonas quinolone signal (PQS) and Mycobacterium tuberculosis (MTb) metabolite phthiocol (Pht) are both ligands of AhR with similar chemical structures. As PQS is an essential quorum-sensing molecule that regulates a wide range of virulence factors in Pseudomonas aeruginosa, we hypothesized that Pht and its analogs are potential P. aeruginosa quorum-sensing inhibitors (QSIs) with immune-modulating functions. In this study, we demonstrated that Pht was able to inhibit the P. aeruginosa pqs QS system and reduce both biofilm formation and the production of pyocyanin. Molecular docking analysis suggested that Pht competes with PQS at the binding site of its receptor, PqsR. An electrophoretic mobility shift assay confirmed the Pht-PqsR interaction and showed that Pht attenuated PqsR from binding to the pqsA promoter. Proteomic analysis showed that synthesis of the key pqs QS proteins decreased upon the addition of Pht to the bacterial cultures. Furthermore, Pht analogs vitamins K1 (Phylloquinone), K2 (Menaquinones), and K3 (Menadione) were also showed to inhibit the P. aeruginosa pqs QS system while able to activate the AhR signaling pathways. Our study suggests that the AhR ligands Pht and its vitamin K analogs are promising QSIs for the alternative treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Tianyuan Jia
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Dongjing Liu
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xianbiao Bi
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Menglu Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Zhao Cai
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jiapeng Fu
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Zhi Liu
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Pengyao Wu
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xue Ke
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Aiqun Jia
- School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Guoliang Zhang
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Guobao Li
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Third People's Hospital, National Clinical Research Center for Infectious Disease, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
29
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
30
|
Huang XH, She MT, Zhang YH, Liu YF, Zhong DX, Zhang YH, Zheng JX, Sun N, Wong WL, Lu YJ. Novel quinoline-based derivatives as the PqsR inhibitor against Pseudomonas aeruginosa PAO1. J Appl Microbiol 2022; 133:2167-2181. [PMID: 35490292 DOI: 10.1111/jam.15601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/27/2022]
Abstract
AIMS The emerging of drug resistant Pseudomonas aeruginosa is a critical challenge and renders an urgent action to discover innovative antimicrobial interventions. One of these interventions is to disrupt the pseudomonas quinolone signal (pqs) quorum sensing (QS) system, which governs multiple virulence traits and biofilm formation. This study aimed to investigate the QS inhibitory activity of a series of new PqsR inhibitors bearing a quinoline scaffold against Ps. aeruginosa. METHODS AND RESULTS The results showed that compound 1 suppressed the expression of QS-related genes and showed the best inhibitory activity to the pqs system of wild-type Ps. aeruginosa PAO1 with an IC50 of 20.22 μmol l-1 . The virulence factors including pyocyanin, total protease, elastase, and rhamnolipid were significantly suppressed in a concentration-dependent manner with the compound. In addition, 1 in combination with tetracycline inhibited synergistically the bacterial growth and suppressed the biofilm formation of PAO1. The molecular docking studies also suggested that 1 could potentially interact with the ligand-binding domain of the Lys-R type transcriptional regulator PqsR as a competitive antagonist. CONCLUSIONS The quinoline-based derivatives were found to interrupt the quorum sensing system via the pqs pathway and thus the production of virulence factors was inhibited and the antimicrobial susceptibility of Ps. aeruginosa was enhanced. SIGNIFICANCE AND IMPACT OF STUDY The study showed that the quinoline-based derivatives could be used as an anti-virulence agent for treating Ps. aeruginosa infections.
Collapse
Affiliation(s)
- Xuan-He Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Meng-Ting She
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Yi-Hang Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Yi-Fu Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Dong-Xiao Zhong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Yi-Han Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Jun-Xia Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Ning Sun
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, China.,Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P. R. China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China.,Engineering Research Academy of High Value Utilization of Green Plants, Meizhou, P. R. China.,Golden Health (Guangdong) Biotechnology Co., Ltd, Foshan, P. R. China
| |
Collapse
|
31
|
Bacterial biofilms and their resistance mechanisms: a brief look at treatment with natural agents. Folia Microbiol (Praha) 2022; 67:535-554. [DOI: 10.1007/s12223-022-00955-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/29/2022] [Indexed: 12/14/2022]
|
32
|
Ramesh G, Kaviyil JE, Paul W, Sasi R, Joseph R. Gallium-Curcumin Nanoparticle Conjugates as an Antibacterial Agent against Pseudomonas aeruginosa: Synthesis and Characterization. ACS OMEGA 2022; 7:6795-6809. [PMID: 35252674 PMCID: PMC8892643 DOI: 10.1021/acsomega.1c06398] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/08/2022] [Indexed: 05/14/2023]
Abstract
Combating antibiotic resistance has found great interest in the current clinical scenario. Pseudomonas aeruginosa, an opportunistic multidrug-resistant pathogen, is well known for its deadly role in hospital-acquired infections. Infections by P. aeruginosa are among the toughest to treat because of its intrinsic and acquired resistance to antibiotics. In this study, we project gallium-curcumin nanoparticle (GaCurNP) conjugates as a prospective candidate to fight against P. aeruginosa. The synthesized GaCurNPs were spherical with an average size ranging from 25-35 nm. Analysis by Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy deduced the nature of interaction between gallium and curcumin. Conjugate formation with gallium was found to improve the stability of curcumin at the physiological pH. When tested after 24 h of contact, at the physiological pH and 37 °C, the degradation of curcumin bound in the GaCurNPs was 26%, while that of native curcumin was 95%. The minimum inhibitory concentration (MIC) of GaCurNPs was found to be 82.75 μg/mL for P. aeruginosa (ATCC 27853). GaCurNPs also showed excellent biofilm inhibition at 4MIC concentration. Raman spectroscopic analysis showed that GaCurNPs are capable of disrupting the cells of P. aeruginosa within 3 h of contact. Live/dead imaging also confirmed the compromised membrane integrity in cells treated with GaCurNPs. Scanning electron microscopy analysis showed membrane lysis and cell structure damage. The AlamarBlue assay showed that when L929 cell lines were treated with GaCurNPs with concentrations as high as 350 μg/mL, the cell viability elicited by the nanoparticles was 70.89%, indicating its noncytotoxic nature. In short, GaCurNPs appear to be a promising antibacterial agent capable of fighting a clinically significant pathogen, P. aeruginosa.
Collapse
Affiliation(s)
- Gopika Ramesh
- Division
of Polymeric Medical Devices, Department of Medical Devices Engineering,
Biomedical Technology Wing, Sree Chitra
Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum 695012, Kerala, India
| | - Jyothi Embekkat Kaviyil
- Department
of Microbiology, Sree Chitra Tirunal Institute
for Medical Sciences and Technology, Trivandrum 695011, Kerala, India
| | - Willi Paul
- Central
Analytical Facility, Department of Technology and Quality Management,
Biomedical Technology Wing, Sree Chitra
Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum 695012, Kerala, India
| | - Renjith Sasi
- Central
Analytical Facility, Department of Technology and Quality Management,
Biomedical Technology Wing, Sree Chitra
Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum 695012, Kerala, India
| | - Roy Joseph
- Division
of Polymeric Medical Devices, Department of Medical Devices Engineering,
Biomedical Technology Wing, Sree Chitra
Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum 695012, Kerala, India
| |
Collapse
|
33
|
Tajani AS, Soheili V, Moosavi F, Ghodsi R, Alizadeh T, Fazly Bazzaz BS. Ultra selective and high-capacity dummy template molecular imprinted polymer to control quorum sensing and biofilm formation of Pseudomonas aeruginosa. Anal Chim Acta 2022; 1199:339574. [DOI: 10.1016/j.aca.2022.339574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/23/2022]
|
34
|
Vieira TF, Magalhães RP, Simões M, Sousa SF. Drug Repurposing Targeting Pseudomonas aeruginosa MvfR Using Docking, Virtual Screening, Molecular Dynamics, and Free-Energy Calculations. Antibiotics (Basel) 2022; 11:185. [PMID: 35203788 PMCID: PMC8868191 DOI: 10.3390/antibiotics11020185] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium responsible for acute and chronic infections in planktonic state or in biofilms. The sessile structures are known to confer physical stability, increase virulence, and work as a protective armor against antimicrobial compounds. P. aeruginosa can control the expression of genes, population density, and biofilm formation through a process called quorum sensing (QS), a rather complex and hierarchical system of communication. A recent strategy to try and overcome bacterial resistance is to target QS proteins. In this study, a combined multi-level computational approach was applied to find possible inhibitors against P. aeruginosa QS regulator protein MvfR, also known as PqsR, using a database of approved FDA drugs, as a repurposing strategy. Fifteen compounds were identified as highly promising putative MvfR inhibitors. On those 15 MvfR ligand complexes, molecular dynamic simulations and MM/GBSA free-energy calculations were performed to confirm the docking predictions and elucidate on the mode of interaction. Ultimately, the five compounds that presented better binding free energies of association than the reference molecules (a known antagonist, M64 and a natural inducer, 2-nonyl-4-hydroxyquinoline) were highlighted as very promising MvfR inhibitors.
Collapse
Affiliation(s)
- Tatiana F. Vieira
- UCIBIO/REQUIMTE, BioSIM, Departamento de Medicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (T.F.V.); (R.P.M.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Rita P. Magalhães
- UCIBIO/REQUIMTE, BioSIM, Departamento de Medicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (T.F.V.); (R.P.M.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Manuel Simões
- LEPABE Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
| | - Sérgio F. Sousa
- UCIBIO/REQUIMTE, BioSIM, Departamento de Medicina, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (T.F.V.); (R.P.M.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| |
Collapse
|
35
|
Liu J, Hou JS, Chang YQ, Peng LJ, Zhang XY, Miao ZY, Sun PH, Lin J, Chen WM. New Pqs Quorum Sensing System Inhibitor as an Antibacterial Synergist against Multidrug-Resistant Pseudomonas aeruginosa. J Med Chem 2021; 65:688-709. [PMID: 34951310 DOI: 10.1021/acs.jmedchem.1c01781] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Development of new bacterial biofilm inhibitors as antibacterial synergists is an effective strategy to solve the resistance of Pseudomonas aeruginosa. In this paper, a series of 3-hydroxy-pyridin-4(1H)-ones were synthesized and evaluated, and the hit compound (20p) was identified with the effects of inhibiting the production of pyocyanin (IC50 = 8.6 μM) and biofilm formation (IC50 = 4.5 μM). Mechanistic studies confirmed that 20p inhibits the formation of bacterial biofilm by inhibiting the expression of pqsA, blocking pqs quorum sensing system quinolone biosynthesis. Moreover, we systematically investigated the bactericidal effects of combining currently approved antibiotics for CF including tobramycin, ciprofloxacin, and colistin E with 20p, which showed obvious antibacterial synergy to overcome antibiotics resistance in multidrug-resistant P. aeruginosa biofilms. The result indicates that compound 20p may be used in the future as a potentially novel antibacterial synergist candidate for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Jun Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jin-Song Hou
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Yi-Qun Chang
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Li-Jun Peng
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Xiao-Yi Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Zhi-Ying Miao
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Ping-Hua Sun
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jing Lin
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Wei-Min Chen
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
36
|
Effect of black pepper essential oil on quorum sensing and efflux pump systems in the fish-borne spoiler Pseudomonas psychrophila KM02 identified by RNA-seq, RT-qPCR and molecular docking analyses. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Mucke HA. Patent highlights June-July 2021. Pharm Pat Anal 2021; 10:237-244. [PMID: 34753317 DOI: 10.4155/ppa-2021-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
38
|
Nourbakhsh F, Lotfalizadeh M, Badpeyma M, Shakeri A, Soheili V. From plants to antimicrobials: Natural products against bacterial membranes. Phytother Res 2021; 36:33-52. [PMID: 34532918 DOI: 10.1002/ptr.7275] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/16/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022]
Abstract
Bacterial membrane barrier provides a cytoplasmic environment for organelles of bacteria. The membrane is composed of lipid compounds containing phosphatide protein and a minimal amount of sugars, and is responsible for intercellular transfers of chemicals. Several antimicrobials have been found that affect bacterial cytoplasmic membranes. These compounds generally disrupt the organization of the membrane or perforate it. By destroying the membrane, the drugs can permeate and replace the effective macromolecules necessary for cell life. Furthermore, they can disrupt electrical gradients of the cells through impairment of the membrane integrity. In recent years, considering the spread of microbial resistance and the side effects of antibiotics, natural antimicrobial compounds have been studied by researchers extensively. These molecules are the best alternative for controlling bacterial infections and reducing drug resistance due to the lack of severe side effects, low cost of production, and biocompatibility. Better understanding of the natural compounds' mechanisms against bacteria provides improved strategies for antimicrobial therapies. In this review, natural products with antibacterial activities focusing on membrane damaging mechanisms were described. However, further high-quality research studies are needed to confirm the clinical efficacy of these natural products.
Collapse
Affiliation(s)
- Fahimeh Nourbakhsh
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Lotfalizadeh
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Badpeyma
- Student Research Committee, Department of Clinical Nutrition, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Soukarieh F, Mashabi A, Richardson W, Oton EV, Romero M, Roberston SN, Grossman S, Sou T, Liu R, Halliday N, Kukavica-Ibrulj I, Levesque RC, Bergstrom CAS, Kellam B, Emsley J, Heeb S, Williams P, Stocks MJ, Cámara M. Design and Evaluation of New Quinazolin-4(3 H)-one Derived PqsR Antagonists as Quorum Sensing Quenchers in Pseudomonas aeruginosa. ACS Infect Dis 2021; 7:2666-2685. [PMID: 34503335 DOI: 10.1021/acsinfecdis.1c00175] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
P. aeruginosa (PA) continues to pose a threat to global public health due to its high levels of antimicrobial resistance (AMR). The ongoing AMR crisis has led to an alarming shortage of effective treatments for resistant microbes, and hence there is a pressing demand for the development of novel antimicrobial interventions. The potential use of antivirulence therapeutics to tackle bacterial infections has attracted considerable attention over the past decades as they hamper the pathogenicity of target microbes with reduced selective pressure, minimizing the emergence of resistance. One such approach is to interfere with the PA pqs quorum sensing system which upon the interaction of PqsR, a Lys-R type transcriptional regulator, with its cognate signal molecules 4-hydroxy-2-heptylquinoline (HHQ) and 2-heptyl-3-hydroxy-4-quinolone (PQS), governs multiple virulence traits and host-microbe interactions. In this study, we report the hit identification and optimization of PqsR antagonists using virtual screening coupled with whole cell assay validation. The optimized hit compound 61 ((R)-2-(4-(3-(6-chloro-4-oxoquinazolin-3(4H)-yl)-2-hydroxypropoxy)phenyl)acetonitrile) was found to inhibit the expression of the PA PpqsA promoter controlled by PqsR with an IC50 of 1 μM. Using isothermal titration calorimetry, a Kd of 10 nM for the PqsR ligand binding domain (PqsRLBD) was determined for 61. Furthermore, the crystal structure of 61 with PqsRLBD was attained with a resolution of 2.65 Å. Compound 61 significantly reduced levels of pyocyanin, PQS, and HHQ in PAO1-L, PA14 lab strains and PAK6085 clinical isolate. Furthermore, this compound potentiated the effect of ciprofloxacin in early stages of biofilm treatment and in Galleria mellonella infected with PA. Altogether, this data shows 61 as a potent PqsR inhibitor with potential for hit to lead optimization toward the identification of a PA QS inhibitor which can be advanced into preclinical development.
Collapse
Affiliation(s)
- Fadi Soukarieh
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, U.K
- The National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, U.K
| | - Alaa Mashabi
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, U.K
| | - William Richardson
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, U.K
| | - Eduard Vico Oton
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, U.K
| | - Manuel Romero
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, U.K
- The National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, U.K
| | - Shaun N. Roberston
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, U.K
- The National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, U.K
| | - Scott Grossman
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, U.K
| | - Tomas Sou
- Department of Pharmacy, Uppsala University, Uppsala SE-751 23, Sweden
| | - Ruiling Liu
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, U.K
| | - Nigel Halliday
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, U.K
| | - Irena Kukavica-Ibrulj
- Institut de Biologie Integrative et des Systemes, Universite Laval, Quebec G1 V 0A6, Canada
| | - Roger C. Levesque
- Institut de Biologie Integrative et des Systemes, Universite Laval, Quebec G1 V 0A6, Canada
| | | | - Barrie Kellam
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, U.K
| | - Jonas Emsley
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, U.K
- The National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, U.K
| | - Stephan Heeb
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, U.K
| | - Paul Williams
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, U.K
- The National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, U.K
| | - Michael J. Stocks
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, U.K
- The National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, U.K
| | - Miguel Cámara
- School of Life Sciences, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, U.K
- The National Biofilms Innovation Centre, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, U.K
| |
Collapse
|
40
|
Pellissier L, Leoni S, Marcourt L, Ferreira Queiroz E, Lecoultre N, Quiros-Guerrero LM, Barthélémy M, Eparvier V, Chave J, Stien D, Gindro K, Perron K, Wolfender JL. Characterization of Pseudomonas aeruginosa Quorum Sensing Inhibitors from the Endophyte Lasiodiplodia venezuelensis and Evaluation of Their Antivirulence Effects by Metabolomics. Microorganisms 2021; 9:microorganisms9091807. [PMID: 34576706 PMCID: PMC8465504 DOI: 10.3390/microorganisms9091807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is one of the "critical priority pathogens" due to its multidrug resistance to a wide range of antibiotics. Its ability to invade and damage host tissues is due to the use of quorum sensing (QS) to collectively produce a plethora of virulence factors. Inhibition of QS is an attractive strategy for new antimicrobial agents because it disrupts the initial events of infection without killing the pathogen. Highly diverse microorganisms as endophytes represent an under-explored source of bioactive natural products, offering opportunities for the discovery of novel QS inhibitors (QSI). In the present work, the objective was to explore selective QSIs within a unique collection of fungal endophytes isolated from the tropical palm Astrocaryum sciophilum. The fungi were cultured, extracted, and screened for their antibacterial and specific anti-QS activities against P. aeruginosa. The endophytic strain Lasiodiplodia venezuelensis was prioritized for scaled-up fractionation for its selective activity, leading to the isolation of eight compounds in a single step. Among them, two pyran-derivatives were found to be responsible for the QSI activity, with an effect on some QS-regulated virulence factors. Additional non-targeted metabolomic studies on P. aeruginosa documented their effects on the production of various virulence-related metabolites.
Collapse
Affiliation(s)
- Léonie Pellissier
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (L.M.); (E.F.Q.); (L.-M.Q.-G.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, CH-1211 Geneva 4, Switzerland
- Correspondence: (L.P.); (J.-L.W.)
| | - Sara Leoni
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (S.L.); (K.P.)
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (L.M.); (E.F.Q.); (L.-M.Q.-G.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, CH-1211 Geneva 4, Switzerland
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (L.M.); (E.F.Q.); (L.-M.Q.-G.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, CH-1211 Geneva 4, Switzerland
| | - Nicole Lecoultre
- Mycology Group, Research Department Plant Protection, Agroscope, Route de Duillier 50, 1260 Nyon, Switzerland; (N.L.); (K.G.)
| | - Luis-Manuel Quiros-Guerrero
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (L.M.); (E.F.Q.); (L.-M.Q.-G.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, CH-1211 Geneva 4, Switzerland
| | - Morgane Barthélémy
- Institut de Chimie des Substances Naturelles, Université Paris-Saclay, CNRS, UPR 2301, 91198 Gif-sur-Yvette, France; (M.B.); (V.E.)
| | - Véronique Eparvier
- Institut de Chimie des Substances Naturelles, Université Paris-Saclay, CNRS, UPR 2301, 91198 Gif-sur-Yvette, France; (M.B.); (V.E.)
| | - Jérôme Chave
- Laboratoire Evolution et Diversité Biologique (UMR 5174), CNRS, UT3, IRD, Université Toulouse 3, 118 Route de Narbonne, 31062 Toulouse, France;
| | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologie Microbiennes, LBBM, Observatoire Océanologique, 66650 Banyuls-Sur-Mer, France;
| | - Katia Gindro
- Mycology Group, Research Department Plant Protection, Agroscope, Route de Duillier 50, 1260 Nyon, Switzerland; (N.L.); (K.G.)
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (S.L.); (K.P.)
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, CMU-Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland; (L.M.); (E.F.Q.); (L.-M.Q.-G.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU-Rue Michel Servet 1, CH-1211 Geneva 4, Switzerland
- Correspondence: (L.P.); (J.-L.W.)
| |
Collapse
|
41
|
Tajani AS, Jangi E, Davodi M, Golmakaniyoon S, Ghodsi R, Soheili V, Fazly Bazzaz BS. Anti-quorum sensing potential of ketoprofen and its derivatives against Pseudomonas aeruginosa: insights to in silico and in vitro studies. Arch Microbiol 2021; 203:5123-5132. [PMID: 34319419 DOI: 10.1007/s00203-021-02499-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/04/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022]
Abstract
Antibiotics are usually used for the treatment of bacterial infections, but multidrug-resistant strains are a phenomenon that has been growing at an increasing rate worldwide. Thus, there is an increasing need for novel strategies for combatting infectious diseases. Many pathogenic bacteria apply quorum sensing (QS) to regulate their pathogenicity and virulence factors production. This circuit makes the QS system an attractive target for antibacterial therapy. In the present study, an important member of non-steroidal anti-inflammatory drugs (NSAIDs), by reducing the biofilm and producing QS-regulated virulence factors, ketoprofen and its synthetic derivatives were screened against the Pseudomonas aeruginosa PAO1. All compounds showed anti-biofilm activity (16-79%) and most of them presented anti-virulence activity. In the co-treatment of ketoprofen, G20, G21, or G77 with tobramycin, biofilm is significantly reduced (potentiated to > 50%) in the number of cells protected inside the impermeable matrix. The in silico studies in addition to the similarities between the chemical structures of PqsR natural ligands and ketoprofen derivatives reinforce the possibility that the mechanism of action is through PqsR inhibition. Based on the results, the anti-pathogenic effect was more appreciable in ketoprofen, G77, and G20.
Collapse
Affiliation(s)
- Amineh Sadat Tajani
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Jangi
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Davodi
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sima Golmakaniyoon
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Ghodsi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bibi Sedigheh Fazly Bazzaz
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
42
|
Bhardwaj S, Bhatia S, Singh S, Franco Jr F. Growing emergence of drug-resistant Pseudomonas aeruginosa and attenuation of its virulence using quorum sensing inhibitors: A critical review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:699-719. [PMID: 34630947 PMCID: PMC8487598 DOI: 10.22038/ijbms.2021.49151.11254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022]
Abstract
A perilous increase in the number of bacterial infections has led to developing throngs of antibiotics for increasing the quality and expectancy of life. Pseudomonas aeruginosa is becoming resistant to all known conventional antimicrobial agents thereby posing a deadly threat to the human population. Nowadays, targeting virulence traits of infectious agents is an alternative approach to antimicrobials that is gaining much popularity to fight antimicrobial resistance. Quorum sensing (QS) involves interspecies communication via a chemical signaling pathway. Under this mechanism, cells work in a concerted manner, communicate with each other with the help of signaling molecules called auto-inducers (AI). The virulence of these strains is driven by genes, whose expression is regulated by AI, which in turn acts as transcriptional activators. Moreover, the problem of antibiotic-resistance in case of infections caused by P. aeruginosa becomes more alarming among immune-compromised patients, where the infectious agents easily take over the cellular machinery of the host while hidden in the QS mediated biofilms. Inhibition of the QS circuit of P. aeruginosa by targeting various signaling pathways such as LasR, RhlR, Pqs, and QScR transcriptional proteins will help in blocking downstream signal transducers which could result in reducing the bacterial virulence. The anti-virulence agent does not pose an immediate selective pressure on growing bacterium and thus reduces the pathogenicity without harming the target species. Here, we review exclusively, the growing emergence of multi-drug resistant (MDR) P. aeruginosa and the critical literature survey of QS inhibitors with their potential application of blocking P. aeruginosa infections.
Collapse
Affiliation(s)
- Snigdha Bhardwaj
- Department of Pharmaceutical Science, SHALOM Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Naini, Prayagraj, India
| | - Sonam Bhatia
- Department of Pharmaceutical Science, SHALOM Institute of Health and Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Naini, Prayagraj, India
| | - Shaminder Singh
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad - 121 001, Haryana, India
| | - Francisco Franco Jr
- Department of Chemistry, De La Salle University, Manila, Metro Manila, Philippines
| |
Collapse
|
43
|
New Insight into Vitamins E and K 1 as Anti-Quorum-Sensing Agents against Pseudomonas aeruginosa. Antimicrob Agents Chemother 2021; 65:AAC.01342-20. [PMID: 33820770 DOI: 10.1128/aac.01342-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/16/2021] [Indexed: 12/29/2022] Open
Abstract
Today, antivirulence compounds that attenuate bacterial pathogenicity and have no interference with bacterial viability or growth are introduced as the next generation of antibacterial agents. However, the development of such compounds that can be used by humans is restricted by various factors, including the need for extensive economic investments, the inability of many molecules to penetrate the membrane of Gram-negative bacteria, and unfavorable pharmacological properties and cytotoxicity. Here, we take a new and different look into two frequent supplements, vitamin E and K1, as anti-quorum-sensing agents against Pseudomonas aeruginosa, a pathogen that is hazardous to human life and responsible for several diseases. Both vitamins showed significant anti-biofilm activity (62% and 40.3% reduction by vitamin E and K1, respectively), and the expression of virulence factors, including pyocyanin, pyoverdine, and protease, was significantly inhibited, especially in the presence of vitamin E. Cotreatment of constructed biofilms with these vitamins plus tobramycin significantly reduced the number of bacterial cells sheltered inside the impermeable matrix (71.6% and 69% by a combination of tobramycin and vitamin E or K1, respectively). The in silico studies, besides the similarities of chemical structures, reinforce the possibility that both vitamins act through inhibition of the PqsR protein. This is the first report of the antivirulence and antipathogenic activity of vitamin E and K1 against P. aeruginosa and confirms their potential for further research against other multidrug-resistant bacteria.
Collapse
|
44
|
Characterization of a novel mCH3 conjugated anti-PcrV scFv molecule. Sci Rep 2021; 11:7154. [PMID: 33785781 PMCID: PMC8010009 DOI: 10.1038/s41598-021-86491-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/16/2021] [Indexed: 11/25/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is a leading cause of nosocomial infections and death in cystic fibrosis patients. The study was conducted to evaluate the physicochemical structure, biological activity and serum stability of a recombinant anti-PcrV single chain variable antibody fragment genetically attached to the mCH3cc domain. The stereochemical properties of scFv-mCH3 (YFL001) and scFv (YFL002) proteins as well as molecular interactions towards Pseudomonas aeruginosa PcrV were evaluated computationally. The subcloned fragments encoding YFL001 and YFL002 in pET28a were expressed within the E. coli BL21-DE3 strain. After Ni–NTA affinity chromatography, the biological activity of the proteins in inhibition of PA induced hemolysis as well as cellular cytotoxicity was assessed. In silico analysis revealed the satisfactory stereochemical quality of the models as well as common residues in their interface with PcrV. The structural differences of proteins through circular dichroism spectroscopy were confirmed by NMR analysis. Both proteins indicated inhibition of ExoU positive PA strains in hemolysis of red blood cells compared to ExoU negative strains as well as cytotoxicity effect on lung epithelial cells. The ELISA test showed the longer serum stability of the YFL001 molecule than YFL002. The results were encouraging to further evaluation of these two scFv molecules in animal models.
Collapse
|
45
|
Pseudomonas aeruginosa elastase (LasB) as a therapeutic target. Drug Discov Today 2021; 26:2108-2123. [PMID: 33676022 DOI: 10.1016/j.drudis.2021.02.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/03/2021] [Accepted: 02/17/2021] [Indexed: 02/08/2023]
Abstract
Why is P. aeruginosa LasB elastase an attractive target for antivirulence therapy and what is the state-of-the art in LasB inhibitor design and development?
Collapse
|
46
|
Wei X, Gao Y, Hu Y, Zhang Y, Zhang X. A light-activated nanotherapeutic with broad-spectrum bacterial recognition to eliminate drug-resistant pathogens. J Mater Chem B 2021; 9:1364-1369. [PMID: 33458729 DOI: 10.1039/d0tb02583f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obstinate infections caused by drug-resistant bacteria severely threaten human health. And the emergence of multidrug-resistant bacteria increases the morbidity and mortality of patients, thus necessitating the development of innovative or alternative therapeutics. Here, a light-activated nanotherapeutic with broad-spectrum bacterial recognition is established as an antibiotic-free therapeutic agent against pathogens. The nanotherapeutic with external phenylboronic acid-based glycopolymers increases the stability and biocompatibility and shows the ability of bacterial recognition. Once irradiated with near-infrared light, this nanotherapeutic with high photothermal conversion efficiency disrupts the cytoplasmic membrane, thus killing bacterial cells. Importantly, it also eliminates the biofilms formed by both drug-resistant Gram-negative bacteria (Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus) effectively. Thus, this antibiotic-free nanotherapeutic with hypotoxicity offers a promising approach to fight increasingly serious antimicrobial resistance.
Collapse
Affiliation(s)
- Xiaosong Wei
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yingchao Gao
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yuqing Hu
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
47
|
Thioether-linked dihydropyrrol-2-one analogues as PqsR antagonists against antibiotic resistant Pseudomonas aeruginosa. Bioorg Med Chem 2021; 31:115967. [PMID: 33434766 DOI: 10.1016/j.bmc.2020.115967] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
The Pseudomonas quinolone system (pqs) is one of the key quorum sensing systems in antibiotic-resistant P. aeruginosa and is responsible for the production of virulence factors and biofilm formation. Thus, synthetic small molecules that can target the PqsR (MvfR) receptor can be utilized as quorum sensing inhibitors to treat P. aeruginosa infections. In this study, we report the synthesis of novel thioether-linked dihydropyrrol-2-one (DHP) analogues as PqsR antagonists. Compound 7g containing a 2-mercaptopyridyl linkage effectively inhibited the pqs system with an IC50 of 32 µM in P. aeruginosa PAO1. Additionally, these inhibitors significantly reduced bacterial aggregation and biofilm formation without affecting planktonic growth. The molecular docking study suggest that these inhibitors bind with the ligand binding domain of the MvfR as a competitive antagonist.
Collapse
|
48
|
Ceylan O, Tamfu AN, Doğaç Yİ, Teke M. Antibiofilm and anti-quorum sensing activities of polyethylene imine coated magnetite and nickel ferrite nanoparticles. 3 Biotech 2020; 10:513. [PMID: 33184597 DOI: 10.1007/s13205-020-02509-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/24/2020] [Indexed: 12/15/2022] Open
Abstract
This study was aimed at synthesizing polyethyleneimine-coated magnetic nanoparticles and evaluating their effect on pathogenic bacteria. Polyethyleneimine-coated magnetite (PEIMnF) and nickel ferrite (PEINF) nanoparticles were succesfully synthesized and their surface groups, morphology and chemical structures were characterized using ATR-FTIR (Attenuated Total Reflectance Fourrier Transformed Infra-Red) and SEM (Scanning Electron Microscopy). TGA (Thermogravimetric analysis) was used to analyse the thermal behaviour and stability of synthesized nanomaterials. The minimal inhibitory concentration (MIC) values of the polyethylene imine coated magnetite and nickel ferrite nanomaterials against Staphylococcus aureus, Escherichia coli and Candida albicans was found to be 10 mg/mL. Both nanomaterials (PEIMnF and PEINF) showed very excellent and concentration-dependent biofilm inhibition especially at the highest test concentration of 10 mg/mL at which PEIMnF inhibited biofilm formation on E. coli (89.04 ± 0.50%), S. aureus (82.85 ± 2.42%) and C. albicans (91.37 ± 0.66%). At this concentration, PEINF equally inhibited biofilm formations of E. coli (90.48 ± 2.05%), S. aureus (87.04 ± 1.59%) and C. albicans (90.94 ± 1.03%). Only PEINF showed a concentration-dependent violacein inhibition with highest inhibition of 51.2 ± 3.5% at MIC and quorum sensing with inhibition zones of 16.3 ± 1.0 mm at MIC and 11.5 ± 0.5 mm at MIC/2 which could be attributed to the presence of nickel. The nanomaterials inhibited swimming and swarming motilities in Pseudomonas aeruginosa PA01 and it was found that at the same concentration, swimming inhibition was greater than swarming inhibitions and PEINF showed better inhibition than PEIMnF in both models. Polyethyleneimine-coated magnetite and nickel ferrite nanomaterials could be used in overcoming health problems associated with microbial infections and resistance.
Collapse
|
49
|
Malaekeh-Nikouei B, Fazly Bazzaz BS, Mirhadi E, Tajani AS, Khameneh B. The role of nanotechnology in combating biofilm-based antibiotic resistance. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101880] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Grainha T, Jorge P, Alves D, Lopes SP, Pereira MO. Unraveling Pseudomonas aeruginosa and Candida albicans Communication in Coinfection Scenarios: Insights Through Network Analysis. Front Cell Infect Microbiol 2020; 10:550505. [PMID: 33262953 PMCID: PMC7686562 DOI: 10.3389/fcimb.2020.550505] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022] Open
Abstract
Modern medicine is currently facing huge setbacks concerning infection therapeutics as microorganisms are consistently knocking down every antimicrobial wall set before them. The situation becomes more worrying when taking into account that, in both environmental and disease scenarios, microorganisms present themselves as biofilm communities that are often polymicrobial. This comprises a competitive advantage, with interactions between different species altering host responses, antimicrobial effectiveness, microbial pathogenesis and virulence, usually augmenting the severity of the infection and contributing for the recalcitrance towards conventional therapy. Pseudomonas aeruginosa and Candida albicans are two opportunistic pathogens often co-isolated from infections, mainly from mucosal tissues like the lung. Despite the billions of years of co-existence, this pair of microorganisms is a great example on how little is known about cross-kingdom interactions, particularly within the context of coinfections. Given the described scenario, this study aimed to collect, curate, and analyze all published experimental information on the molecular basis of P. aeruginosa and C. albicans interactions in biofilms, in order to shed light into key mechanisms that may affect infection prognosis, increasing this area of knowledge. Publications were optimally retrieved from PubMed and Web of Science and classified as to their relevance. Data was then systematically and manually curated, analyzed, and further reconstructed as networks. A total of 641 interactions between the two pathogens were annotated, outputting knowledge on important molecular players affecting key virulence mechanisms, such as hyphal growth, and related genes and proteins, constituting potential therapeutic targets for infections related to these bacterial-fungal consortia. Contrasting interactions were also analyzed, and quorum-sensing inhibition approaches were highlighted. All annotated data was made publicly available at www.ceb.uminho.pt/ISCTD, a database already containing similar data for P. aeruginosa and Staphylococcus aureus communication. This will allow researchers to cut on time and effort when studying this particular subject, facilitating the understanding of the basis of the inter-species and inter-kingdom interactions and how it can be modulated to help design alternative and more effective tailored therapies. Finally, data deposition will serve as base for future dataset integration, whose analysis will hopefully give insights into communications in more complex and varied biofilm communities.
Collapse
Affiliation(s)
- Tânia Grainha
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Paula Jorge
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Diana Alves
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Susana Patrícia Lopes
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Maria Olívia Pereira
- CEB-Centre of Biological Engineering, LIBRO-Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|