1
|
Mansouri MM, Emami L, Rezaei Z, Khabnadideh S. Design, synthesis, biological assessments and computational studies of 3-substituted phenyl quinazolinone derivatives as promising anti-cancer agents. BMC Chem 2025; 19:125. [PMID: 40361154 PMCID: PMC12070605 DOI: 10.1186/s13065-025-01492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
A new series of 3-substituted phenyl quinazolinone derivatives were designed and synthesized as anti-cancer agents. The most potent derivative with IC50 values of 12.84 ± 0.84 and 10.90 ± 0.84 µM against MCF-7 and SW480 cell lines was comparable to Cisplatin and Erlotinib as positive controls. Cell cycle analysis showed that the most active compound could arrest at S phase in MCF-7 breast cancer cells. The apoptosis assay demonstrated the induction of apoptosis in the MCF-7 cell line, too. Molecular docking results showed better accommodation of the most active compound through hydrogen bonding interaction in the binding site of EGFR enzyme. Molecular dynamics simulations for the potent analogue demonstrated well binding stability compared to the less active analogue, with a lower RMSD, Rg and more interactions with the original active site residues. DFT calculations were performed on the active and inactive compounds, using Gaussian 09 at the M06-2X/6-31 + G(d) theoretical level. ADME (Absorption, Distribution, Metabolism, and Excretion) properties showed that most of the compounds are in acceptable range of Lipiniski rule. These findings underscore the potential of the synthesized compounds as potent cytotoxic inhibitors and provide insights for developing effective treatments for cancer therapy.
Collapse
Affiliation(s)
- Maryam Moghtader Mansouri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Emami
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rezaei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soghra Khabnadideh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Acar Halıcı C, Göker H, Kütük Ö, Çelik İ, Altuntaş TG. Design, synthesis, and biological evaluation of novel amidoxime or amidine analogues of some 4-anilino-6,7-dimethoxyquinazolines with a potent EGFR inhibitory effect. Bioorg Chem 2025; 158:108345. [PMID: 40073592 DOI: 10.1016/j.bioorg.2025.108345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
A series of 6,7-dimethoxy-4-anilinoquinazoline derivatives, which have amidine (4a-4d, 5a-5c, 6a-6d) and amidoxime (4e, 5d, 6e) moieties, were synthesized and evaluated their anticancer activity on various cancerous cell lines (H1975, HCC827, and H23). Among the synthesized compounds, 4c was found to be the most potent inhibitor of EGFR, comparable to erlotinib, with higher than 10 μM EC50 values for H1975 and H23 and 0.16 μM EC50 value for HCC827 cells. 4c activated mitochondrial apoptosis signaling and suppresses EGFR downstream signaling, such as ERK1/2 and PI3K/Akt pathways in HCC827 NSCLC cells (EGFR Del19) as erlotinib. Molecular docking and molecular dynamics simulations studies were performed to evaluate the interaction and binding energies of all synthesized compounds against EGFR wild type, EGFR T790M/L858R, EGFR L858R, and EGFR exon-19 deletion mutant (del-747-749). 4c showed a similar binding profile with erlotinib as stable binding interaction values. Also, 4c formed additional hydrogen bonds via the amidine group in its structure, potentially increasing its affinity and stability within the binding pocket. Hence, 4c was selected as a lead compound for further pharmacomodulation.
Collapse
Affiliation(s)
- Cemre Acar Halıcı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara, Türkiye; Graduate School of Health Sciences, Ankara University, Dışkapı, Ankara, Türkiye
| | - Hakan Göker
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara, Türkiye
| | - Özgür Kütük
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956 Tuzla, Istanbul, Türkiye
| | - İsmail Çelik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, 38280 Kayseri, Türkiye
| | - Tunca Gül Altuntaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara, Türkiye.
| |
Collapse
|
3
|
Hagar FF, Abbas SH, Sayed AM, Gomaa HAM, Youssif BGM, Abdelhamid D, Abdel-Aziz M. New antiproliferative 1,3,4-oxadiazole/benzimidazole derivatives: Design, synthesis, and biological evaluation as dual EGFR and BRAF V600E inhibitors. Bioorg Chem 2025; 157:108297. [PMID: 40015111 DOI: 10.1016/j.bioorg.2025.108297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
A new series of benzimidazole-oxadiazole-small molecules were synthesized and confirmed with various spectroscopic techniques. The prepared derivatives exhibited significant inhibitory activity against the proliferation of different cancer cells. The benzimidazoles 10f, 10 h, 10 g, and 10i showed broad anticancer activity with no selectivity in five-dose assays. All prepared compounds displayed potent inhibitory activity against proliferation of a panel of four human cancer cells (HT-29, Panc-1, MCF-7, and A-549) with IC50 values ranging from 24 nM to 80 nM and with significant safety profile against MCF-10 A normal cells. According to the mechanistic study, the most potent compounds (9a, 9b, 10e, 10f, & 10i) displayed remarkable inhibitory effectiveness against EGFR and BRAFV600E and were more potent than reference drugs erlotinib and vemurafenib. Molecular docking study for compounds 9a, 9b, 10e, 10f, and 10i agreed with mechanistic results.
Collapse
Affiliation(s)
- Fatma Fouad Hagar
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62513 Beni-Suef, Egypt; Department of Pharmacognosy, Collage of Pharmacy, Almaaqal University, 61014 Basrah, Iraq
| | - Hesham A M Gomaa
- Pharmacology Department, College of Pharmacy, Jouf university, Sakaka, Aljouf 72341, Saudi Arabia
| | - Bahaa G M Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Dalia Abdelhamid
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; Raabe College of Pharmacy, Ohio Northern University, OH, USA
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
4
|
Ahmed AAY, Mohammed AF, Almarhoon ZM, Bräse S, Youssif BGM. Design, synthesis, and apoptotic antiproliferative action of new benzimidazole/1,2,3-triazole hybrids as EGFR inhibitors. Front Chem 2025; 12:1541846. [PMID: 39896136 PMCID: PMC11783063 DOI: 10.3389/fchem.2024.1541846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 12/23/2024] [Indexed: 02/04/2025] Open
Abstract
Introduction This work outlines the design, synthesis, and biological evaluation of a new series of benzimidazole/1,2,3-triazole hybrids as apoptotic antiproliferative agents that inhibit the EGFR pathway. Methods The research assesses the antiproliferative efficacy of compounds 6a-i and 10a-i against various cancer cell lines. Results and Discussion The research emphasizing hybrids 6i and 10e for their remarkable activity, with GI50 values of 29 nM and 25 nM, respectively. The inhibitory effects of the most potent hybrids 6e, 6i, 10d, 10e, and 10g on EGFR were assessed. Compounds 6i and 10e exhibited greater potency than erlotinib as EGFR inhibitors. Compounds 6i and 10e were also examined for their apoptotic potential, revealing that these compounds promote apoptosis by activating caspase-3, caspase-8, and Bax, while down-regulating the anti-apoptotic protein Bcl-2. Molecular docking experiments are thoroughly examined to validate the binding interactions of the most active hybrids, 6i and 10e, with the EGFR active site. Furthermore, our new study examined the ADME properties of the new hybrids.
Collapse
Affiliation(s)
- Alshimaa A. Y. Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Anber F. Mohammed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Zainab M. Almarhoon
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, Institute of Biological and Chemical Systems—Functional Molecular Systems, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Bawazir WA, Ahmed NS, Abd El-Karim SS, El-Sayed AF, Anwar MM. New thiazolidin-4-ones as anti-cervical cancer agents targeting EGFR: design, synthesis, and computational studies. Future Med Chem 2025; 17:75-91. [PMID: 39651653 DOI: 10.1080/17568919.2024.2437976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/20/2024] [Indexed: 12/11/2024] Open
Abstract
AIM A new series of 3,4-dihydronaphthalen-1(2 h)-ylidene)hydrazineylidene)-5-substituted thiazolidin-4-one derivatives were designed and synthesized. RESULTS & METHODOLOGY The new compounds were screened for in vitro antitumor activity against Hela cancer cell line. The compounds 7b, 7 h, and 7i produced more potent cytotoxicity than doxorubicin with IC50 values of 1.83 ± 0.1, 2.54 ± 0.14, 2.75 ± 0.15, and 3.63 ± 0.2 μM, respectively. They also showed a promising safety profile against WI-38 normal cells. In addition, compound 7b produced a promising multi-kinase inhibition against EGFR (WT) while being very selective toward the mutant forms (L858R and T790M) with IC50 values of 0.099 ± 0.006, 0.064 ± 0.006, and 0.026 ± 0.007 μM, respectively, in comparison to gefitinib and osimertinib. A study of the cell cycle in Hela cells showed that 7b arrests cell cycle in the pre-G1 phase and causes early and late apoptosis. Eventually, the molecular docking results showed that 7b had good-binding interactions with EGFRWT, EGFRL858R, and EGFRT790M. CONCLUSION Compound 7b was predicted to have promising oral absorption, good drug-likeness, and low toxicity risks in humans. Moreover, MD simulations confirmed the stable complexes of 7b with EGFRWT, EGFRL858R, and EGFRT790M (with RMSD 0.12-0.35 nm, RMSF 0.2-0.55 nm, SASA 140-150, and Rg 1.80-2.00 nm).
Collapse
Affiliation(s)
- Wafa A Bawazir
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nesreen S Ahmed
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), Cairo, Egypt
| | - Somaia S Abd El-Karim
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), Cairo, Egypt
| | - Ahmed F El-Sayed
- Microbial Genetics Department, Biotechnology Research Institute, National Research Centre, Giza, Egypt
- Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt
| | - Manal M Anwar
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), Cairo, Egypt
| |
Collapse
|
6
|
Hafsi D, Sbartai I, Sbartai H. Stress biomarker response in Aporrectodea caliginosa earthworms exposed to single and combined pesticide treatments (Prosaro and Decis). ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1180-1192. [PMID: 39379771 DOI: 10.1007/s10646-024-02811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
This study aims to assess the impact of two pesticides commonly used in Algeria (Prosaro XRT and Decis 25 EC), as well as their combinations at recommended doses, on a non-target species bioindicator of soil pollution, the earthworm Aporrectodea caliginosa, using physiological (mortality and growth) and biochemical parameters (proteins, glutathione, catalase activity and glutathione S-transferase, acetylcholine esterase, lipoxygenase). The recommended dose and its double were tested individually and in combination for this. It should be noted that the protocol used and the initial concentrations selected are the same as those used in the field. After 7 and 14 days (7D/14D) of exposure, all dosages were administered. Our findings show that the pesticides tested had no effect on earthworm survival. However, a significant decrease in their growth rates depending on the different concentrations was observed for the different treatments over the entire exposure period of 7 or 14 D. The greatest reductions (31.62%, 35.04%) are reported after 14D for the high concentrations of Decis alone (D2) as well as for the combined treatment Prosaro/Decis (P2/D2). At the same time, an increase in total protein contents (more than 50% after 14D) as well as a decrease in acetylcholine esterase activity were reported for all treatments. We were also able to identify the induction of oxidative stress after xenobiotic exposure, which is more pronounced at the end of the treatment (14D), resulting in the stimulation of the antioxidant system (gluthione, glutathione S-transférase, catalase) as well as the induction of lipoxygenase, which is responsible for the oxidation of polyunsaturated fatty acids as well as the generation of reactive oxygen species (ROS) involved in the inflammatory phenomenon. Finally, it turns out that the species Aporrectodea caliginosa is sensitive to the different concentrations applied, even those used in the open field, and that Decis (deltamethrin) seems to be more toxic than Prosaro and that the combinaison P2/D2 is as toxic as Decis alone (D2).
Collapse
Affiliation(s)
- Djamila Hafsi
- Laboratory of Cellular Toxicology, Department of Biology, Faculty of Science, Badji-Mokhtar University, Annaba, Algeria
| | - Ibtissem Sbartai
- Laboratory of Cellular Toxicology, Department of Biology, Faculty of Science, Badji-Mokhtar University, Annaba, Algeria.
| | - Hana Sbartai
- Laboratory of Cellular Toxicology, Department of Biology, Faculty of Science, Badji-Mokhtar University, Annaba, Algeria
| |
Collapse
|
7
|
Budipramana K, Sangande F. Structural and molecular insights from dual inhibitors of EGFR and VEGFR2 as a strategy to improve the efficacy of cancer therapy. Chem Biol Drug Des 2024; 103:e14534. [PMID: 38697951 DOI: 10.1111/cbdd.14534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024]
Abstract
Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor 2 (VEGFR2) are known as valid targets for cancer therapy. Overexpression of EGFR induces uncontrolled cell proliferation and VEGF expression triggering angiogenesis via VEGFR2 signaling. On the other hand, VEGF expression independent of EGFR signaling is already known as one of the mechanisms of resistance to anti-EGFR therapy. Therefore, drugs that act as dual inhibitors of EGFR and VEGFR2 can be a solution to the problem of drug resistance and increase the effectiveness of therapy. In this review, we summarize the relationship between EGFR and VEGFR2 signal transduction in promoting cancer growth and how their kinase domain structures can affect the selectivity of an inhibitor as the basis for designing dual inhibitors. In addition, several recent studies on the development of dual EGFR and VEGFR2 inhibitors involving docking simulations were highlighted in this paper to provide some references such as pharmacophore features of inhibitors and key residues for further research, especially in computer-aided drug design.
Collapse
Affiliation(s)
- Krisyanti Budipramana
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Surabaya, Surabaya, Indonesia
| | - Frangky Sangande
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong Science Center, Bogor, Indonesia
| |
Collapse
|
8
|
Işık A, Acar Çevik U, Karayel A, Ahmad I, Patel H, Çelik İ, Gül Ü, Bayazıt G, Bostancı HE, Koçak A, Özkay Y, Kaplancıklı ZA. Synthesis, DFT Calculations, In Silico Studies, and Antimicrobial Evaluation of Benzimidazole-Thiadiazole Derivatives. ACS OMEGA 2024; 9:18469-18479. [PMID: 38680334 PMCID: PMC11044166 DOI: 10.1021/acsomega.4c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/08/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024]
Abstract
In this study, a series of new benzimidazole-thiadiazole hybrids were synthesized, and the synthesized compounds were screened for their antimicrobial activities against eight species of pathogenic bacteria and three fungal species. Azithromycin, voriconazole, and fluconazole were used as reference drugs in the mtt assay. Among them, compounds 5f and 5h showed potent antifungal activity against C. albicans with a MIC of 3.90 μg/mL. Further, the results of the antimicrobial assay for compounds 5a, 5b, 5f, and 5h proved to be potent against E. faecalis (ATCC 2942) on the basis of an acceptable MIC value of 3.90 μg/mL. The cytotoxic effects of compounds that are effective as a result of their antimicrobial activity on healthy mouse fibroblast cells (L929) were evaluated. According to HOMO-LUMO analysis, compound 5h (with the lower ΔE = 3.417 eV) is chemically more reactive than the other molecules, which is compatible with the highest antibacterial and antifungal activity results. A molecular docking study was performed to understand their binding modes within the sterol 14-α demethylase active site and to interpret their promising fungal inhibitory activities. Molecular dynamics (MD) simulations of the most potent compounds 5f and 5h were found to be quite stable in the active site of the 14-α demethylase (5TZ1) protein.
Collapse
Affiliation(s)
- Ayşen Işık
- Department
of Biochemistry, Faculty of Science, Selçuk
University, Konya, Turkey
| | - Ulviye Acar Çevik
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Arzu Karayel
- Department
of Physics, Faculty of Arts and Science, Hitit University, Çorum 19030, Turkey
| | - Iqrar Ahmad
- Department
of Pharmaceutical Chemistry, Prof. Ravindra
Nikam College of Pharmacy, Gondur, Dhule, Maharashtra 424002, India
| | - Harun Patel
- Division
of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education
and Research, Shirpur, Maharashtra 425405, India
| | - İsmail Çelik
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Ülküye
Dudu Gül
- Department
of Bioengineering, Faculty of Engineering, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Gizem Bayazıt
- Department
of Biotechnology, Institute of Graduate Studies, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Hayrani Eren Bostancı
- Department
of Biochemistry, Faculty of Pharmacy, Cumhuriyet
University, Sivas, Turkey
| | - Ahmet Koçak
- Department
of Chemistry, Faculty of Science, Selçuk
University, Konya, Turkey
| | - Yusuf Özkay
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Zafer Asım Kaplancıklı
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| |
Collapse
|
9
|
Natarajan R, Kumar P, Subramani A, Siraperuman A, Angamuthu P, Bhandare RR, Shaik AB. A Critical Review on Therapeutic Potential of Benzimidazole Derivatives: A Privileged Scaffold. Med Chem 2024; 20:311-351. [PMID: 37946342 DOI: 10.2174/0115734064253813231025093707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Benzimidazole nucleus is a predominant heterocycle displaying a wide spectrum of pharmacological activities. The privileged nature of the benzimidazole scaffold has been revealed by its presence in most small molecule drugs and in its ability to bind multiple receptors with high affinity. A literature review of the scaffold reveals several instances where structural modifications of the benzimidazole core have resulted in high-affinity lead compounds against a variety of biological targets. Hence, this structural moiety offers opportunities to discover novel, better, safe and highly potent biological agents. The goal of the present review is to compile the medicinal properties of benzimidazole derivatives with a focus on SAR (Structure-Activity Relationships).
Collapse
Affiliation(s)
- Ramalakshmi Natarajan
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Dr. M.G.R. Medical University, Thoraipakkam, Chennai-600097, Tamil Nadu, lndia
| | - Padma Kumar
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Dr. M.G.R. Medical University, Thoraipakkam, Chennai-600097, Tamil Nadu, lndia
| | - Arunkumar Subramani
- Department of Pharmaceutical Sciences, School of Pharmacy, Sathyabama Institute of Science and Technology, Chennai, lndia
| | - Amuthalakshmi Siraperuman
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Dr. M.G.R. Medical University, Thoraipakkam, Chennai-600097, Tamil Nadu, lndia
| | - Prabakaran Angamuthu
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Dr. M.G.R. Medical University, Thoraipakkam, Chennai-600097, Tamil Nadu, lndia
| | - Richie R Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Science, Ajman University, Ajman P.O. Box 346, UAE
| | - Afzal B Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada, Chebrolu, Guntur 522212, Andhra Pradesh, India
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| |
Collapse
|
10
|
Kurban B, Sağlık BN, Osmaniye D, Levent S, Özkay Y, Kaplancıklı ZA. Synthesis and Anticancer Activities of Pyrazole-Thiadiazole-Based EGFR Inhibitors. ACS OMEGA 2023; 8:31500-31509. [PMID: 37663500 PMCID: PMC10468883 DOI: 10.1021/acsomega.3c04635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023]
Abstract
Lung cancer is one of the most common cancer types of cancer with the highest mortality rates. However, while epidermal growth factor receptor (EGFR) is an important parameter for lung cancer, EGFR inhibitors also show great promise in the treatment of the disease. Therefore, a series of new EGFR inhibitor candidates containing thiadiazole and pyrazole rings have been developed. The activities of the synthesized compounds were elucidated by in vitro MTT, (which is chemically 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), cytotoxicity assay, analysis of mitochondrial membrane potential (MMP) by flow cytometry, and EGFR inhibition experiments. Molecular docking and molecular dynamics simulations were performed as in silico studies. Compounds 6d, 6g, and 6j showed inhibitor activity against the A549 cell line with IC50 = 5.176 ± 0.164; 1.537 ± 0.097; and 8.493 ± 0.667 μM values, respectively. As a result of MMP by flow cytometry, compound 6g showed 80.93% mitochondrial membrane potential. According to the results of the obtained EGFR inhibitory assay, compound 6g shows inhibitory activity on the EGFR enzyme with a value of IC50 = 0.024 ± 0.002 μM.
Collapse
Affiliation(s)
- Berkant Kurban
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Begüm Nurpelin Sağlık
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Derya Osmaniye
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Serkan Levent
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Yusuf Özkay
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
- Central
Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Zafer Asım Kaplancıklı
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| |
Collapse
|
11
|
Thaher BA, Al-Masri I, Wahedy K, Morjan R, Aliwaini S, Al Atter IM, Elmabhouh AA, Ibwaini AKA, Alkhaldi SL, Qeshta B, Jacob C, Deigner HP. Synthesis and bioassay of 3-Aryl -1-(pyridin-4-yl)benzo[4,5]imidazo[1,2-d][1,2,4]- triazin-4(3H)-ones as anti-cancer agents. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1797-1810. [PMID: 36856800 DOI: 10.1007/s00210-023-02433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/16/2023] [Indexed: 03/02/2023]
Abstract
Four novel 3-Aryl -1-(pyridin-4-yl)benzo[4,5]imidazo[1,2-d][1,2,4]- triazin-4(3H)-ones derivatives (C1 to C4) have been designed, synthesized, and evaluated for their anticancer activity. The structure of compounds was characterized by IR,1H NMR, 13C NMR and high-resolution mass (HRMS). The crystal structures of C1, C2 and C4 were previously determined by single-crystal X-ray analysis.The results from docking experiments with EGFR suggested the binding of the compounds at the active site of EGFR. The new compounds exhibited different levels of cytotoxicity against HCC1937 and MCF7 breast cancer cells. Results of the MTT assay identified C3 as the most cytotoxic of the series against both MCF7 and HCC1937 breast cancer cell lines with IC50 values of 36.4 and 48.2 µM, respectively. In addition to its ability to inhibit cell growth and colony formation ability, C3 also inhibited breast cancer cell migration. Western blotting results showed that C3 treatment inhibited EGFR signaling and induced cell cycle arrest and apoptosis as indicated by the low level of p-EGFR and p-AKT and the increasing levels of p53, p21 and cleaved PARP. Our work represents a promising starting point for the development of a new series of compounds targeting cancer cells.
Collapse
Affiliation(s)
- Bassam Abu Thaher
- Faculty of Science, Chemistry Department, Islamic University of Gaza, P.O. Box 108, Gaza, Palestine
| | - Ihab Al-Masri
- Faculty of Pharmacy, Al-Azhar University, Gaza, Palestine
| | - Kanan Wahedy
- Faculty of Pharmacy, Al-Azhar University, Gaza, Palestine
| | - Rami Morjan
- Faculty of Science, Chemistry Department, Islamic University of Gaza, P.O. Box 108, Gaza, Palestine
| | - Saeb Aliwaini
- Department of Biology and Biotechnology, Islamic University of Gaza, PO Box 108, Gaza, Palestine.
| | - Iman Mahmoud Al Atter
- Department of Biology and Biotechnology, Islamic University of Gaza, PO Box 108, Gaza, Palestine
| | - Aayat Ahmed Elmabhouh
- Department of Biology and Biotechnology, Islamic University of Gaza, PO Box 108, Gaza, Palestine
| | - Areej Khaled Al Ibwaini
- Department of Biology and Biotechnology, Islamic University of Gaza, PO Box 108, Gaza, Palestine
| | - Saba Luay Alkhaldi
- Department of Biology and Biotechnology, Islamic University of Gaza, PO Box 108, Gaza, Palestine
| | - Basem Qeshta
- Faculty of Science, Chemistry Department, Islamic University of Gaza, P.O. Box 108, Gaza, Palestine
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123, Saarbruecken, Germany
| | - Hans-Peter Deigner
- Faculty of Medical and Life Sciences, Hochschule Furtwangen (HFU), Jakob-Kienzle-Strasse 17, 78054, Villingen-Schwenningen, Germany.
- Fraunhofer IZI, Perlickstrasse 1, 04103, Leipzig, Germany.
| |
Collapse
|
12
|
Marinescu M. Benzimidazole-Triazole Hybrids as Antimicrobial and Antiviral Agents: A Systematic Review. Antibiotics (Basel) 2023; 12:1220. [PMID: 37508316 PMCID: PMC10376251 DOI: 10.3390/antibiotics12071220] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Bacterial infections have attracted the attention of researchers in recent decades, especially due to the special problems they have faced, such as their increasing diversity and resistance to antibiotic treatment. The emergence and development of the SARS-CoV-2 infection stimulated even more research to find new structures with antimicrobial and antiviral properties. Among the heterocyclic compounds with remarkable therapeutic properties, benzimidazoles, and triazoles stand out, possessing antimicrobial, antiviral, antitumor, anti-Alzheimer, anti-inflammatory, analgesic, antidiabetic, or anti-ulcer activities. In addition, the literature of the last decade reports benzimidazole-triazole hybrids with improved biological properties compared to the properties of simple mono-heterocyclic compounds. This review aims to provide an update on the synthesis methods of these hybrids, along with their antimicrobial and antiviral activities, as well as the structure-activity relationship reported in the literature. It was found that the presence of certain groups grafted onto the benzimidazole and/or triazole nuclei (-F, -Cl, -Br, -CF3, -NO2, -CN, -CHO, -OH, OCH3, COOCH3), as well as the presence of some heterocycles (pyridine, pyrimidine, thiazole, indole, isoxazole, thiadiazole, coumarin) increases the antimicrobial activity of benzimidazole-triazole hybrids. Also, the presence of the oxygen or sulfur atom in the bridge connecting the benzimidazole and triazole rings generally increases the antimicrobial activity of the hybrids. The literature mentions only benzimidazole-1,2,3-triazole hybrids with antiviral properties. Both for antimicrobial and antiviral hybrids, the presence of an additional triazole ring increases their biological activity, which is in agreement with the three-dimensional binding mode of compounds. This review summarizes the advances of benzimidazole triazole derivatives as potential antimicrobial and antiviral agents covering articles published from 2000 to 2023.
Collapse
Affiliation(s)
- Maria Marinescu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 030018 Bucharest, Romania
| |
Collapse
|
13
|
Abdullah MN, Ali Y, Abd Hamid S. Insights into the structure and drug design of benzimidazole derivatives targeting the epidermal growth factor receptor (EGFR). Chem Biol Drug Des 2022; 100:921-934. [PMID: 34651438 DOI: 10.1111/cbdd.13974] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/03/2021] [Accepted: 10/10/2021] [Indexed: 02/06/2023]
Abstract
Tyrosine kinase overexpression could result in an unfavourable consequence of cancer progression in the body. A number of kinase inhibitor drugs targeting various cancer-related protein kinases have been developed and proven successful in clinical therapy. Benzimidazole is one of the most studied scaffolds in the search for effective anticancer drugs. The association of various functional groups and the structural design of the compounds may influence the binding towards the receptor. Despite numerous publications on the design, synthesis and biological assays of benzimidazole derivatives, their inhibitory activities against epidermal growth factor receptor (EGFR), a receptor tyrosine kinase (RTK), have not been specifically analysed. This review covers recent research reports on the anticancer activity of benzimidazole derivatives focusing on EGFR expression cell lines, based on their structure-activity relationship study. We believe it would aid researchers to envision the challenges and explore benzimidazole's potentials as tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Mar'iyah Najihah Abdullah
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan, Malaysia
| | - Yousaf Ali
- Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Shafida Abd Hamid
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan, Malaysia.,SYNTOF, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan, Malaysia
| |
Collapse
|
14
|
Cell Cycle Arrest and Apoptosis-Inducing Ability of Benzimidazole Derivatives: Design, Synthesis, Docking, and Biological Evaluation. Molecules 2022; 27:molecules27206899. [PMID: 36296495 PMCID: PMC9607330 DOI: 10.3390/molecules27206899] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 12/02/2022] Open
Abstract
In the current study, new benzimidazole-based 1,3,4-oxadiazole derivatives have been synthesized and characterized by NMR, IR, MS, and elemental analysis. The final compounds were screened for cytotoxicity against MDA-MB-231, SKOV3, and A549 cell lines and EGFR for inhibitory activities. Compounds 10 and 13 were found to be the most active against all the tested cell lines, comparable to doxorubicin, and exhibited significant inhibition on EGFR kinase, with IC50 0.33 and 0.38 μM, respectively, comparable to erlotinib (IC50 0.39 μM). Furthermore, these two compounds effectively suppressed cell cycle progression and induced cell apoptosis in MDA-MB-231, SKOV3, and A549 cell lines. The docking studies revealed that these compounds showed interactions similar to erlotinib at the EGFR site. It can be concluded that the synthesized molecules effectively inhibit EGFR, can arrest the cell cycle, and may trigger apoptosis and therefore, could be used as lead molecules in the development of new anticancer agents targeting EGFR kinase.
Collapse
|
15
|
Erol M, Celik I, Sağlık BN, Karayel A, Mellado M, Mella J. Synthesis, molecular modeling, 3D-QSAR and biological evaluation studies of new benzimidazole derivatives as potential MAO-A and MAO-B inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Alzahrani SAS, Nazreen S, Elhenawy AA, Ahmad A, Alam MM. Benzimidazole‐1,3,4‐Oxadiazole Hybrids: Synthesis, Anticancer Evaluation, Docking and DFT Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202201559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Syed Nazreen
- Department of Chemistry Faculty of Science Al-Baha University Al-Baha Kingdom of Saudi Arabia
| | - Ahmed A. Elhenawy
- Department of Chemistry Faculty of Science Al-Baha University Al-Baha Kingdom of Saudi Arabia
- Chemistry Department Faculty of Science Al-Azhar University 11884 Nasr City Cairo Egypt
| | - Abrar Ahmad
- Department of Biochemistry Faculty of Science King Abdulaziz University Jeddah Kingdom of Saudi Arabia
| | - Mohammad Mahboob Alam
- Department of Chemistry Faculty of Science Al-Baha University Al-Baha Kingdom of Saudi Arabia
| |
Collapse
|
17
|
New molecular hybrids containing benzimidazole, thiazolidine-2,4-dione and 1,2,4-oxadiazole as EGFR directing cytotoxic agents. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Ali AM, Tawfik SS, Mostafa AS, Massoud MAM. Benzimidazole-Based Protein Kinase Inhibitors: Current Perspectives in Targeted Cancer Therapy. Chem Biol Drug Des 2022; 100:656-673. [PMID: 35962624 DOI: 10.1111/cbdd.14130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/31/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
Targeted therapy has emerged to be the cornerstone of advanced cancer treatment, allowing for more selectivity and avoiding the common drug toxicity and resistance. Identification of potential targets having vital role in growth and survival of cancer cells got much easier with the aid of the recent advances in high throughput screening approaches. Various protein kinases came into focus as valuable targets in cancer therapy. Meanwhile, benzimidazole-based scaffolds have gained significant attention as promising protein kinase inhibitors with high potency and varied selectivity. Great diversity of these scaffolds has inspired the medicinal chemists to inspect the effect of structural changes upon inhibitory activity on the molecular level through modeling studies. The present review gathers all the considerable attempts to develop benzimidazole-based compounds; designed as protein kinase inhibitors with anticancer activity since 2015; that target aurora kinase, CDK, CK2, EGFR, FGFR, and VEGFR-2; to allow further development and progression regarding benzimidazoles.
Collapse
Affiliation(s)
- Alaa M Ali
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Samar S Tawfik
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amany S Mostafa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohammed A M Massoud
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
19
|
N MK, Nukala SK, Thirukovela NS, Sreerama R, E RS, Kamarajugadda P, Narsimha S. Ramachary-Bressy-Wang [3+2]cycloaddition reaction: Synthesis of fully decorated 1,2,3-triazoles as potent anticancer and EGFR inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Celik I, Sarıaltın SY, Çoban T, Kılcıgil G. Design, Synthesis,
in Vitro
and
in Silico
Studies of Benzimidazole‐Linked Oxadiazole Derivatives as Anti‐inflammatory Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202201548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ismail Celik
- Erciyes University Faculty of Pharmacy Department of Pharmaceutical Chemistry 38039 Kayseri Turkey
| | - Sezen Yılmaz Sarıaltın
- Ankara University Faculty of Pharmacy Department of Pharmaceutical Toxicology 06100 Tandoğan Ankara Turkey
| | - Tülay Çoban
- Ankara University Faculty of Pharmacy Department of Pharmaceutical Toxicology 06100 Tandoğan Ankara Turkey
| | - Gülgün Kılcıgil
- Ankara University Faculty of Pharmacy Department of Pharmaceutical Chemistry 06100 Tandoğan Ankara Turkey
| |
Collapse
|
21
|
Ahmed Saleh Alzahrani S, Nazreen S, Elhenawy AA, Neamatallah T, Alam MM. Synthesis, Biological Evaluation, and Molecular Docking of New Benzimidazole-1,2,3-Triazole Hybrids as Antibacterial and Antitumor Agents. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2069133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Syed Nazreen
- Department of Chemistry, Faculty of Science, Al Baha University, Al Baha, Kingdom of Saudi Arabia
| | - Ahmed A. Elhenawy
- Department of Chemistry, Faculty of Science, Al Baha University, Al Baha, Kingdom of Saudi Arabia
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Thikryat Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Mohammad Mahbbob Alam
- Department of Chemistry, Faculty of Science, Al Baha University, Al Baha, Kingdom of Saudi Arabia
| |
Collapse
|
22
|
Murugan P, Jeyavijayan S, Ramuthai M, Narmadha RB. Structural, Spectroscopic, NBO and Molecular Docking Analysis of 5-Nitrobenzimidazole – A DFT Approach. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2056621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Palani Murugan
- Department of Physics, Dr. B.R. Ambedkar Institute of Technology, Port Blair, Andaman & Nicobar Islands, India
| | - S. Jeyavijayan
- Department of Physics, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| | - M. Ramuthai
- Department of Physics, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| | - R. B. Narmadha
- Department of Physics, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| |
Collapse
|
23
|
Hashem HE, Amr AEGE, Nossier ES, Anwar MM, Azmy EM. New Benzimidazole-, 1,2,4-Triazole-, and 1,3,5-Triazine-Based Derivatives as Potential EGFR WT and EGFR T790M Inhibitors: Microwave-Assisted Synthesis, Anticancer Evaluation, and Molecular Docking Study. ACS OMEGA 2022; 7:7155-7171. [PMID: 35252706 PMCID: PMC8892849 DOI: 10.1021/acsomega.1c06836] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/24/2022] [Indexed: 06/12/2023]
Abstract
A new series of benzimidazole, 1,2,4-triazole, and 1,3,5-triazine derivatives were designed and synthesized using a microwave irradiation synthetic approach utilizing 2-phenylacetyl isothiocyanate (1) as a key starting material. All the new analogues were evaluated as anticancer agents against a panel of cancer cell lines utilizing doxorubicin as a standard drug. Most of the tested derivatives exhibited selective cytotoxic activity against MCF-7 and A-549 cancer cell lines. Furthermore, the new target compounds 5, 6, and 7 as the most potent antiproliferative agents have been assessed as in vitro EGFRWT and EGFRT790M inhibitors compared to the reference drugs erlotinib and AZD9291. They represented more potent suppression activity against the mutated EGFRT790M than the wild-type EGFRWT. Moreover, the compounds 5, 6, and 7 down-regulated the oncogenic parameter p53 ubiquitination. A docking simulation of compound 6b was carried out to correlate its molecular structure with its significant EGFR inhibition potency and its possible binding interactions within the active site of EGFRWT and the mutant EGFRT790M.
Collapse
Affiliation(s)
- Heba E. Hashem
- Department
of Chemistry, Faculty of Women, Ain Shams
University, Heliopolis, Cairo 11757, Egypt
| | - Abd El-Galil E. Amr
- Pharmaceutical
Chemistry Department, Drug Exploration & Development Chair (DEDC),
College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Applied
Organic Chemistry Department, National Research
Center, Dokki, Cairo 12622, Egypt
| | - Eman S. Nossier
- Pharmaceutical
Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy
(Girls), Al-Azhar University, Cairo 11754, Egypt
| | - Manal M. Anwar
- Department
of Therapeutic Chemistry, National Research
Centre, Dokki, Cairo 12622, Egypt
| | - Eman M. Azmy
- Department
of Chemistry, Faculty of Women, Ain Shams
University, Heliopolis, Cairo 11757, Egypt
| |
Collapse
|
24
|
Mahmoud MA, Mohammed AF, Salem OIA, Gomaa HAM, Youssif BGM. New 1,3,4-oxadiazoles linked with the 1,2,3-triazole moiety as antiproliferative agents targeting the EGFR tyrosine kinase. Arch Pharm (Weinheim) 2022; 355:e2200009. [PMID: 35195309 DOI: 10.1002/ardp.202200009] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
A series of 1,3,4-oxadiazole-1,2,3-triazole hybrids bearing different pharmacophoric moieties has been designed and synthesized. Their antiproliferative activity was evaluated against four human cancer cell lines (Panc-1, MCF-7, HT-29, and A-549) using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The preliminary activity test displayed that the most active compounds, 6d, 6e, and 8a-e, suppressed cancer cell growth (GI50 = 0.23-2.00 µM) comparably to erlotinib (GI50 = 0.06 µM). Compounds 6d, 6e, and 8a-e inhibited the epidermal growth factor receptor tyrosine kinase (EGFR-TK) at IC50 = 0.11-0.73 µM, compared to erlotinib (IC50 = 0.08 ± 0.04 µM). The apoptotic mechanism revealed that the most active hybrid 8d induced expression levels of caspase-3, caspase-9, and cytochrome-c in the human cancer cell line Panc-1 by 7.80-, 19.30-, and 13-fold higher than doxorubicin. Also, 8d increased the Bax level by 40-fold than doxorubicin, along with decreasing Bcl-2 levels by 6.3-fold. Cell cycle analysis after treatment of Panc-1 cells with hybrid 8d revealed a high proportion of cell accumulation (41.53%) in the pre-G1 phase, indicating cell cycle arrest at the G1 transition. Computational docking of the 8d and 8e hybrids with the EGFR binding site revealed their ability to bind with EGFR similar to erlotinib. Finally, in silico absorption, distribution, metabolism, and excretion/pharmacokinetic studies for the most active hybrids are discussed.
Collapse
Affiliation(s)
- Mohamed A Mahmoud
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Anber F Mohammed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ola I A Salem
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Hesham A M Gomaa
- Pharmacology Department, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Bahaa G M Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
25
|
Kumar M, Pandey SK, Chaudhary N, Mishra A, Gupta D. Highly efficient method for the synthesis of substituted benzimidazoles using sodium metabisulfite adsorbed on silica gel. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
26
|
Arulkumar M, Yang K, Wang N, Penislusshiyan S, Palvannan T, Ramalingam K, Chen F, Luo SH, Zhou YJ, Wang ZY. Synthesis of benzimidazole/triphenylamine-based compounds, evaluation of their bioactivities and an in silico study with receptor tyrosine kinases. NEW J CHEM 2022. [DOI: 10.1039/d1nj05073g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The antiproliferative activity of AL-1 against various cancer cells indicated the applicability of the BI-TPA-based compound as a potential multi-cancer inhibitor.
Collapse
Affiliation(s)
- Mani Arulkumar
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Kai Yang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Neng Wang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Sakayanathan Penislusshiyan
- Laboratory of Bioprocess and Engineering, Department of Biochemistry, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Thayumanavan Palvannan
- Laboratory of Bioprocess and Engineering, Department of Biochemistry, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Karthick Ramalingam
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Provincial Engineering Technology Research Center for Wastewater Management and Treatment, School of Environment, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, P. R. China
| | - Fuming Chen
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Provincial Engineering Technology Research Center for Wastewater Management and Treatment, School of Environment, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, P. R. China
| | - Shi-He Luo
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Yong-Jun Zhou
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou 510006, P. R. China
| |
Collapse
|
27
|
Celik I, Ayhan‐Kılcıgil G, Karayel A, Guven B, Onay‐Besikci A. Synthesis, molecular docking, in silico
ADME,
and
EGFR
kinase inhibitor activity studies of some new benzimidazole derivatives bearing thiosemicarbazide, triazole, and thiadiazole. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ismail Celik
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry Ankara University Ankara Turkey
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry Erciyes University Kayseri Turkey
| | - Gülgün Ayhan‐Kılcıgil
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry Ankara University Ankara Turkey
| | - Arzu Karayel
- Faculty of Arts and Science, Department of Physics Hitit University Çorum Turkey
| | - Berna Guven
- Faculty of Pharmacy, Department of Pharmacology Ankara University Ankara Turkey
| | - Arzu Onay‐Besikci
- Faculty of Pharmacy, Department of Pharmacology Ankara University Ankara Turkey
| |
Collapse
|
28
|
Celik I, Ayhan-Kilcigil G, Guven B, Kara Z, Onay-Besikci A. In Vitro and in Silico Evaluation of Some New 1H-Benzimidazoles Bearing Thiosemicarbazide and Triazole as Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2015404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Gulgun Ayhan-Kilcigil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Berna Guven
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Zumra Kara
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Arzu Onay-Besikci
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
29
|
Kumar HY, Murumkar PR, Srinivasan BP, Pawar V, Yadav MR. Design and synthesis of novel N-[3-(benzimidazol-2-ylamino)phenyl]amine and N-[3-(benzoxazol-2-ylamino)phenyl]amine derivatives as potential anticancer agents. Mol Divers 2021; 26:2269-2293. [PMID: 34661799 DOI: 10.1007/s11030-021-10333-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
In this contribution, we report the design, synthesis and cytotoxicity studies of a series of N-[3-(benzimidazol-2-yl-amino)phenyl]amine and N-[3-(benzoxazol-2-ylamino)phenyl]amine derivatives. In vitro cytotoxicity assay of 26 selected compounds was carried out at National Cancer Institute (NCI), USA. Out of them, compounds 10e (NSC D-762842/1) and 11s (NSC D-764942/1) have shown remarkable cytotoxicity with GI50 values ranging between "0.589-14.3 µM" and "0.276-12.3 µM," respectively, in the representative nine subpanels of human tumor cell lines. Further, flow cytometry analysis demonstrated that compound 10e exerted cell cycle arrest at G2/M phase and showed dose-dependent enhancement in apoptosis in K-562 leukemia cancer cells.
Collapse
Affiliation(s)
- Honnavalli Yogish Kumar
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390001, India.,Delhi Institute of Pharmaceutical Sciences & Research (DIPSAR), New Delhi, India.,Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, SS Nagara, Mysuru, Karnataka, 570015, India
| | - Prashant R Murumkar
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390001, India
| | - B P Srinivasan
- Delhi Institute of Pharmaceutical Sciences & Research (DIPSAR), New Delhi, India
| | - Vijay Pawar
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390001, India
| | - M R Yadav
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390001, India. .,Center of Research for Development, Parul University, Limbda, Vadodara, Gujarat, 391760, India.
| |
Collapse
|
30
|
Rajasekhar S, Karuppasamy R, Chanda K. Exploration of potential inhibitors for tuberculosis via structure-based drug design, molecular docking, and molecular dynamics simulation studies. J Comput Chem 2021; 42:1736-1749. [PMID: 34216033 DOI: 10.1002/jcc.26712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/28/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022]
Abstract
Drug resistance in tuberculosis is major threat to human population. In the present investigation, we aimed to identify novel and potent benzimidazole molecules to overcome the resistance management. A series of 20 benzimidazole derivatives were examined for its activity as selective antitubercular agents. Initially, AutodockVina algorithm was performed to assess the efficacy of the molecules. The results are further enriched by redocking by means of Glide algorithm. The binding free energies of the compounds were then calculated by MM-generalized-born surface area method. Molecular docking studies elucidated that benzimidazole derivatives has revealed formation of hydrogen bond and strong binding affinity in the active site of Mycobacterium tuberculosis protein. Note that ARG308, GLY189, VAL312, LEU403, and LEU190 amino acid residues of Mycobacterium tuberculosis protein PrpR are involved in binding with ligands of benzimidazoles. Interestingly, the ligands exhibited same binding potential to the active site of protein complex PrpR in both the docking programs. In essence, the result portrays that benzimidazole derivatives such as 1p, 1q, and 1 t could be potent and selective antitubercular agents than the standard drug isoniazid. These compounds were then subjected to molecular dynamics simulation to validate the dynamics activity of the compounds against PrpR. Finally, the inhibitory behavior of compounds was predicted using a machine learning algorithm trained on a data collection of 15,000 compounds utilizing graph-based signatures. Overall, the study concludes that designed benzimidazoles can be employed as antitubercular agents. Indeed, the results are helpful for the experimental biologists to develop safe and non-toxic drugs against tuberculosis.
Collapse
Affiliation(s)
- Sreerama Rajasekhar
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore, India
| | - Ramanathan Karuppasamy
- Department of Biotechnology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
31
|
Alam MM, Nazreen S, Almalki ASA, Elhenawy AA, Alsenani NI, Elbehairi SEI, Malebari AM, Alfaifi MY, Alsharif MA, Alfaifi SYM. Naproxen Based 1,3,4-Oxadiazole Derivatives as EGFR Inhibitors: Design, Synthesis, Anticancer, and Computational Studies. Pharmaceuticals (Basel) 2021; 14:870. [PMID: 34577570 PMCID: PMC8469912 DOI: 10.3390/ph14090870] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
A library of novel naproxen based 1,3,4-oxadiazole derivatives (8-16 and 19-26) has been synthesized and screened for cytotoxicity as EGFR inhibitors. Among the synthesized hybrids, compound2-(4-((5-((S)-1-(2-methoxynaphthalen-6-yl)ethyl)-1,3,4-oxadiazol-2-ylthio)methyl)-1H-1,2,3-triazol-1-yl)phenol(15) was the most potent compound against MCF-7 and HepG2cancer cells with IC50 of 2.13 and 1.63 µg/mL, respectively, and was equipotent to doxorubicin (IC50 1.62 µg/mL) towards HepG2. Furthermore, compound 15 inhibited EGFR kinase with IC50 0.41 μM compared to standard drug Erlotinib (IC50 0.30 μM). The active compound induces a high percentage of necrosis towards MCF-7, HePG2 and HCT 116 cells. The docking studies, DFT and MEP also supported the biological data. These results demonstrated that these synthesized naproxen hybrids have EGFR inhibition effects and can be used as leads for cancer therapy.
Collapse
Affiliation(s)
- Mohammad Mahboob Alam
- Department of Chemistry, Faculty of Science, Albaha University, Albaha 65731, Saudi Arabia; (A.A.E.); (N.I.A.)
| | - Syed Nazreen
- Department of Chemistry, Faculty of Science, Albaha University, Albaha 65731, Saudi Arabia; (A.A.E.); (N.I.A.)
| | | | - Ahmed A. Elhenawy
- Department of Chemistry, Faculty of Science, Albaha University, Albaha 65731, Saudi Arabia; (A.A.E.); (N.I.A.)
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| | - Nawaf I. Alsenani
- Department of Chemistry, Faculty of Science, Albaha University, Albaha 65731, Saudi Arabia; (A.A.E.); (N.I.A.)
| | - Serag Eldin I. Elbehairi
- Department of Biology, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia; (S.E.I.E.); (M.Y.A.)
- Cell Culture Laboratory, Egyptian Organization for Biological Products and Vaccines, VACSERA Holding Company, Giza 22311, Egypt
| | - Azizah M. Malebari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammad Y. Alfaifi
- Department of Biology, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia; (S.E.I.E.); (M.Y.A.)
| | - Meshari A. Alsharif
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah 21421, Saudi Arabia;
| | - Sulaiman Y. M. Alfaifi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
32
|
Othman IMM, Alamshany ZM, Tashkandi NY, Gad-Elkareem MAM, Anwar MM, Nossier ES. New pyrimidine and pyrazole-based compounds as potential EGFR inhibitors: Synthesis, anticancer, antimicrobial evaluation and computational studies. Bioorg Chem 2021; 114:105078. [PMID: 34161878 DOI: 10.1016/j.bioorg.2021.105078] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/11/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
This study was focused on the synthesis of new pyrimidines 4a,b, 5a,b and pyrazoles 6a, b as ATP mimicking tyrosine kinase inhibitors of the epidermal growth factor receptor (EGFR). The new compounds were assessed as cytotoxic candidates against human breast cancer cells (MCF-7) and hepatocellular carcinoma cells (HepG-2). All the new compounds appeared as more potent cytotoxic agents than erlotinib, while only compound 4a exhibited more potency than 5-flourouracil and 4b analogue was equipotent to it. Accordingly, the kinase suppression effect of 4a and 4b was further evaluated against EGFRWT, EGFRL858R and EGFRT790M. Both pyrimidine analogues 4a and 4b displayed outstanding inhibitory activity against EGFRWT and its two mutated isoforms EGFRL858R and EGFRT790M in comparing to erlotinib and osimertinib as reference drugs. Additionally, all the new analogues were subjected to antimicrobial assay. Interestingly, both 4a and 4b represented the most promising activity of wide spectrum antimicrobial effect against the examined microbes in comparison to gentamycin and ketoconazole as standard drugs. Moreover, docking results proved the good binding interactions of the compounds 4a and 4b with EGFRWT and EGFRT790M which were in accordance with the results of the in vitro enzyme assay. Additional in silico ADMET studies were performed for the new derivatives which represented their good oral absorption, good drug-likeness properties and low toxicity risks in human.
Collapse
Affiliation(s)
- Ismail M M Othman
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Zahra M Alamshany
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21551, P.O. Box 42805, Saudi Arabia
| | - Nada Y Tashkandi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21551, P.O. Box 42805, Saudi Arabia
| | | | - Manal M Anwar
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Eman S Nossier
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
| |
Collapse
|
33
|
Karayel A. Molecular stabilities, conformational analyses and molecular docking studies of benzimidazole derivatives bearing 1,2,4-triazole as EGFR inhibitors. Struct Chem 2021. [DOI: 10.1007/s11224-021-01760-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
34
|
Bansal Y, Minhas R, Singhal A, Arora RK, Bansal G. Benzimidazole: A Multifacted Nucelus for Anticancer Agents. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210208141107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer is characterized by an uncontrolled proliferation of cells, dedifferentiation,
invasiveness and metastasis. Endothelial growth factor (eGF), insulin-like growth factor
(IGF), platelet-derived growth factor (PDGF), Fibroblast growth factor (FGF), Vascular endothelial
growth factor (VEGF), checkpoint kinase 1 & 2 ( Chk1 & Chk2), aurora kinases,
topoisomerases, histone deacetylators (HDAC), poly(ADP-Ribose)polymerase (PARP), farnesyl
transferases, RAS-MAPK pathway and PI3K-Akt-mTOR pathway, are some of the
prominent mediators implicated in the proliferation of tumor cells. Huge artillery of natural
and synthetic compounds as anticancer, which act by inhibiting one or more of the enzymes
and/or pathways responsible for the progression of tumor cells, is reported in the literature.
The major limitations of anticancer agents used in clinics as well as of those under development
in literature are normal cell toxicity and other side effects due to lack of specificity.
Hence, medicinal chemists across the globe have been working for decades to develop potent and safe anticancer
agents from natural sources as well as from different classes of heterocycles. Benzimidazole is one of the most important
and explored heteronucelus because of their versatility in biological actions as well as synthetic applications
in medicinal chemistry. The structural similarity of amino derivatives of benzimidazole with purines makes it a fascinating
nucleus for the development of anticancer, antimicrobial and anti-HIV agents. This review article is an attempt
to critically analyze various reports on benzimidazole derivatives acting on different targets to act as anticancer so as
to understand the structural requirements around benzimidazole nucleus for each target and enable medicinal chemists
to promote rational development of antitumor agents.
Collapse
Affiliation(s)
- Yogita Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Richa Minhas
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Ankit Singhal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Radhey Krishan Arora
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Gulshan Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| |
Collapse
|
35
|
Stanescu MD, Stefanov C, Albota F, Hirtopeanu A, Oprea OC, Stanica N, Ferbinteanu M. Synthesis and structural analysis of complexes based on α-amino ketone derived from benzimidazole. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Shi TT, Wang SZ, Yang Z, Wang Y, Liu C, He W, Fang Z, Guo K. Enzymatic electrochemical continuous flow cascade synthesis of substituted benzimidazoles. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00058f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An industrially practical method for the synthesis of substituted benzimidazoles was developed from an enzymatic electrochemical cascade method.
Collapse
Affiliation(s)
- Ting-Ting Shi
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
- Department of Chemistry
| | - Shu-Zhan Wang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Zhao Yang
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Yilin Wang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| |
Collapse
|
37
|
Prakash S, Somiya G, Elavarasan N, Subashini K, Kanaga S, Dhandapani R, Sivanandam M, Kumaradhas P, Thirunavukkarasu C, Sujatha V. Synthesis and characterization of novel bioactive azo compounds fused with benzothiazole and their versatile biological applications. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Prabhavathi H, Dasegowda KR, Renukananda KH, Karunakar P, Lingaraju K, Raja Naika H. Molecular docking and dynamic simulation to identify potential phytocompound inhibitors for EGFR and HER2 as anti-breast cancer agents. J Biomol Struct Dyn 2020; 40:4713-4724. [PMID: 33345701 DOI: 10.1080/07391102.2020.1861982] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Breast cancer is the most prevalent cancer in women worldwide. To treat human breast cancer by inhibiting EGFR and HER2 targets is an important therapeutic option. Phytochemicals are found to have beneficial health effects in treating various diseases. An effort has been made to virtually screen phytochemical inhibitor by molecular docking and dynamic simulation in the current studies. The docking scores analysis resulted in a common hit Panaxadiol ligand with a low dock score for EGFR and HER2 targets. The inhibitory action of the phytocompounds was also validated by comparing it with the reference compounds Erlotinib for EGFR and Neratinib for HER2. Molecular dynamic simulation of EGFR and HER2 lead complexes ensure the ligand's appropriate refinement in the dynamic system. The target and ligand complex interaction motif established a high affinity of lead candidates in a dynamic system similar to molecular docking results. This study reveals that Panaxadiol hit molecule can be developed as a novel multi-target EGFR and HER2 target inhibitor with greater potential and low toxicity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- H Prabhavathi
- Department of Studies & Research in Biotechnology, Tumkur University, Tumakuru, Karnataka, India
| | - K R Dasegowda
- Department of Biotechnology & Genetics, Ramaiah College of Arts, Science and Commerce, Bangalore, Karnataka, India
| | - K H Renukananda
- Department of Mechanical Engineering, RV Institute of Technology and Management, Bangalore, Karnataka, India
| | | | - K Lingaraju
- Department of Studies & Research in Biotechnology, Tumkur University, Tumakuru, Karnataka, India
| | - H Raja Naika
- Department of Studies & Research in Biotechnology, Tumkur University, Tumakuru, Karnataka, India
| |
Collapse
|
39
|
Synthesis and biological evaluation of novel 1,3,4-thiadiazole derivatives as possible anticancer agents. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:499-513. [PMID: 32412436 DOI: 10.2478/acph-2020-0034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/19/2019] [Indexed: 01/19/2023]
Abstract
The synthesis of new N-(5-substituted-1,3,4-thiadiazol-2-yl)-2-[(5-(substituted amino)-1,3,4-thiadiazol-2-yl)thio]acetamide derivatives and investigation of their anticancer activities were the aims of this work. All the new compounds' structures were elucidated by elemental analyses, IR, 1H NMR, 13C NMR and MS spectral data. Anticancer activity studies of the compounds were evaluated against MCF-7 and A549 tumor cell lines. In addition, with the purpose of determining the selectivity of cytotoxic activities, the most active compound was screened against a noncancer NIH3T3 cell line (mouse embryonic fibroblast cells). Among the tested compounds, compound 4y (N-(5-ethyl-1,3,4-thiadiazol-2-yl)-2-((5-(p-tolylamino)-1,3,4-thiadiazol-2-yl)thio)acetamide), showed promising cytotoxic activity against MCF7 cancer cell with an IC 50value of 0.084 ± 0.020 mmol L-1 and against A549 cancer cell with IC 50 value of 0.034 ± 0.008 mmol L-1, compared with cisplatin. The aromatase inhibitory activity was evaluated for compound 4y on MCF-7 cell line showing promising activity with IC50 of 0.062 ± 0.004 mmol L-1.
Collapse
|
40
|
Sathyanarayana R, Kumar V, Pujar G, Poojary B, Shankar MK, Yallappa S. Hydroxy-benzimidazoles as blue-green emitters: Synthesis, structural and DFT studies. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Hammoudi NEH, Benguerba Y, Attoui A, Hognon C, Lemaoui T, Sobhi W, Benaicha M, Badawi M, Monari A. In silico drug discovery of IKK-β inhibitors from 2-amino-3-cyano-4-alkyl-6-(2-hydroxyphenyl) pyridine derivatives based on QSAR, docking, molecular dynamics and drug-likeness evaluation studies. J Biomol Struct Dyn 2020; 40:886-902. [PMID: 32948119 DOI: 10.1080/07391102.2020.1819878] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The Inhibitor of IKK-β (nuclear factor kappa B kinase subunit beta), a specific modulator of NF-κB (nuclear factor-κB), is considered a valid target to discover new active compounds for various cancers and rheumatoid arthritis treatment. In this study a series of thirty 2-amino-3-cyano-4-alkyl-6-(2-hydroxyphenyl) pyridine derivatives was involved for a quantitative structure activity relationship model (QSAR) elaboration which allows the prediction of the pIC50 values of new designed compounds. The model can be used to predict the activity of new compounds within its applicability domain. Then a molecular docking study was carried out to identify the interactions between the compounds and the amino acids of the active site. After that, golden triangle, Veber's rule, and Lipinski's rule properties were calculated to identify the drug-likeness properties of the investigated compounds. Finally, in-silico-toxicity studies were performed to predict the toxicity of the new designed compounds. The analysis of the results of QSAR model and molecular docking succeeded to screen 21 interesting compounds with better inhibitory concentration having a good affinity to IKK-β. All compounds were within the range set by Veber's rule and Lipinski's rule. the analysis of golden triangle showed that the thirty 2-amino-3-cyano-4-alkyl-6-(2-hydroxyphenyl) pyridine derivatives would not have clearance and cell membrane permeability problems except comp6 comp12,comp20, comp21, and comp26.As for the new designed compounds, their properties may have these problems, except two compounds which are: A8m, A8p. The A1m, A1p, A3p and A11m compounds were predicted to be nontoxic. These findings indicate that the novel potent candidate drugs have promising potential to IKK-β enzyme inhibition and should motivate future experimental investigations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nour-El-Houda Hammoudi
- Laboratoire des Matériaux Polymères Multiphasiques, LMPMP, Université Ferhat ABBAS Sétif-1, Sétif, Algeria.,Energetics and Solid-State Electrochemistry Laboratory (LEES), Processes Engineering Department, Faculty of Technology, Ferhat Abbas-Setif1 University, Setif, Algeria
| | - Yacine Benguerba
- Laboratoire des Matériaux Polymères Multiphasiques, LMPMP, Université Ferhat ABBAS Sétif-1, Sétif, Algeria
| | - Ayoub Attoui
- Laboratoire des Matériaux Polymères Multiphasiques, LMPMP, Université Ferhat ABBAS Sétif-1, Sétif, Algeria.,Laboratoire de Biochimie Appliquée, Université Ferhat ABBAS Sétif-1, Sétif, Algeria
| | - Cecilia Hognon
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, Université de Lorraine, Nancy, France
| | - Tarek Lemaoui
- Laboratoire des Matériaux Polymères Multiphasiques, LMPMP, Université Ferhat ABBAS Sétif-1, Sétif, Algeria
| | - Widad Sobhi
- Laboratoire de Biochimie Appliquée, Université Ferhat ABBAS Sétif-1, Sétif, Algeria
| | - Mohamed Benaicha
- Energetics and Solid-State Electrochemistry Laboratory (LEES), Processes Engineering Department, Faculty of Technology, Ferhat Abbas-Setif1 University, Setif, Algeria
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, Université de Lorraine, Nancy, France
| | - Antonio Monari
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, Université de Lorraine, Nancy, France
| |
Collapse
|
42
|
Marinescu M, Cinteză LO, Marton GI, Chifiriuc MC, Popa M, Stănculescu I, Zălaru CM, Stavarache CE. Synthesis, density functional theory study and in vitro antimicrobial evaluation of new benzimidazole Mannich bases. BMC Chem 2020; 14:45. [PMID: 32724899 PMCID: PMC7382033 DOI: 10.1186/s13065-020-00697-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/10/2020] [Indexed: 12/18/2022] Open
Abstract
The tri-component synthesis of novel chiral benzimidazole Mannich bases, by reaction between benzimidazole, aqueous 30% formaldehyde and an amine, the biological evaluation and DFT studies of the new compounds are reported here. The 1H-NMR, 13C-NMR, FTIR spectra and elemental analysis confirm the structures of the new compounds. All synthesized compounds were screened by qualitative and quantitative methods for their in vitro antibacterial activity against 4 bacterial strains. DFT studies were accomplished using GAMESS 2012 software and HOMO-LUMO analysis allowed the calculation of electronic and structural parameters of the chiral Mannich bases. The geometry of 1-methylpiperazine, the cumulated Mullikan atomic charges of the two heteroatoms and of the methyl, and the value of the global electrophilicity index (ω = 0.0527) of the M-1 molecule is correlated with its good antimicrobial activity. It was found that the presence of saturated heterocycles from the amine molecule, 1-methyl piperazine and morpholine, respectively, contributes to an increased biological activity, compared to aromatic amino analogs, diphenylamino-, 4-nitroamino- and 4-aminobenzoic acid. The planarity of the molecules, specific bond lengths and localization of HOMO-LUMO orbitals is responsible for the best biological activities of the compounds.
Collapse
Affiliation(s)
- Maria Marinescu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, 050663 Romania
| | - Ludmila Otilia Cinteză
- Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, 030018 Romania
| | - George Iuliu Marton
- Faculty of Applied Chemistry and Materials Science, University "Politehnica" of Bucharest, 1-7 Polizu, 011061 Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- Department of Botanic-Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalilor, 60101 Bucharest, Romania.,Research Institute of the University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Marcela Popa
- Department of Botanic-Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalilor, 60101 Bucharest, Romania.,Research Institute of the University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Ioana Stănculescu
- Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, 030018 Romania
| | - Christina-Marie Zălaru
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bucharest, 050663 Romania
| | - Cristina-Elena Stavarache
- Institute of Organic Chemistry "C.D. Nenitzescu" of the Romanian Academy, 202B Splaiul Independentei, 060023 Bucharest, Romania
| |
Collapse
|
43
|
Novel scaffold hopping of potent benzothiazole and isatin analogues linked to 1,2,3-triazole fragment that mimic quinazoline epidermal growth factor receptor inhibitors: Synthesis, antitumor and mechanistic analyses. Bioorg Chem 2020; 103:104133. [PMID: 32745759 DOI: 10.1016/j.bioorg.2020.104133] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/11/2020] [Accepted: 07/18/2020] [Indexed: 12/13/2022]
Abstract
A series of benzothiazole/isatin linked to 1,2,3-triazole moiety and terminal sulpha drugs 5a-e and 6a-e were synthesized and evaluated for cytotoxic activity against a panel of cancer cell lines. The novel compounds showed variable IC50 range of activity and some of them were potent compared to reference drug. The promising compounds were subjected as postulated the mimicry proposal for quinazoline-based EGFR inhibitors for their inhibitory profile against EGFR TK enzyme. That data obtained revealed that most of these compounds were potent EGFR TK inhibitors at nanomolar concentrations. Among these, compounds 5a and 5b showed more potent activity on EGFR compared to erlotinib (IC50 103 and 104 versus 67.6 nM). Based upon the results, molecular docking analysis was performed on EGFR receptor and proved the strong contribution of fragments; benzothiazole, isatin, and triazole to the binding ATP pocket. When these selected compounds 5a and 5b were tested in an HepG2 model, they could effectively inhibited tumor growth, strongly induced cancer cell apoptosis, and suppressed cell cycle progression leading to DNA fragmentation. Well-DMET profile of the most active derivatives was presented and compared to the reference drugs. Taken together, we introduced novel triazole-sulpha drug hybrid for the first time as EGFR inhibitors and the results of our studies indicate that the newly discovered inhibitors have significant potential for anticancer treatment.
Collapse
|
44
|
Abbas SY, Al-Harbi RA, Sh El-Sharief MA. Synthesis and anticancer activity of thiourea derivatives bearing a benzodioxole moiety with EGFR inhibitory activity, apoptosis assay and molecular docking study. Eur J Med Chem 2020; 198:112363. [DOI: 10.1016/j.ejmech.2020.112363] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/27/2022]
|
45
|
Puskullu MO, Celik I, Erol M, Fatullayev H, Uzunhisarcikli E, Kuyucuklu G. Antimicrobial and antiproliferative activity studies of some new quinoline-3-carbaldehyde hydrazone derivatives. Bioorg Chem 2020; 101:104014. [PMID: 32599364 DOI: 10.1016/j.bioorg.2020.104014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/30/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
In this study, a total of 22 piece quinoline-3-carbaldehyde hydrazone derivative compounds were designed and synthesized, 2 of which were not original, their antimicrobial activities were determined with microdilution method and their in vitro cytotoxic effect was investigated in MCF-7 and A549 cells by MTT assay. When the activity results are examined, although the antimicrobial effects of quinoline derivatives, in general, are weaker than standard drugs; 3q5 and 3q6 against MRSA showed promising activity with MIC:16 µg/ml compared to reference drugs. Compounds generally showed weaker cytotoxic activity on the A549 and MCF-7 cell line. 3q12, 3q17 and 3q22 at 100 µM reduced cell viability to 59.28%, 76.24% and 72.92% on A549 cells, respectively. Compound 3q6, one of the most effective compounds against MRSA, formed a 2.10 Å long hydrogen bond between the quinoline nitrogen and ARG132 in the DNA topoisomerase IV active site (PDB: 3FV5). Theoretical ADME profiles of all compounds comply with Lipinski and other limiting rules. In addition, MEP analysis of 3q6, geometric optimization and molecular reactivity analysis were calculated with the 6-311G (d,p) base set DFT/B3LYP theory, and ΔE = ELUMO-EHOMO, which is a measure of the stable structure of the molecule, was calculated as 0.13377 for 3q6 and had the most stable electronic structure among all compounds.
Collapse
Affiliation(s)
- Mustafa Orhan Puskullu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Meryem Erol
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Hanifa Fatullayev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Ebru Uzunhisarcikli
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Gulcan Kuyucuklu
- Department of Medical Microbiology, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
46
|
Singh I, Luxami V, Paul K. Synthesis, cytotoxicity, pharmacokinetic profile, binding with DNA and BSA of new imidazo[1,2-a]pyrazine-benzo[d]imidazol-5-yl hybrids. Sci Rep 2020; 10:6534. [PMID: 32300169 PMCID: PMC7162861 DOI: 10.1038/s41598-020-63605-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/02/2020] [Indexed: 11/13/2022] Open
Abstract
Novel derivatives possessing imidazo[1,2-a]pyrazine and 1H-benzo[d]imidazole scaffolds were synthesized using Suzuki-Miyaura cross-coupling reactions. In vitro anticancer activities against NCI-60 cancer cell panels were tested at 10 µM concentration. The best results were obtained from substitution of two 1-cyclohexyl-1H-benzo[d]imidazole groups present at C-6 and C-8 positions of imidazo[1,2-a]pyrazine (31). Compound 31 was found to be cytotoxic against 51 cell lines and cytostatic against 8 cell lines with broad range of growth inhibitions (−98.48 to 98.86%). GI50 value of compound 31 was found in the range of 0.80–2.87 µM for 59 human cancer cell lines at five-dose concentration levels. DNA binding study of potent compound 31 was suggested that this compound was intercalated into DNA base pairs with binding constant of 1.25 × 104 M−1. Compound 31 showed effective binding with bovine serum albumin (BSA) and presented binding constant value of 3.79 ×104 M-1. Pharmacokinetic studies revealed that all compounds are following Lipinski’s rule of five and expected to be orally active.
Collapse
Affiliation(s)
- Iqubal Singh
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147001, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147001, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147001, India.
| |
Collapse
|