1
|
Gu XY, Yang JL, Lai R, Zhou ZJ, Tang D, Hu L, Zhao LJ. Impact of lactate on immune cell function in the tumor microenvironment: mechanisms and therapeutic perspectives. Front Immunol 2025; 16:1563303. [PMID: 40207222 PMCID: PMC11979165 DOI: 10.3389/fimmu.2025.1563303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Lactate has emerged as a key regulator in the tumor microenvironment (TME), influencing both tumor progression and immune dynamics. As a byproduct of aerobic glycolysis, lactate satisfies the metabolic needs of proliferating tumor cells while reshaping the TME to facilitate immune evasion. Elevated lactate levels inhibit effector immune cells such as CD8+ T and natural killer cells, while supporting immunosuppressive cells, such as regulatory T cells and myeloid-derived suppressor cells, thus fostering an immunosuppressive environment. Lactate promotes epigenetic reprogramming, stabilizes hypoxia-inducible factor-1α, and activates nuclear factor kappa B, leading to further immunological dysfunction. In this review, we examined the role of lactate in metabolic reprogramming, immune suppression, and treatment resistance. We also discuss promising therapeutic strategies targeting lactate metabolism, including lactate dehydrogenase inhibitors, monocarboxylate transporter inhibitors, and TME neutralization methods, all of which can restore immune function and enhance immunotherapy outcomes. By highlighting recent advances, this review provides a theoretical foundation for integrating lactate-targeted therapies into clinical practice. We also highlight the potential synergy between these therapies and current immunotherapeutic strategies, providing new avenues for addressing TME-related challenges and improving outcomes for patients with cancer.
Collapse
Affiliation(s)
- Xuan-Yu Gu
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jia-Li Yang
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Rui Lai
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zheng-Jun Zhou
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dan Tang
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Hepatobiliary and Pancreatic Surgery, Suzhou Medical College of Soochow University, Suzhou, China
| | - Long Hu
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, China
| | - Li-Jin Zhao
- Department of General Surgery, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Sharma H, Mondal S, Urquiza U, Esparza C, Bartlett S, Santa-Pinter L, Hill H, White M, Sharma P, Luckett-Chastain L, Cooper A, Rasel M, Gao P, Battaile KP, Shukla SK, Lovell S, Ihnat MA. Synthesis and biological characterization of an orally bioavailable lactate dehydrogenase-A inhibitor against pancreatic cancer. Eur J Med Chem 2024; 275:116598. [PMID: 38925013 DOI: 10.1016/j.ejmech.2024.116598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Lactate dehydrogenase-A (LDHA) is the major isoform of lactate dehydrogenases (LDH) that is overexpressed and linked to poor survival in pancreatic ductal adenocarcinoma (PDAC). Despite some progress, current LDH inhibitors have poor structural and physicochemical properties or exhibit unfavorable pharmacokinetics that have hampered their development. The present study reports the synthesis and biological evaluation of a novel class of LDHA inhibitors comprising a succinic acid monoamide motif. Compounds 6 and 21 are structurally related analogs that demonstrated potent inhibition of LDHA with IC50s of 46 nM and 72 nM, respectively. We solved cocrystal structures of compound 21-bound to LDHA that showed that the compound binds to a distinct allosteric site between the two subunits of the LDHA tetramer. Inhibition of LDHA correlated with reduced lactate production and reduction of glycolysis in MIA PaCa-2 pancreatic cancer cells. The lead compounds inhibit the proliferation of human pancreatic cancer cell lines and patient-derived 3D organoids and exhibit a synergistic cytotoxic effect with the OXPHOS inhibitor phenformin. Unlike current LDHA inhibitors, 6 and 21 have appropriate pharmacokinetics and ligand efficiency metrics, exhibit up to 73% oral bioavailability, and a cumulative half-life greater than 4 h in mice.
Collapse
Affiliation(s)
- Horrick Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, Southwestern Oklahoma State University, Weatherford, OK, USA.
| | - Somrita Mondal
- Department of Pharmaceutical Sciences, College of Pharmacy, Southwestern Oklahoma State University, Weatherford, OK, USA
| | - Uzziah Urquiza
- Department of Biological & Biomedical Sciences, Southwestern Oklahoma State University, Weatherford, OK, USA
| | - Colter Esparza
- Department of Biological & Biomedical Sciences, Southwestern Oklahoma State University, Weatherford, OK, USA
| | - Seth Bartlett
- Department of Pharmaceutical Sciences, College of Pharmacy, Southwestern Oklahoma State University, Weatherford, OK, USA
| | - Landon Santa-Pinter
- Department of Pharmaceutical Sciences, College of Pharmacy, Southwestern Oklahoma State University, Weatherford, OK, USA
| | - Hanna Hill
- Department of Biological & Biomedical Sciences, Southwestern Oklahoma State University, Weatherford, OK, USA
| | - Madalyn White
- Department of Biological & Biomedical Sciences, Southwestern Oklahoma State University, Weatherford, OK, USA
| | - Pragya Sharma
- Department of Biological & Biomedical Sciences, Southwestern Oklahoma State University, Weatherford, OK, USA
| | - Lerin Luckett-Chastain
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | - Anne Cooper
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, KS, USA
| | - Mohammad Rasel
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, KS, USA
| | - Philip Gao
- Protein Production Group, The University of Kansas, Lawrence, KS, USA
| | | | - Surendra K Shukla
- Department of Oncology Science, OU College of Medicine, Oklahoma City, USA
| | - Scott Lovell
- Protein Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, KS, USA
| | - Michael A Ihnat
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| |
Collapse
|
3
|
Shu Y, Yue J, Li Y, Yin Y, Wang J, Li T, He X, Liang S, Zhang G, Liu Z, Wang Y. Development of human lactate dehydrogenase a inhibitors: high-throughput screening, molecular dynamics simulation and enzyme activity assay. J Comput Aided Mol Des 2024; 38:28. [PMID: 39123063 DOI: 10.1007/s10822-024-00568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
Lactate dehydrogenase A (LDHA) is highly expressed in many tumor cells and promotes the conversion of pyruvate to lactic acid in the glucose pathway, providing energy and synthetic precursors for rapid proliferation of tumor cells. Therefore, inhibition of LDHA has become a widely concerned tumor treatment strategy. However, the research and development of highly efficient and low toxic LDHA small molecule inhibitors still faces challenges. To discover potential inhibitors against LDHA, virtual screening based on molecular docking techniques was performed from Specs database of more than 260,000 compounds and Chemdiv-smart database of more than 1,000 compounds. Through molecular dynamics (MD) simulation studies, we identified 12 potential LDHA inhibitors, all of which can stably bind to human LDHA protein and form multiple interactions with its active central residues. In order to verify the inhibitory activities of these compounds, we established an enzyme activity assay system and measured their inhibitory effects on recombinant human LDHA. The results showed that Compound 6 could inhibit the catalytic effect of LDHA on pyruvate in a dose-dependent manner with an EC50 value of 14.54 ± 0.83 µM. Further in vitro experiments showed that Compound 6 could significantly inhibit the proliferation of various tumor cell lines such as pancreatic cancer cells and lung cancer cells, reduce intracellular lactic acid content and increase intracellular reactive oxygen species (ROS) level. In summary, through virtual screening and in vitro validation, we found that Compound 6 is a small molecule inhibitor for LDHA, providing a good lead compound for the research and development of LDHA related targeted anti-tumor drugs.
Collapse
Affiliation(s)
- Yuanyuan Shu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jianda Yue
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yaqi Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Yekui Yin
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Jiaxu Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Tingting Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- New York University, East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai, 200062, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Gaihua Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Ying Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
- Institute of Interdisciplinary Studies, Hunan Normal University, Changsha, 410081, China.
- Peptide and Small Molecule Drug R&D Plateform, Furong Laboratory, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
4
|
Knight HR, Ketter E, Ung T, Weiss A, Ajit J, Chen Q, Shen J, Ip KM, Chiang CY, Barreiro L, Esser-Kahn A. High-throughput screen identifies non inflammatory small molecule inducers of trained immunity. Proc Natl Acad Sci U S A 2024; 121:e2400413121. [PMID: 38976741 PMCID: PMC11260140 DOI: 10.1073/pnas.2400413121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024] Open
Abstract
Trained immunity is characterized by epigenetic and metabolic reprogramming in response to specific stimuli. This rewiring can result in increased cytokine and effector responses to pathogenic challenges, providing nonspecific protection against disease. It may also improve immune responses to established immunotherapeutics and vaccines. Despite its promise for next-generation therapeutic design, most current understanding and experimentation is conducted with complex and heterogeneous biologically derived molecules, such as β-glucan or the Bacillus Calmette-Guérin (BCG) vaccine. This limited collection of training compounds also limits the study of the genes most involved in training responses as each molecule has both training and nontraining effects. Small molecules with tunable pharmacokinetics and delivery modalities would both assist in the study of trained immunity and its future applications. To identify small molecule inducers of trained immunity, we screened a library of 2,000 drugs and drug-like compounds. Identification of well-defined compounds can improve our understanding of innate immune memory and broaden the scope of its clinical applications. We identified over two dozen small molecules in several chemical classes that induce a training phenotype in the absence of initial immune activation-a current limitation of reported inducers of training. A surprising result was the identification of glucocorticoids, traditionally considered immunosuppressive, providing an unprecedented link between glucocorticoids and trained innate immunity. We chose seven of these top candidates to characterize and establish training activity in vivo. In this work, we expand the number of compounds known to induce trained immunity, creating alternative avenues for studying and applying innate immune training.
Collapse
Affiliation(s)
- Hannah Riley Knight
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Ellen Ketter
- Biological Sciences Division, University of Chicago, Chicago, IL60637
| | - Trevor Ung
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Adam Weiss
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Jainu Ajit
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Qing Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Jingjing Shen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Ka Man Ip
- Biological Sciences Division, University of Chicago, Chicago, IL60637
| | - Chun-yi Chiang
- Biological Sciences Division, University of Chicago, Chicago, IL60637
| | - Luis Barreiro
- Biological Sciences Division, University of Chicago, Chicago, IL60637
| | - Aaron Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| |
Collapse
|
5
|
Masci D, Puxeddu M, Silvestri R, La Regina G. Metabolic Rewiring in Cancer: Small Molecule Inhibitors in Colorectal Cancer Therapy. Molecules 2024; 29:2110. [PMID: 38731601 PMCID: PMC11085455 DOI: 10.3390/molecules29092110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Alterations in cellular metabolism, such as dysregulation in glycolysis, lipid metabolism, and glutaminolysis in response to hypoxic and low-nutrient conditions within the tumor microenvironment, are well-recognized hallmarks of cancer. Therefore, understanding the interplay between aerobic glycolysis, lipid metabolism, and glutaminolysis is crucial for developing effective metabolism-based therapies for cancer, particularly in the context of colorectal cancer (CRC). In this regard, the present review explores the complex field of metabolic reprogramming in tumorigenesis and progression, providing insights into the current landscape of small molecule inhibitors targeting tumorigenic metabolic pathways and their implications for CRC treatment.
Collapse
Affiliation(s)
- Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Michela Puxeddu
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (R.S.)
| | - Romano Silvestri
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (R.S.)
| | - Giuseppe La Regina
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (R.S.)
| |
Collapse
|
6
|
Cocuzza C, Antoniono E, Ottone C, Cauda V, Fino D, Piumetti M. Preparation of a Mesoporous Biosensor for Human Lactate Dehydrogenase for Potential Anticancer Inhibitor Screening. ACS Biomater Sci Eng 2023; 9:6045-6057. [PMID: 37856794 PMCID: PMC10646870 DOI: 10.1021/acsbiomaterials.3c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
Cancer is the second leading cause of death worldwide, with a dramatic impact due to the acquired resistance of cancers to used chemotherapeutic drugs and treatments. The enzyme lactate dehydrogenase (LDH-A) is responsible for cancer cell proliferation. Recently the development of selective LDH-A inhibitors as drugs for cancer treatment has been reported to be an efficient strategy aiming to decrease cancer cell proliferation and increase the sensitivity to traditional chemotherapeutics. This study aims to obtain a stable and active biocatalyst that can be utilized for such drug screening purposes. It is conceived by adopting human LDH-A enzyme (hLDH-A) and investigating different immobilization techniques on porous supports to achieve a stable and reproducible biosensor for anticancer drugs. The hLDH-A enzyme is covalently immobilized on mesoporous silica (MCM-41) functionalized with amino and aldehyde groups following two different methods. The mesoporous support is characterized by complementary techniques to evaluate the surface chemistry and the porous structure. Fluorescence microscopy analysis confirms the presence of the enzyme on the support surface. The tested immobilizations achieve yields of ≥80%, and the best retained activity of the enzyme is as high as 24.2%. The optimal pH and temperature of the best immobilized hLDH-A are pH 5 and 45 °C for the reduction of pyruvate into lactate, while those for the free enzyme are pH 8 and 45 °C. The stability test carried out at 45 °C on the immobilized enzyme shows a residual activity close to 40% for an extended time. The inhibition caused by NHI-2 is similar for free and immobilized hLDH-A, 48% and 47%, respectively. These findings are significant for those interested in immobilizing enzymes through covalent attachment on inorganic porous supports and pave the way to develop stable and active biocatalyst-based sensors for drug screenings that are useful to propose drug-based cancer treatments.
Collapse
Affiliation(s)
- Clarissa Cocuzza
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Elena Antoniono
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Carminna Ottone
- Escuela
de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2340000, Chile
| | - Valentina Cauda
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Debora Fino
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Marco Piumetti
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| |
Collapse
|
7
|
Chu YD, Chen CW, Lai MW, Lim SN, Lin WR. Bioenergetic alteration in gastrointestinal cancers: The good, the bad and the ugly. World J Gastroenterol 2023; 29:4499-4527. [PMID: 37621758 PMCID: PMC10445009 DOI: 10.3748/wjg.v29.i29.4499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
Cancer cells exhibit metabolic reprogramming and bioenergetic alteration, utilizing glucose fermentation for energy production, known as the Warburg effect. However, there are a lack of comprehensive reviews summarizing the metabolic reprogramming, bioenergetic alteration, and their oncogenetic links in gastrointestinal (GI) cancers. Furthermore, the efficacy and treatment potential of emerging anticancer drugs targeting these alterations in GI cancers require further evaluation. This review highlights the interplay between aerobic glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS) in cancer cells, as well as hypotheses on the molecular mechanisms that trigger this alteration. The role of hypoxia-inducible transcription factors, tumor suppressors, and the oncogenetic link between hypoxia-related enzymes, bioenergetic changes, and GI cancer are also discussed. This review emphasizes the potential of targeting bioenergetic regulators for anti-cancer therapy, particularly for GI cancers. Emphasizing the potential of targeting bioenergetic regulators for GI cancer therapy, the review categorizes these regulators into aerobic glycolysis/ lactate biosynthesis/transportation and TCA cycle/coupled OXPHOS. We also detail various anti-cancer drugs and strategies that have produced pre-clinical and/or clinical evidence in treating GI cancers, as well as the challenges posed by these drugs. Here we highlight that understanding dysregulated cancer cell bioenergetics is critical for effective treatments, although the diverse metabolic patterns present challenges for targeted therapies. Further research is needed to comprehend the specific mechanisms of inhibiting bioenergetic enzymes, address side effects, and leverage high-throughput multi-omics and spatial omics to gain insights into cancer cell heterogeneity for targeted bioenergetic therapies.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chun-Wei Chen
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Wei Lai
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Wey-Ran Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
8
|
Salido S, Alejo-Armijo A, Altarejos J. Synthesis and hLDH Inhibitory Activity of Analogues to Natural Products with 2,8-Dioxabicyclo[3.3.1]nonane Scaffold. Int J Mol Sci 2023; 24:9925. [PMID: 37373073 DOI: 10.3390/ijms24129925] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Human lactate dehydrogenase (hLDH) is a tetrameric enzyme present in almost all tissues. Among its five different isoforms, hLDHA and hLDHB are the predominant ones. In the last few years, hLDHA has emerged as a therapeutic target for the treatment of several kinds of disorders, including cancer and primary hyperoxaluria. hLDHA inhibition has been clinically validated as a safe therapeutic method and clinical trials using biotechnological approaches are currently being evaluated. Despite the well-known advantages of pharmacological treatments based on small-molecule drugs, few compounds are currently in preclinical stage. We have recently reported the detection of some 2,8-dioxabicyclo[3.3.1]nonane core derivatives as new hLDHA inhibitors. Here, we extended our work synthesizing a large number of derivatives (42-70) by reaction between flavylium salts (27-35) and several nucleophiles (36-41). Nine 2,8-dioxabicyclo[3.3.1]nonane derivatives showed IC50 values lower than 10 µM against hLDHA and better activity than our previously reported compound 2. In order to know the selectivity of the synthesized compounds against hLDHA, their hLDHB inhibitory activities were also measured. In particular, compounds 58, 62a, 65b, and 68a have shown the lowest IC50 values against hLDHA (3.6-12.0 µM) and the highest selectivity rate (>25). Structure-activity relationships have been deduced. Kinetic studies using a Lineweaver-Burk double-reciprocal plot have indicated that both enantiomers of 68a and 68b behave as noncompetitive inhibitors on hLDHA enzyme.
Collapse
Affiliation(s)
- Sofía Salido
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain
| | - Alfonso Alejo-Armijo
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain
| | - Joaquín Altarejos
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus de Excelencia Internacional Agroalimentario ceiA3, 23071 Jaén, Spain
| |
Collapse
|
9
|
The Role of Reprogrammed Glucose Metabolism in Cancer. Metabolites 2023; 13:metabo13030345. [PMID: 36984785 PMCID: PMC10051753 DOI: 10.3390/metabo13030345] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Cancer cells reprogram their metabolism to meet biosynthetic needs and to adapt to various microenvironments. Accelerated glycolysis offers proliferative benefits for malignant cells by generating glycolytic products that move into branched pathways to synthesize proteins, fatty acids, nucleotides, and lipids. Notably, reprogrammed glucose metabolism and its associated events support the hallmark features of cancer such as sustained cell proliferation, hijacked apoptosis, invasion, metastasis, and angiogenesis. Overproduced enzymes involved in the committed steps of glycolysis (hexokinase, phosphofructokinase-1, and pyruvate kinase) are promising pharmacological targets for cancer therapeutics. In this review, we summarize the role of reprogrammed glucose metabolism in cancer cells and how it can be manipulated for anti-cancer strategies.
Collapse
|
10
|
Sun N, Kabir M, Lee Y, Xie L, Hu X, Velez J, Chen X, Kaniskan HÜ, Jin J. Discovery of the First Lactate Dehydrogenase Proteolysis Targeting Chimera Degrader for the Treatment of Pancreatic Cancer. J Med Chem 2023; 66:596-610. [PMID: 36538511 PMCID: PMC9969998 DOI: 10.1021/acs.jmedchem.2c01505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lactate dehydrogenase (LDH) is a key glycolytic enzyme and biomarker of aggressive cancers. LDHA and LDHB are two main LDH subunits, and both are frequently overexpressed in tumors and essential for tumor growth. A number of LDHA/B small-molecule inhibitors have been developed. Here, we report the discovery of the first LDH proteolysis targeting chimera (PROTAC) degrader, compound 22 (MS6105). 22 potently degraded LDHA in a time- and ubiquitin-proteasome system-dependent manner. Using an unbiased global proteomic study, we confirmed that 22 degraded both LDHA and LDHB significantly. 22 was significantly more potent than the parent LDH inhibitor in suppressing the growth of both quasi-mesenchymal state and epithelial state pancreatic cancer cell lines. Furthermore, 22 was bioavailable in mice through intraperitoneal injection. Overall, 22 could be a valuable chemical tool for the research community to explore pathophysiological functions of LDH in vitro and in vivo.
Collapse
Affiliation(s)
- Ning Sun
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Md Kabir
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Youngeun Lee
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ling Xie
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Xiaoping Hu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Julia Velez
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Xian Chen
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences, Oncological Sciences and Neuroscience, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
11
|
M. Baldwin O, Conrad-Marut LH, Beutner GL, Vosburg DA. Facile Amide Bond Formation with TCFH-NMI in an Organic Laboratory Course. JOURNAL OF CHEMICAL EDUCATION 2022; 99:3747-3751. [PMID: 36398314 PMCID: PMC9661732 DOI: 10.1021/acs.jchemed.2c00760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/12/2022] [Indexed: 06/16/2023]
Abstract
A new undergraduate organic laboratory experiment has been developed for amide bond formation between biorenewable 2-furoic acid and either of two substituted piperazines to prepare medicinally relevant amide products using a procedure with industrial significance. The reactions proceeded smoothly under ambient conditions using the combination of N,N,N',N'-tetramethylchloroformamidinium hexafluorophosphate (TCFH) and N-methylimidazole (NMI) in a minimal volume of acetonitrile with a direct crystallization upon addition of water. Students successfully collected their product by filtration and then characterized it by NMR (1H, 13C, COSY, DEPT-135, HSQC), IR, MS, and melting point. Students also explored the reaction mechanism and compared green chemistry aspects of their procedure with literature routes. A virtual version of the experiment was adapted for remote instruction.
Collapse
Affiliation(s)
- Oliver
W. M. Baldwin
- Department
of Chemistry, Harvey Mudd College, 301 Platt Boulevard, Claremont, California 91711, United States
| | - Linden H. Conrad-Marut
- Department
of Chemistry, Harvey Mudd College, 301 Platt Boulevard, Claremont, California 91711, United States
| | - Gregory L. Beutner
- Chemical
and Synthetic Development, Bristol Myers
Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - David A. Vosburg
- Department
of Chemistry, Harvey Mudd College, 301 Platt Boulevard, Claremont, California 91711, United States
| |
Collapse
|
12
|
Emami S, Ahmadi R, Ahadi H, Ashooriha M. Diverse therapeutic potential of 3-hydroxy-4-pyranones and related compounds as kojic acid analogs. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02954-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Di Magno L, Coluccia A, Bufano M, Ripa S, La Regina G, Nalli M, Di Pastena F, Canettieri G, Silvestri R, Frati L. Discovery of novel human lactate dehydrogenase inhibitors: Structure-based virtual screening studies and biological assessment. Eur J Med Chem 2022; 240:114605. [PMID: 35868126 DOI: 10.1016/j.ejmech.2022.114605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 11/04/2022]
Abstract
Most cancer cells switch their metabolism from mitochondrial oxidative phosphorylation to aerobic glycolysis to generate ATP and precursors for the biosynthesis of key macromolecules. The aerobic conversion of pyruvate to lactate, coupled to oxidation of the nicotinamide cofactor, is a primary hallmark of cancer and is catalyzed by lactate dehydrogenase (LDH), a central effector of this pathological reprogrammed metabolism. Hence, inhibition of LDH is a potential new promising therapeutic approach for cancer. In the search for new LDH inhibitors, we carried out a structure-based virtual screening campaign. Here, we report the identification of a novel specific LDH inhibitor, the pyridazine derivative 18 (RS6212), that exhibits potent anticancer activity within the micromolar range in multiple cancer cell lines and synergizes with complex I inhibition in the suppression of tumor growth. Altogether, our data support the conclusion that compound 18 deserves to be further investigated as a starting point for the development of LDH inhibitors and for novel anticancer strategies based on the targeting of key metabolic steps.
Collapse
Affiliation(s)
- Laura Di Magno
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, I-00161, Rome, Italy.
| | - Antonio Coluccia
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Rome, Italy.
| | - Marianna Bufano
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Rome, Italy
| | - Silvia Ripa
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, I-00161, Rome, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Rome, Italy
| | - Marianna Nalli
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Rome, Italy
| | - Fiorella Di Pastena
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, I-00161, Rome, Italy
| | - Gianluca Canettieri
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, I-00161, Rome, Italy.
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Rome, Italy.
| | - Luigi Frati
- Institute Pasteur Italy - Cenci Bolognetti Foundation, Via Regina Elena 291, I-00161, Rome, Italy; IRCCS Neuromed S.p.A., Via Atinense 18, Pozzilli, Isernia, Italy.
| |
Collapse
|
14
|
Tumor Microenvironment: Lactic Acid Promotes Tumor Development. J Immunol Res 2022; 2022:3119375. [PMID: 35733921 PMCID: PMC9207018 DOI: 10.1155/2022/3119375] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/19/2022] [Indexed: 12/17/2022] Open
Abstract
Lactic acid is a "metabolic waste" product of glycolysis that is produced in the body. However, the role of lactic acid in the development of human malignancies has gained increasing interest lately as a multifunctional small molecule chemical. There is evidence that tumor cells may create a large amount of lactic acid through glycolysis even when they have abundant oxygen. Tumor tissues have a higher quantity of lactic acid than normal tissues. Lactic acid is required for tumor development. Lactate is an immunomodulatory chemical that affects both innate and adaptive immune cells' effector functions. In immune cells, the lactate signaling pathway may potentially serve as a link between metabolism and immunity. Lactate homeostasis is significantly disrupted in the TME. Lactate accumulation results in acidosis, angiogenesis, immunosuppression, and tumor cell proliferation and survival, all of which are deleterious to health. Thus, augmenting anticancer immune responses by lactate metabolism inhibition may modify lactate levels in the tumor microenvironment. This review will evaluate the role of lactic acid in tumor formation, metastasis, prognosis, treatment, and histone modification. Our findings will be of considerable interest to readers, particularly those engaged in the therapeutic treatment of cancer patients. Treatments targeting the inhibition of lactate synthesis and blocking the source of lactate have emerged as a potential new therapeutic option for oncology patients. Additionally, lactic acid levels in the plasma may serve as biomarkers for disease stage and may be beneficial for evaluating therapy effectiveness in individuals with tumors.
Collapse
|
15
|
Díaz I, Salido S, Nogueras M, Cobo J. Design and Synthesis of New Pyrimidine-Quinolone Hybrids as Novel hLDHA Inhibitors. Pharmaceuticals (Basel) 2022; 15:ph15070792. [PMID: 35890090 PMCID: PMC9322123 DOI: 10.3390/ph15070792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 02/05/2023] Open
Abstract
A battery of novel pyrimidine-quinolone hybrids was designed by docking scaffold replacement as lactate dehydrogenase A (hLDHA) inhibitors. Structures with different linkers between the pyrimidine and quinolone scaffolds (10-21 and 24−31) were studied in silico, and those with the 2-aminophenylsulfide (U-shaped) and 4-aminophenylsulfide linkers (24−31) were finally selected. These new pyrimidine-quinolone hybrids (24−31)(a−c) were easily synthesized in good to excellent yields by a green catalyst-free microwave-assisted aromatic nucleophilic substitution reaction between 3-(((2/4-aminophenyl)thio)methyl)quinolin-2(1H)-ones 22/23(a−c) and 4-aryl-2-chloropyrimidines (1−4). The inhibitory activity against hLDHA of the synthesized hybrids was evaluated, resulting IC50 values of the U-shaped hybrids 24−27(a−c) much better than the ones of the 1,4-linked hybrids 28−31(a−c). From these results, a preliminary structure−activity relationship (SAR) was established, which enabled the design of novel 1,3-linked pyrimidine-quinolone hybrids (33−36)(a−c). Compounds 35(a−c), the most promising ones, were synthesized and evaluated, fitting the experimental results with the predictions from docking analysis. In this way, we obtained novel pyrimidine-quinolone hybrids (25a, 25b, and 35a) with good IC50 values (<20 μM) and developed a preliminary SAR.
Collapse
|
16
|
Ashooriha M, Ahmadi R, Ahadi H, Emami S. Application of kojic acid scaffold in the design of non-tyrosinase enzyme inhibitors. Chem Biol Drug Des 2022; 100:290-303. [PMID: 35555863 DOI: 10.1111/cbdd.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Kojic acid (KA) is a hydroxypyranone natural metabolite mainly known as tyrosinase inhibitor. Currently, this compound is used as a whitening agent in cosmetics and as an anti-browning agent in food industry. Given the easy-manipulation in different positions of the KA molecule, many investigations have been carried out to find new tyrosinase inhibitors derived from KA. Beside anti-tyrosinase activity, many KA-based compounds have been designed for targeting other enzymes including human neutrophil elastase, catechol-O-methyltransferase, matrix metalloproteinases, monoamine oxidase, human lactate dehydrogenase, endonucleases, D-amino acid oxidase, and receptors such as histamine H3 and apelin (APJ) receptors. This review could help biochemists and medicinal chemists in designing diverse KA-derived enzyme inhibitors.
Collapse
Affiliation(s)
- Morteza Ashooriha
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Ahmadi
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamideh Ahadi
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
17
|
Li W, Cui X, Chen Z. Screening of lactate dehydrogenase inhibitor from bioactive compounds in natural products by electrophoretically mediated microanalysis. J Chromatogr A 2021; 1656:462554. [PMID: 34571279 DOI: 10.1016/j.chroma.2021.462554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/26/2022]
Abstract
Lactate dehydrogenase (LDH) is a key enzyme in the glycolysis, which has been reported that the expression of LDH is elevated in a variety of cancer types and can promote tumor invasion and metastasis. Therefore, LDH has come to be an emerging therapeutic target for cancer. In this work, we described a new strategy for rapid screening of LDH inhibitors from natural products by integrating electrophoretically mediated microanalysis (EMMA), transverse diffusion of laminar flow profiles (TDLFP) and rapid pressure direction switching. LDH activity could be assayed by the quantification of the peak area of the produced β-Nicotinamide adenine dinucleotide hydrate (NAD+) and the inhibitory effect on LDH was reflected by the reduction of NAD+ peak area. Parameters affecting CE separation and enzymatic reaction were evaluated, including the pH of background electrolyte, incubation time, methanol percentage and enzyme concentration. The Michaelis-Menten constant (Km) determined on-line by EMMA method were 226.9 μM and 31.8 μM for substrates sodium pyruvate and NADH, respectively and the half-maximal inhibitory concentration (IC50) for the known positive inhibitor gossypol was determined to be 9.269 μM, which was comparable with the previous literature. Then the inhibitory activity of 12 bioactive compounds from natural products on LDH was investigated by employing the developed method. Three compounds including quercetin, luteolin, ursolic acid had potential inhibitory effect on LDH. Molecular docking study was implemented and well supported the experimental results. This study provides a potential tool for the preliminary screening of LDH inhibitors from bioactive compounds in natural products by capillary electrophoresis.
Collapse
Affiliation(s)
- Wen Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 10080, China
| | - Xinyue Cui
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, China; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing 10080, China.
| |
Collapse
|
18
|
Mack N, Mazzio E, Badisa R, Soliman KFA. Metabolic Response to the Mitochondrial Toxin 1-Methyl-4-phenylpyridinium (MPP+) in LDH-A/B Double-knockout LS174T Colon Cancer Cells. Cancer Genomics Proteomics 2021; 18:385-405. [PMID: 33994363 DOI: 10.21873/cgp.20267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 04/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Rapid glycolytic substrate-level phosphorylation (SLP) and accumulation of lactic acid are characteristics of diverse cancers. Recent advances in drug discovery have included the use of glycolytic inhibitors with mitochondrial targeting drugs to attempt to invoke an energy crisis in aggressive metabolically active chemo-resistant cancers. In this work, we examine the consequences of inhibiting mitochondrial oxidative phosphorylation (OXPHOS) with 1-methyl-4-phenylpyridinium (MPP+) in LS14T colon cancer cells containing a genetic double knock out (DKO) of lactic acid dehydrogenase (LDHA and LDHB). MATERIALS AND METHODS Several metabolic parameters were evaluated concomitant to whole transcriptomic (WT) mRNA, microRNA, and long intergenic non-coding RNAs using Affymetrix 2.1 human ST arrays. RESULTS MPP+ effectively blocked OXPHOS where a compensatory shift toward anaerobic SLP was only observed in the control vector (CV), and not observed in the LDH-A/B DKOs (lacking the ability to produce lactic acid). Despite this, there was an unexpected resilience to MPP+ in the latter in terms of energy, which displayed significantly higher resting baseline respiratory OXPHOS capacity relative to controls. At the transcriptome level, MPP+ invoked 1738 differential expressed genes (DEGs) out of 48,226; LDH-A/B DKO resulted in 855 DEGs while 349 DEGs were found to be overlapping in both groups versus respective controls, including loss of mitochondrial complex I (subunits 3 and 6), cell cycle transcripts and fluctuations in epigenetic chromatin remodeling systems. In terms of energy, the effects of MPP+ in the CV transcripts reflect the funneling of carbon intermediates toward glycolysis. The LDH-A/B DKO transcripts reflect a flow of carbons away from glycolysis toward the production of acetyl-CoA. CONCLUSION The findings from this study suggest a metabolic resilience to MPP+ in cancer cells devoid of LDH-A/B, explainable in-part by higher baseline OXPHOS respiratory ATP production, necessitating more toxin to suppress the electron transport chain.
Collapse
Affiliation(s)
- Nzinga Mack
- Pharmaceutical Sciences Division, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Elizabeth Mazzio
- Pharmaceutical Sciences Division, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Ramesh Badisa
- Pharmaceutical Sciences Division, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Karam F A Soliman
- Pharmaceutical Sciences Division, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A.
| |
Collapse
|
19
|
Nadal-Bufi F, Mason JM, Chan LY, Craik DJ, Kaas Q, Troeira Henriques S. Designed β-Hairpins Inhibit LDH5 Oligomerization and Enzymatic Activity. J Med Chem 2021; 64:3767-3779. [PMID: 33765386 DOI: 10.1021/acs.jmedchem.0c01898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lactate dehydrogenase 5 (LDH5) is overexpressed in metastatic tumors and is an attractive target for anticancer therapy. Small-molecule drugs have been developed to target the substrate/cofactor sites of LDH5, but none has reached the clinic to date, and alternative strategies remain almost unexplored. Combining rational and computer-based approaches, we identified peptidic sequences with high affinity toward a β-sheet region that is involved in protein-protein interactions (PPIs) required for the activity of LDH5. To improve stability and potency, these sequences were grafted into a cyclic cell-penetrating β-hairpin peptide scaffold. The lead grafted peptide, cGmC9, inhibited LDH5 activity in vitro in low micromolar range and more efficiently than the small-molecule inhibitor GNE-140. cGmC9 inhibits LDH5 by targeting an interface unlikely to be inhibited by small-molecule drugs. This lead will guide the development of new LDH5 inhibitors and challenges the landscape of drug discovery programs exclusively dedicated to small molecules.
Collapse
Affiliation(s)
- Ferran Nadal-Bufi
- School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, Queensland 4102, Australia
| | - Jody M Mason
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Lai Yue Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sónia Troeira Henriques
- School of Biomedical Sciences, Translational Research Institute, Queensland University of Technology, Brisbane, Queensland 4102, Australia
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
20
|
Small Molecule-Based Enzyme Inhibitors in the Treatment of Primary Hyperoxalurias. J Pers Med 2021; 11:jpm11020074. [PMID: 33513899 PMCID: PMC7912158 DOI: 10.3390/jpm11020074] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Primary hyperoxalurias (PHs) are a group of inherited alterations of the hepatic glyoxylate metabolism. PHs classification based on gene mutations parallel a variety of enzymatic defects, and all involve the harmful accumulation of calcium oxalate crystals that produce systemic damage. These geographically widespread rare diseases have a deep impact in the life quality of the patients. Until recently, treatments were limited to palliative measures and kidney/liver transplants in the most severe forms. Efforts made to develop pharmacological treatments succeeded with the biotechnological agent lumasiran, a siRNA product against glycolate oxidase, which has become the first effective therapy to treat PH1. However, small molecule drugs have classically been preferred since they benefit from experience and have better pharmacological properties. The development of small molecule inhibitors designed against key enzymes of glyoxylate metabolism is on the focus of research. Enzyme inhibitors are successful and widely used in several diseases and their pharmacokinetic advantages are well known. In PHs, effective enzymatic targets have been determined and characterized for drug design and interesting inhibitory activities have been achieved both in vitro and in vivo. This review describes the most recent advances towards the development of small molecule enzyme inhibitors in the treatment of PHs, introducing the multi-target approach as a more effective and safe therapeutic option.
Collapse
|
21
|
Lactate in the Tumor Microenvironment: An Essential Molecule in Cancer Progression and Treatment. Cancers (Basel) 2020; 12:cancers12113244. [PMID: 33153193 PMCID: PMC7693872 DOI: 10.3390/cancers12113244] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/16/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The role of lactate in cancer described by Otto Warburg in 1927 states that cancer cells uptake high amount of glucose with a marked increase in lactate production, this is known as the “Warburg effect”. Since then lactate turn out to be a major signaling molecule in cancer progression. Its release from tumor cells is accompanied by acidification ranging from 6.3 to 6.9 in the tumor microenvironment (TME) which favors processes such as tumor promotion, angiogenesis, metastasis, tumor resistance and more importantly, immunosuppression which has been associated with a poor outcome. The goal of this review is to examine and discuss in deep detail the recent studies that address the role of lactate in all these cancerous processes. Lastly, we explore the efforts to target the lactate production and its transport as a promising approach for cancer therapeutics. Abstract Cancer is a complex disease that includes the reprogramming of metabolic pathways by malignant proliferating cells, including those affecting the tumor microenvironment (TME). The “TME concept” was introduced in recognition of the roles played by factors other than tumor cells in cancer progression. In response to the hypoxic or semi-hypoxic characteristic of the TME, cancer cells generate a large amount of lactate via the metabolism of glucose and glutamine. Export of this newly generated lactate by the tumor cells together with H+ prevents intracellular acidification but acidifies the TME. In recent years, the importance of lactate and acidosis in carcinogenesis has gained increasing attention, including the role of lactate as a tumor-promoting metabolite. Here we review the existing literature on lactate metabolism in tumor cells and the ability of extracellular lactate to direct the metabolic reprogramming of those cells. Studies demonstrating the roles of lactate in biological processes that drive or sustain carcinogenesis (tumor promotion, angiogenesis, metastasis and tumor resistance) and lactate’s role as an immunosuppressor that contributes to tumor evasion are also considered. Finally, we consider recent therapeutic efforts using available drugs directed at and interfering with lactate production and transport in cancer treatment.
Collapse
|
22
|
Rai G, Urban DJ, Mott BT, Hu X, Yang SM, Benavides GA, Johnson MS, Squadrito GL, Brimacombe KR, Lee TD, Cheff DM, Zhu H, Henderson MJ, Pohida K, Sulikowski GA, Dranow DM, Kabir M, Shah P, Padilha E, Tao D, Fang Y, Christov PP, Kim K, Jana S, Muttil P, Anderson T, Kunda NK, Hathaway HJ, Kusewitt DF, Oshima N, Cherukuri M, Davies DR, Norenberg JP, Sklar LA, Moore WJ, Dang CV, Stott GM, Neckers L, Flint AJ, Darley-Usmar VM, Simeonov A, Waterson AG, Jadhav A, Hall MD, Maloney DJ. Pyrazole-Based Lactate Dehydrogenase Inhibitors with Optimized Cell Activity and Pharmacokinetic Properties. J Med Chem 2020; 63:10984-11011. [PMID: 32902275 PMCID: PMC7830743 DOI: 10.1021/acs.jmedchem.0c00916] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lactate dehydrogenase (LDH) catalyzes the conversion of pyruvate to lactate, with concomitant oxidation of reduced nicotinamide adenine dinucleotide as the final step in the glycolytic pathway. Glycolysis plays an important role in the metabolic plasticity of cancer cells and has long been recognized as a potential therapeutic target. Thus, potent, selective inhibitors of LDH represent an attractive therapeutic approach. However, to date, pharmacological agents have failed to achieve significant target engagement in vivo, possibly because the protein is present in cells at very high concentrations. We report herein a lead optimization campaign focused on a pyrazole-based series of compounds, using structure-based design concepts, coupled with optimization of cellular potency, in vitro drug-target residence times, and in vivo PK properties, to identify first-in-class inhibitors that demonstrate LDH inhibition in vivo. The lead compounds, named NCATS-SM1440 (43) and NCATS-SM1441 (52), possess desirable attributes for further studying the effect of in vivo LDH inhibition.
Collapse
Affiliation(s)
- Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Daniel J. Urban
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Bryan T. Mott
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Shyh-Ming Yang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Gloria A. Benavides
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Michelle S. Johnson
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Giuseppe L. Squadrito
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Kyle R. Brimacombe
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Tobie D. Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Dorian M. Cheff
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Hu Zhu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Mark J. Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Katherine Pohida
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Gary A. Sulikowski
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - David M. Dranow
- Beryllium Discovery Corp., Bainbridge Island, Washington 98110, United States
| | - Md Kabir
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Pranav Shah
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Elias Padilha
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, 20850, United States
| | - Yuhong Fang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Plamen P. Christov
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Kwangho Kim
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Somnath Jana
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Pavan Muttil
- College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Tamara Anderson
- College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Nitesh K. Kunda
- College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Helen J. Hathaway
- College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Donna F. Kusewitt
- Dept of Pathology, University of New Mexico Cancer Center, Albuquerque, New Mexico 87131, United States
| | - Nobu Oshima
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Murali Cherukuri
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Douglas R. Davies
- Beryllium Discovery Corp., Bainbridge Island, Washington 98110, United States
| | - Jeffrey P. Norenberg
- College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, United States
| | - Larry A. Sklar
- Dept of Pathology, University of New Mexico Cancer Center, Albuquerque, New Mexico 87131, United States
| | - William J. Moore
- NExT Program Support, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Chi V. Dang
- Abramson Cancer Center, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States; Ludwig Institute for Cancer Research, New York, New York 10017, United States
| | - Gordon M. Stott
- NExT Program Support, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Leonard Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Andrew J. Flint
- NExT Program Support, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Victor M. Darley-Usmar
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Alex G. Waterson
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United State
| | - David J. Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| |
Collapse
|
23
|
Development of dual inhibitors targeting pyruvate dehydrogenase kinases and human lactate dehydrogenase A: High-throughput virtual screening, synthesis and biological validation. Eur J Med Chem 2020; 203:112579. [DOI: 10.1016/j.ejmech.2020.112579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/18/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
|
24
|
Friberg A, Rehwinkel H, Nguyen D, Pütter V, Quanz M, Weiske J, Eberspächer U, Heisler I, Langer G. Structural Evidence for Isoform-Selective Allosteric Inhibition of Lactate Dehydrogenase A. ACS OMEGA 2020; 5:13034-13041. [PMID: 32548488 PMCID: PMC7288559 DOI: 10.1021/acsomega.0c00715] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/13/2020] [Indexed: 05/11/2023]
Abstract
Lactate dehydrogenase A (LDHA) is frequently overexpressed in tumors, thereby sustaining high glycolysis rates, tumor growth, and chemoresistance. High-throughput screening resulted in the identification of phthalimide and dibenzofuran derivatives as novel lactate dehydrogenase inhibitors, selectively inhibiting the activity of the LDHA isoenzyme. Cocrystallization experiments confirmed target engagement in addition to demonstrating binding to a novel allosteric binding site present in all four LDHA subunits of the LDH5 homotetramer.
Collapse
Affiliation(s)
- Anders Friberg
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
- E-mail:
| | - Hartmut Rehwinkel
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
| | - Duy Nguyen
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
| | - Vera Pütter
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
| | - Maria Quanz
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
| | - Jörg Weiske
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
| | - Uwe Eberspächer
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
| | - Iring Heisler
- Bayer
AG, Pharmaceuticals, R&D, Aprather Weg 18A, 42113 Wuppertal, Germany
| | - Gernot Langer
- Bayer AG,
Pharmaceuticals, R&D, Müllerstrasse 178, 13342 Berlin, Germany
- E-mail:
| |
Collapse
|
25
|
Aranha ESP, da Silva EL, Mesquita FP, de Sousa LB, da Silva FMA, Rocha WC, Lima ES, Koolen HHF, de Moraes MEA, Montenegro RC, de Vasconcellos MC. 22β-hydroxytingenone reduces proliferation and invasion of human melanoma cells. Toxicol In Vitro 2020; 66:104879. [PMID: 32360863 DOI: 10.1016/j.tiv.2020.104879] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 03/13/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022]
Abstract
Melanoma is a skin cancer with high invasive potential and high lethality. Considering that quinonemethide triterpenes are described as promising anticancer agents, the aim of this study was to evaluate the effect of 22β-hydroxytingenone (22-HTG) against human melanoma cells. Alamar blue assay was performed in order to evaluate its cytotoxic effect. Thus, subtoxic concentrations (1.0, 2.0, and 2.5 μM) were used to evaluate the effect of this compound on proliferation, migration, metabolism, and invasion. IC50 value against SK-MEL-28 cell line was 4.35, 3.72, and 3.29 μM after 24, 48, and 72 h of incubation, respectively. 22-HTG reduced proliferation, migration and invasion by melanoma cells, with decreased activity of metalloproteinases (MMP-2 and MMP-9). Futhermore, 22-HTG decreased expression of lactate dehydrogenase (LDHA), an enzyme associated with cell metabolism. Howerver, the small reduction in LDHA enzyme activity must have occurred by the cytotoxic effect of 22-HTG. According to the results, 22-HTG interferes with important characteristics of cancer, with anti-proliferative, and anti-invasive effect against melanoma cells. The data suggest that 22-HTG is an effective substance against melanoma cells and it should be considered as a potential anticancer agent.
Collapse
Affiliation(s)
- Elenn Suzany Pereira Aranha
- Faculty of Pharmaceutical Sciences, Post Graduate Program in Biodiversity and Biotechnology of the Amazon (Bionorte), Federal University of Amazonas, Manaus, Amazonas, Brazil.
| | - Emerson Lucena da Silva
- Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Felipe Pantoja Mesquita
- Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Waldireny C Rocha
- Health and Biotechnology Institute, Federal University of Amazonas, Coari, Amazonas, Brazil
| | - Emerson Silva Lima
- Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus, Amazon, Brazil
| | | | | | | | | |
Collapse
|
26
|
Abstract
Dysregulated metabolism is one of the hallmarks of cancer. Under normal physiological conditions, ATP is primarily generated by oxidative phosphorylation. Cancers commonly undergo a dramatic shift toward glycolysis, despite the presence of oxygen. This phenomenon is known as the Warburg effect, and requires the activity of LDHA. LDHA converts pyruvate to lactate in the final step of glycolysis and is often upregulated in cancer. LDHA inhibitors present a promising therapeutic option, as LDHA blockade leads to apoptosis in cancer cells. Despite this, existing LDHA inhibitors have shown limited clinical efficacy. Here, we review recent progress in LDHA structure, function and regulation as well as strategies to target this critical enzyme.
Collapse
|
27
|
Cheng G, Pi Z, Zheng Z, Liu S, Liu Z, Song F. Magnetic nanoparticles-based lactate dehydrogenase microreactor as a drug discovery tool for rapid screening inhibitors from natural products. Talanta 2019; 209:120554. [PMID: 31892010 DOI: 10.1016/j.talanta.2019.120554] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/31/2019] [Accepted: 11/09/2019] [Indexed: 12/15/2022]
Abstract
Lactate dehydrogenase (LDH), catalyzing the conversion of pyruvate to lactate during glycolysis, is overexpressed in cancer cells. LDH inhibitors are a promising approach for the treatment of cancer. But up till now, there is limited method for rapid screening of LDH inhibitors. Herein, the use of LDH functionalized magnetic nanoparticles as a drug discovery tool for the selective enrichment of LDH potential inhibitors from natural products was firstly reported in this study. Firstly, LDH was immobilized onto the surface of amino-modified magnetic nanoparticles via covalent binding. In order to obtain the maximum enzyme activity, the immobilization conditions including pH, time and LDH concentration were optimized. The amount of LDH immobilized on MNPs was about 49 μg enzyme/mg carrier under the optimized conditions. Subsequently, the ligand fishing assay was performed to validate the specificity and selectivity of immobilized LDH using a model mixture, which consisted of galloflavin, chlorogenic acid and verbascoside. Finally, the immobilized LDH approach combined with ultra-high performance liquid chromatography-tandem mass spectrometry technique (UHPLC-MS/MS) was applied to screen potential LDH inhibitors from two anthraquinone-rich natural products (Rhubarb and Polygonum cuspidatum). Nine and six compounds were identified from Rhubarb and Polygonum cuspidatum extracts respectively, of which three compounds were common to both. Our results have proven that LDH functionalized magnetic nanoparticles have a significant prospect for drug discovery from complex matrices.
Collapse
Affiliation(s)
- Guorong Cheng
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Science and Technology of China, Hefei, 230029, China
| | - Zifeng Pi
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhong Zheng
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Science and Technology of China, Hefei, 230029, China.
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; University of Science and Technology of China, Hefei, 230029, China.
| |
Collapse
|
28
|
de la Cruz-López KG, Castro-Muñoz LJ, Reyes-Hernández DO, García-Carrancá A, Manzo-Merino J. Lactate in the Regulation of Tumor Microenvironment and Therapeutic Approaches. Front Oncol 2019; 9:1143. [PMID: 31737570 PMCID: PMC6839026 DOI: 10.3389/fonc.2019.01143] [Citation(s) in RCA: 586] [Impact Index Per Article: 97.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022] Open
Abstract
Tumor cells must generate sufficient ATP and biosynthetic precursors in order to maintain cell proliferation requirements. Otto Warburg showed that tumor cells uptake high amounts of glucose producing large volumes of lactate even in the presence of oxygen, this process is known as “Warburg effect or aerobic glycolysis.” As a consequence of such amounts of lactate there is an acidification of the extracellular pH in tumor microenvironment, ranging between 6.0 and 6.5. This acidosis favors processes such as metastasis, angiogenesis and more importantly, immunosuppression, which has been associated to a worse clinical prognosis. Thus, lactate should be thought as an important oncometabolite in the metabolic reprogramming of cancer. In this review, we summarized the role of lactate in regulating metabolic microenvironment of cancer and discuss its relevance in the up-regulation of the enzymes lactate dehydrogenase (LDH) and monocarboxilate transporters (MCTs) in tumors. The goal of this review is to expose that lactate is not only a secondary product of cellular metabolic waste of tumor cells, but also a key molecule involved in carcinogenesis as well as in tumor immune evasion. Finally, the possible targeting of lactate production in cancer treatment is discussed.
Collapse
Affiliation(s)
- Karen G de la Cruz-López
- Programa de Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico.,Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratory of Virus and Cancer, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Leonardo Josué Castro-Muñoz
- Programa de Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico.,Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diego O Reyes-Hernández
- Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Maestría en Investigación Clínica Experimental, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico.,Biological Cancer Causing Agents Group, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Alejandro García-Carrancá
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratory of Virus and Cancer, Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Joaquín Manzo-Merino
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Biological Cancer Causing Agents Group, Instituto Nacional de Cancerología, Mexico City, Mexico.,Cátedras CONACyT-Instituto Nacional de Cancerología, Mexico City, Mexico
| |
Collapse
|