1
|
Asad M, Karim S, Sanobar, Faheem Khan M, Ahmad Ansari W, Al Said Y, Imran Khan M, Saquib M, Kamil Hussain M. Synthesis and Evaluation of 3,5-Disubstituted-1,2,4-Oxadiazolyl Benzamides as Potential Anti-Breast Cancer Agents: In Vitro and In Silico Studies. Chem Biodivers 2025; 22:e202402020. [PMID: 39495606 DOI: 10.1002/cbdv.202402020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/06/2024]
Abstract
Herein, the synthesis, anti-cancer evaluation, and in silico studies of a series of 1,2,4-oxadiazole compounds (8-15) are disclosed. The synthesized molecules were tested in vitro for anti-cancer activity against MCF-7, MDA-MB-231, HeLa, Ishikawa cell lines and human embryonic kidney (HEK-293) cell lines. Among the synthesized compounds, 9 and 15 exhibited significant cytotoxicity, with IC50 values of 7.82 μM and 6.02 μM, respectively, against MCF-7 cell line, better than that of anti-breast cancer drug, tamoxifen (IC50=11.92 μM), used as control. Significantly, both 9 and 15 exhibited very low toxicity (IC50>20 μM) against normal HEK-293 cells. This suggests them as potentially effective anti-cancer lead molecules. The in vitro anti-cancer data was supported by in silico studies which also identified compounds 9 and 15 as potent inhibitors of the 17β-hydroxysteroid dehydrogenase1 (17β-HSD1) proteins, demonstrating strong interactions and stability The atom-based QSAR model exhibited high accuracy, significant regression, and predictive reliability, aiding in understanding and optimizing biological activity. The drug-likeness study of compounds 9 and 15 indicated favorable pharmacokinetics, with in silico toxicity predictions showing compound 15 to be non-toxic. These findings suggest compounds 9 and 15 as potential lead molecules against breast cancer.
Collapse
Affiliation(s)
- Mohammad Asad
- Department of Chemistry, TCG Life Science, Kolakata, 700091, WB, India
| | - Shahid Karim
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sanobar
- Department of Chemistry, Govt. Raza P.G. College, (M.J.P Rohil Khand University, Bareilly), Rampur, 244901, UP, India
| | - Mohammad Faheem Khan
- Department of Biotechnology, Era's Lucknow Medical College, Era University, Lucknow, 226003, UP, India
| | - Waseem Ahmad Ansari
- Department of Biotechnology, Era's Lucknow Medical College, Era University, Lucknow, 226003, UP, India
| | - Youssef Al Said
- Department of Neurosciences, King Faisal Specialist Hospital & Research Centre, Jeddah, 21556, Saudi Arabia
| | - Mohammad Imran Khan
- Research Centre, King Faisal Specialist Hospital and Research Centre, Jeddah, 21499, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al-Faisal University, Riyadh, 11533, Saudi Arabia
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad), 211002, UP, India
- Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad), 211010, UP, India
| | - Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza P.G. College, (M.J.P Rohil Khand University, Bareilly), Rampur, 244901, UP, India
| |
Collapse
|
2
|
Chhabra N, Matore BW, Lakra N, Banjare P, Murmu A, Bhattacharya A, Gayen S, Singh J, Roy PP. Multilayered screening for multi-targeted anti-Alzheimer's and anti-Parkinson's agents through structure-based pharmacophore modelling, MCDM, docking, molecular dynamics and DFT: a case study of HDAC4 inhibitors. In Silico Pharmacol 2025; 13:16. [PMID: 39850265 PMCID: PMC11751275 DOI: 10.1007/s40203-024-00302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/31/2024] [Indexed: 01/25/2025] Open
Abstract
Abstract Alzheimer's disease (AD) and Parkinson's disease (PD) are neurological conditions that primarily impact the elderly having distinctive traits and some similarities in terms of symptoms and progression. The multifactorial nature of AD and PD encourages exploring potentiality of multi-target therapy for addressing these conditions to conventional, the "one drug one target" strategy. This study highlights the searching of potential HDAC4 inhibitors through multiple screening approaches. In this context, structure-based pharmacophore model, ligand profiler mapping and MCDM approaches were performed for target prioritization. Similarly, ligand profiler, MCDM and Docking studies were performed to prioritize multi-targeted HDAC4 inhibitors. These comprehensive approaches unveiled 5 common targets and 5 multi-targeted prioritized compounds consensually. MD simulations, DFT and binding free energy calculations corroborated the stability and robustness of propitious compound 774 across 5 prioritized targets. In conclusion, the screened compound 774 (ChEMBL 4063938) could be a promising multi-targeted therapy for managing AD and PD further rendering experimental validation. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00302-4.
Collapse
Affiliation(s)
- Nikita Chhabra
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009 India
| | - Balaji Wamanrao Matore
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009 India
| | - Nisha Lakra
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009 India
| | - Purusottam Banjare
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009 India
| | - Anjali Murmu
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009 India
| | - Arijit Bhattacharya
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032 India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032 India
| | - Jagadish Singh
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009 India
| | - Partha Pratim Roy
- Laboratory of Drug Discovery and Ecotoxicology, Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009 India
| |
Collapse
|
3
|
Huang Z, Zeng L, Cheng B, Li D. Overview of class I HDAC modulators: Inhibitors and degraders. Eur J Med Chem 2024; 276:116696. [PMID: 39094429 DOI: 10.1016/j.ejmech.2024.116696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Class I histone deacetylases (HDACs) are closely associated with the development of a diverse array of diseases, including cancer, neurodegenerative disorders, HIV, and inflammatory diseases. Considering the essential roles in tumorigenesis, class I HDACs have emerged as highly desirable targets for therapeutic strategies, particularly in the field of anticancer drug development. However, the conventional class I HDAC inhibitors faced several challenges such as acquired resistance, inherent toxicities, and limited efficacy in inhibiting non-enzymatic functions of HDAC. To address these problems, novel strategies have emerged, including the development of class I HDAC dual-acting inhibitors, targeted protein degradation (TPD) technologies such as PROTACs, molecular glues, and HyT degraders, as well as covalent inhibitors. This review provides a comprehensive overview of class I HDAC enzymes and inhibitors, by initially introducing their structure and biological roles. Subsequently, we focus on the recent advancements of class I HDAC modulators, including isoform-selective class I inhibitors, dual-target inhibitors, TPDs, and covalent inhibitors, from the perspectives of rational design principles, pharmacodynamics, pharmacokinetics, and clinical progress. Finally, we also provide the challenges and outlines future prospects in the realm of class I HDAC-targeted drug discovery for cancer therapeutics.
Collapse
Affiliation(s)
- Ziqian Huang
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Limei Zeng
- College of Basic Medicine, Gannan Medical University, Ganzhou, 314000, China
| | - Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
4
|
Li Y, Yang C, Xie L, Shi F, Tang M, Luo X, Liu N, Hu X, Zhu Y, Bode AM, Gao Q, Zhou J, Fan J, Li X, Cao Y. CYLD induces high oxidative stress and DNA damage through class I HDACs to promote radiosensitivity in nasopharyngeal carcinoma. Cell Death Dis 2024; 15:95. [PMID: 38287022 PMCID: PMC10824711 DOI: 10.1038/s41419-024-06419-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024]
Abstract
Abnormal expression of Cylindromatosis (CYLD), a tumor suppressor molecule, plays an important role in tumor development and treatment. In this work, we found that CYLD binds to class I histone deacetylases (HDAC1 and HDAC2) through its N-terminal domain and inhibits HDAC1 activity. RNA sequencing showed that CYLD-HDAC axis regulates cellular antioxidant response via Nrf2 and its target genes. Then we revealed a mechanism that class I HDACs mediate redox abnormalities in CYLD low-expressing tumors. HDACs are central players in the DNA damage signaling. We further confirmed that CYLD regulates radiation-induced DNA damage and repair response through inhibiting class I HDACs. Furthermore, CYLD mediates nasopharyngeal carcinoma cell radiosensitivity through class I HDACs. Thus, we identified the function of the CYLD-HDAC axis in radiotherapy and blocking HDACs by Chidamide can increase the sensitivity of cancer cells and tumors to radiation therapy both in vitro and in vivo. In addition, ChIP and luciferase reporter assays revealed that CYLD could be transcriptionally regulated by zinc finger protein 202 (ZNF202). Our findings offer novel insight into the function of CYLD in tumor and uncover important roles for CYLD-HDAC axis in radiosensitivity, which provide new molecular target and therapeutic strategy for tumor radiotherapy.
Collapse
Affiliation(s)
- Yueshuo Li
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders/ Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Chenxing Yang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Longlong Xie
- Children's Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410008, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Min Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Molecular Imaging Research Center of Central South University, Changsha, 410008, Hunan, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Molecular Imaging Research Center of Central South University, Changsha, 410008, Hunan, China
| | - Na Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Xudong Hu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Yongwei Zhu
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders/ Xiangya Hospital, Central South University, Changsha, 410078, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Qiang Gao
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Zhongshan Hospital, Shanghai Medical School, Fudan University, Shanghai, 200000, China
| | - Jian Zhou
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Zhongshan Hospital, Shanghai Medical School, Fudan University, Shanghai, 200000, China
| | - Jia Fan
- Key Laboratory for Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Zhongshan Hospital, Shanghai Medical School, Fudan University, Shanghai, 200000, China
| | - Xuejun Li
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders/ Xiangya Hospital, Central South University, Changsha, 410078, China.
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Chinese Ministry of Education, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China.
- Molecular Imaging Research Center of Central South University, Changsha, 410008, Hunan, China.
- Department of Radiology, National Clinical Research Center for Geriatric Disorders/ Xiangya Hospital, Central South University, Changsha, 410078, China.
- Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, Changsha, 410078, China.
- National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha, 410078, China.
| |
Collapse
|
5
|
Das T, Khatun S, Jha T, Gayen S. HDAC9 as a Privileged Target: Reviewing its Role in Different Diseases and Structure-activity Relationships (SARs) of its Inhibitors. Mini Rev Med Chem 2024; 24:767-784. [PMID: 37818566 DOI: 10.2174/0113895575267301230919165827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 08/11/2023] [Indexed: 10/12/2023]
Abstract
HDAC9 is a histone deacetylase enzyme belonging to the class IIa of HDACs which catalyses histone deacetylation. HDAC9 inhibit cell proliferation by repairing DNA, arresting the cell cycle, inducing apoptosis, and altering genetic expression. HDAC9 plays a significant part in human physiological system and are involved in various type of diseases like cancer, diabetes, atherosclerosis and CVD, autoimmune response, inflammatory disease, osteoporosis and liver fibrosis. This review discusses the role of HDAC9 in different diseases and structure-activity relationships (SARs) of various hydroxamate and non-hydroxamate-based inhibitors. SAR of compounds containing several scaffolds have been discussed in detail. Moreover, structural requirements regarding the various components of HDAC9 inhibitor (cap group, linker and zinc-binding group) has been highlighted in this review. Though, HDAC9 is a promising target for the treatment of a number of diseases including cancer, a very few research are available. Thus, this review may provide useful information for designing novel HDAC9 inhibitors to fight against different diseases in the future.
Collapse
Affiliation(s)
- Totan Das
- Department of Pharmaceutical Technology, Laboratory of Drug Design and Discovery, Jadavpur University, Kolkata, 700032, India
| | - Samima Khatun
- Department of Pharmaceutical Technology, Laboratory of Drug Design and Discovery, Jadavpur University, Kolkata, 700032, India
| | - Tarun Jha
- Department of Pharmaceutical Technology, Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Shovanlal Gayen
- Department of Pharmaceutical Technology, Laboratory of Drug Design and Discovery, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
6
|
Badran MM, Abbas SH, Fujita M, Abdel-Aziz M. Harnessing pyrimidine as a building block for histone deacetylase inhibitors. Arch Pharm (Weinheim) 2023; 356:e2300208. [PMID: 37462396 DOI: 10.1002/ardp.202300208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 10/06/2023]
Abstract
Histone deacetylase (HDAC) inhibitors are well-established multifaceted bioactive agents against tumors and neurodegenerative disorders. Pyrimidine and its fused and substituted derivatives were employed as a surface recognition moiety of HDAC inhibitors. De facto, the literature was loaded with different success stories of pyrimidine-based HDAC inhibitors that garnered much interest. Provoked by our continuous interest in HDAC inhibitors, we summarized and elaborated on the successful harnessing of the pyrimidine scaffold in this regard. Furthermore, we dissect our perspective that may guide medicinal chemists for an effective future design of more active chemotherapeutic agents with potential clinical applications.
Collapse
Affiliation(s)
- Mostafa M Badran
- Department of Medicinal Chemistry, Faculty of Pharmacy, South Valley University, Qena, Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
7
|
Frühauf A, Behringer M, Meyer-Almes FJ. Significance of Five-Membered Heterocycles in Human Histone Deacetylase Inhibitors. Molecules 2023; 28:5686. [PMID: 37570656 PMCID: PMC10419652 DOI: 10.3390/molecules28155686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/15/2023] [Accepted: 07/15/2023] [Indexed: 08/13/2023] Open
Abstract
Five-membered heteroaromatic rings, in particular, have gained prominence in medicinal chemistry as they offer enhanced metabolic stability, solubility and bioavailability, crucial factors in developing effective drugs. The unique physicochemical properties and biological effects of five-membered heterocycles have positioned them as key structural motifs in numerous clinically effective drugs. Hence, the exploration of five-ring heterocycles remains an important research area in medicinal chemistry, with the aim of discovering new therapeutic agents for various diseases. This review addresses the incorporation of heteroatoms such as nitrogen, oxygen and sulfur into the aromatic ring of these heterocyclic compounds, enhancing their polarity and facilitating both aromatic stacking interactions and the formation of hydrogen bonds. Histone deacetylases are present in numerous multiprotein complexes within the epigenetic machinery and play a central role in various cellular processes. They have emerged as important targets for cancer, neurodegenerative diseases and other therapeutic indications. In histone deacetylase inhibitors (HDACi's), five-ring heterocycles perform various functions as a zinc-binding group, a linker or head group, contributing to binding activity and selective recognition. This review focuses on providing an up-to-date overview of the different five-membered heterocycles utilized in HDACi motifs, highlighting their biological properties. It summarizes relevant publications from the past decade, offering insights into the recent advancements in this field of research.
Collapse
Affiliation(s)
- Anton Frühauf
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Haardtring 100, 64295 Darmstadt, Germany
| | - Martin Behringer
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Haardtring 100, 64295 Darmstadt, Germany
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences, Haardtring 100, 64295 Darmstadt, Germany
| |
Collapse
|
8
|
Yang Y, Liu Q, Wang X, Gou S. Design, synthesis, and biological evaluation of novel HDAC inhibitors with a 3-(benzazol-2-yl)quinoxaline framework. Bioorg Med Chem Lett 2023; 88:129305. [PMID: 37116762 DOI: 10.1016/j.bmcl.2023.129305] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023]
Abstract
A series of novel histone deacetylase (HDAC) inhibitors derived from 3-(benzazol-2-yl)quinoxaline derivatives were designed and synthesized by a pharmacophore fusion strategy. In vitro results showed that most of the synthesized compounds exhibited good anti-proliferative activity. Among them, compound 10c showed the most potent cytotoxicity, especially in HCT-116 cells with an IC50 value of 0.91 μM much superior to Vorinostat (5.66 μM). 10c was also found to induce cell apoptosis, arrest the cell cycle at G2/M phase, induce the generation of reactive oxygen species and inhibit cell invasion and migration in HCT-116 cells. Further studies revealed that 10c could up-regulate the acetylation levels of H3 and α-tubulin, exhibit significant Topo I inhibition and induce the release of related apoptotic biomarkers. These results highlight the great potential of 10c to become a promising anti-cancer HDAC inhibitor.
Collapse
Affiliation(s)
- Yawen Yang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Qingqing Liu
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; School of Pharmacy, Jilin Medical University, Jilin City 132013, Jilin Province, China
| | - Xinyi Wang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| |
Collapse
|
9
|
Liu N, Zhou L, Lin G, Hu Y, Jiao Y, Wang Y, Liu J, Yang S, Yao S. HDAC inhibitors improve CRISPR-Cas9 mediated prime editing and base editing. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:36-46. [PMID: 35784015 PMCID: PMC9207553 DOI: 10.1016/j.omtn.2022.05.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 05/27/2022] [Indexed: 01/19/2023]
Abstract
Recent advances in CRISPR-Cas9 techniques, especially the discovery of base and prime editing, have significantly improved our ability to make precise changes in the genome. We hypothesized that modulating certain endogenous pathway cells could improve the action of those editing tools in mammalian cells. We established a reporter system in which a small fragment was integrated into the genome by prime editing (PE). With this system, we screened an in-house small-molecule library and identified a group of histone deacetylase inhibitors (HDACi) increasing prime editing. We also found that HDACi increased the efficiency of both cytosine base editing (CBE) and adenine base editing (ABE). Moreover, HDACi increased the purity of cytosine base editor products, which was accompanied by an upregulation of the acetylation of uracil DNA glycosylase (UNG) and UNG inhibitor (UGI) and an enhancement of their interaction. In summary, our work demonstrated that HDACi improves Cas9-mediated prime editing and base editing.
Collapse
Affiliation(s)
- Nan Liu
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China
| | - Lifang Zhou
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China
| | - Guifeng Lin
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China
| | - Yun Hu
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China
| | - Yaoge Jiao
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China
| | - Yanhong Wang
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China
| | - Jingming Liu
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China
| | - Shengyong Yang
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China
| | - Shaohua Yao
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China
| |
Collapse
|
10
|
Apaza Ticona L, Rumbero Sánchez Á, Humanes Bastante M, Serban AM, Hernáiz MJ. Antitumoral activity of 1,2,4-oxadiazoles compounds isolated from the Neowerdermannia vorwerkii in liver and colon human cancer cells. PHYTOCHEMISTRY 2022; 201:113259. [PMID: 35662550 DOI: 10.1016/j.phytochem.2022.113259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Two unknown 1,2,4-oxadiazoles (3-(pyridin-3-yl)-5-(thiophen-3-yl)-1,2,4-oxadiazole and 5-(3-hydroxyphenyl)-3-(pyridin-3-yl)-1,2,4-oxadiazole) and one known 1,2,4-oxadiazole (5-(3-methoxyphenyl)-3-(pyridin-3-yl)-1,2,4-oxadiazole) were isolated from tubers of Neowerdermannia vorwerkii, collected from the San Juan Huancollo, Ingavi province, La Paz, Bolivia. The chemical structures of these compounds were elucidated through NMR and HRMS spectroscopic analyses. All compounds showed apoptotic capacity against the SK-HEP-1 and Caco-2 tumour cells. 5-(3-methoxyphenyl)-3-(pyridin-3-yl)-1,2,4-oxadiazole and 5-(3-hydroxyphenyl)-3-(pyridin-3-yl)-1,2, 4-oxadiazole showed slight apoptotic capacities, with an IC50 between 17.46 ± 0.75 to 15.91 ± 0.62 μM and 39.29 ± 0.98 to 34.81 ± 0.70 μM, respectively. 3-(pyridin-3-yl)-5-(thiophen-3-yl)-1,2,4-oxadiazole showed a higher apoptotic capacity with an IC50 in the range of 0.98 ± 0.11 to 0.76 ± 0.03 μM, similar to that of the positive control (Dimethylenastron).
Collapse
Affiliation(s)
- Luis Apaza Ticona
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain; Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049, Madrid, Spain.
| | - Ángel Rumbero Sánchez
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Marcos Humanes Bastante
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049, Madrid, Spain
| | - Andreea Madalina Serban
- Maria Sklodowska Curie University Hospital for Children. Constantin Brancoveanu Boulevard, 077120, Bucharest, Romania
| | - María J Hernáiz
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain
| |
Collapse
|
11
|
Kim JH, Ali KH, Oh YJ, Seo YH. Design, synthesis, and biological evaluation of histone deacetylase inhibitor with novel salicylamide zinc binding group. Medicine (Baltimore) 2022; 101:e29049. [PMID: 35512065 PMCID: PMC9276175 DOI: 10.1097/md.0000000000029049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/11/2021] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Histone deacetylases (HDACs) have emerged as important therapeutic targets for various diseases, such as cancer and neurological disorders. Although a majority of HDAC inhibitors use hydroxamic acids as zinc binding groups, hydroxamic acid zinc-binding groups suffer from poor bioavailability and nonspecific metal-binding properties, necessitating a new zinc-binding group. Salicylic acid and its derivatives, well-known for their therapeutic value, have also been reported to chelate zinc ions in a bidentate fashion. This drew our attention towards replacing hydroxamic acid with salicylamide as a zinc-binding group. METHODS In this study, for the first time, compound 5 possessing a novel salicylamide zinc-binding group was synthesized and evaluated biologically for its ability to inhibit various HDAC isoforms and induce acetylation upon α-tubulin and histone H3 among MDA-MB-231 cells. RESULTS Compound 5 exhibits selective inhibition against class I HDAC isoforms (HDAC1, 2, and 3) over class II and IV HDAC isoforms (HDAC4, 6, and 11). The exposure of MDA-MB-231 cells to compound 5 efficiently induced the acetylation of more histone H3 than α-tubulin, suggesting that compound 5 is a class I selective HDAC inhibitor. Moreover, the molecular docking study indicated that the salicylamide zinc-binding group of compound 5 coordinates the active zinc ion of class I HDAC2 in a bidentate fashion. CONCLUSION Overall, salicylamide represents a novel zinc-binding group for the development of class I selective HDAC inhibitors. GRAPHICAL ABSTRACT (http://links.lww.com/MD/G668).
Collapse
|
12
|
Dai Z, An LY, Chen XY, Yang F, Zhao N, Li CC, Ren R, Li BY, Tao WY, Li P, Jiang C, Yan F, Jiang ZY, You QD, Di B, Xu LL. Target Fishing Reveals a Novel Mechanism of 1,2,4-Oxadiazole Derivatives Targeting Rpn6, a Subunit of 26S Proteasome. J Med Chem 2022; 65:5029-5043. [PMID: 35253427 DOI: 10.1021/acs.jmedchem.1c02210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,2,4-Oxadiazole derivatives, a class of Nrf2-ARE activators, exert an extensive therapeutic effect on inflammation, cancer, neurodegeneration, and microbial infection. Among these analogues, DDO-7263 is the most potent Nrf2 activator and used as the core structure for bioactive probes to explore the precise mechanism. In this work, we obtained compound 7, a mimic of DDO-7263, and biotin-labeled and fluorescein-based probes, which exhibited homologous biological activities to DDO-7263, including activating Nrf2 and its downstream target genes, anti-oxidative stress, and anti-inflammatory effects. Affinity chromatography and mass analysis techniques revealed Rpn6 as the potential target protein regulating the Nrf2 signaling pathway. In vitro affinity experiments further confirmed that DDO-7263 upregulated Nrf2 through binding to Rpn6 to block the assembly of 26S proteasome and the subsequent degradation of ubiquitinated Nrf2. These results indicated that Rpn6 is a promising candidate target to activate the Nrf2 pathway for protecting cells and tissues from oxidative, electrophilic, and exogenous microbial stimulation.
Collapse
Affiliation(s)
- Zhen Dai
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Lu-Yan An
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Yi Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Fan Yang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Ni Zhao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Cui-Cui Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Ren Ren
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Bing-Yan Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Wei-Yan Tao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Pei Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Fang Yan
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Zheng-Yu Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Dong You
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Di
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Li-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
13
|
Gutiérrez JR, Salgadoa ARM, Arias MDÁ, Vergara HSJ, Rada WR, Gómez CMM. Epigenetic Modulators as Treatment Alternative to Diverse Types of Cancer. Curr Med Chem 2021; 29:1503-1542. [PMID: 34963430 DOI: 10.2174/0929867329666211228111036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/17/2021] [Accepted: 10/21/2021] [Indexed: 01/10/2023]
Abstract
DNA is packaged in rolls in an octamer of histones forming a complex of DNA and proteins called chromatin. Chromatin as a structural matrix of a chromosome and its modifications are nowadays considered relevant aspects for regulating gene expression, which has become of high interest in understanding genetic mechanisms regulating various diseases, including cancer. In various types of cancer, the main modifications are found to be DNA methylation in the CpG dinucleotide as a silencing mechanism in transcription, post-translational histone modifications such as acetylation, methylation and others that affect the chromatin structure, the ATP-dependent chromatin remodeling and miRNA-mediated gene silencing. In this review we analyze the main alterations in gene expression, the epigenetic modification patterns that cancer cells present, as well as the main modulators and inhibitors of each epigenetic mechanism and the molecular evolution of the most representative inhibitors, which have opened a promising future in the study of HAT, HDAC, non-glycoside DNMT inhibitors and domain inhibitors.
Collapse
Affiliation(s)
- Jorseth Rodelo Gutiérrez
- Organic and Biomedical Chemistry Research Group, Faculty of Basic Sciences, Universidad del Atlántico, Barranquilla, Colombia
| | - Arturo René Mendoza Salgadoa
- Organic and Biomedical Chemistry Research Group, Faculty of Basic Sciences, Universidad del Atlántico, Barranquilla, Colombia
| | - Marcio De Ávila Arias
- Department of Medicine, Biotechnology Research Group, Health Sciences Division, Universidad del Norte, Barranquilla, Colombia
| | - Homero San- Juan- Vergara
- Department of Medicine, Biotechnology Research Group, Health Sciences Division, Universidad del Norte, Barranquilla, Colombia
| | - Wendy Rosales Rada
- Advanced Biomedicine Research Group. Faculty of Exact and Natural Sciences, Universidad Libre Seccional, Barranquilla, Colombia
- Advanced Biomedicine Research Group. Faculty of Exact and Natural Sciences, Universidad Libre Seccional, Barranquilla, Colombia
| | - Carlos Mario Meléndez Gómez
- Organic and Biomedical Chemistry Research Group, Faculty of Basic Sciences, Universidad del Atlántico, Barranquilla, Colombia
| |
Collapse
|
14
|
Wang Y, Xie Q, Tan H, Liao M, Zhu S, Zheng LL, Huang H, Liu B. Targeting cancer epigenetic pathways with small-molecule compounds: Therapeutic efficacy and combination therapies. Pharmacol Res 2021; 173:105702. [PMID: 34102228 DOI: 10.1016/j.phrs.2021.105702] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/07/2021] [Accepted: 05/29/2021] [Indexed: 02/08/2023]
Abstract
Epigenetics mainly refers to covalent modifications to DNA or histones without affecting genomes, which ultimately lead to phenotypic changes in cells or organisms. Given the abundance of regulatory targets in epigenetic pathways and their pivotal roles in tumorigenesis and drug resistance, the development of epigenetic drugs holds a great promise for the current cancer therapy. However, lack of potent, selective, and clinically tractable small-molecule compounds makes the strategy to target cancer epigenetic pathways still challenging. Therefore, this review focuses on epigenetic pathways, small molecule inhibitors targeting DNA methyltransferase (DNMT) and small molecule inhibitors targeting histone modification (the main regulatory targets are histone acetyltransferases (HAT), histone deacetylases (HDACs) and histone methyltransferases (HMTS)), as well as the combination strategies of the existing epigenetic therapeutic drugs and more new therapies to improve the efficacy, which will shed light on a new clue on discovery of more small-molecule drugs targeting cancer epigenetic pathways as promising strategies in the future.
Collapse
Affiliation(s)
- Yi Wang
- Health Management Center, Sichuan Provincial People' Hospital, University of Electronic Science and Technology of China, Chengdu 610072, PR China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, PR China
| | - Qiang Xie
- Department of Stomatology, Sichuan Provincial People' Hospital, University of Electronic Science and Technology of China, Chengdu 610072, PR China
| | - Huidan Tan
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Minru Liao
- Department of Stomatology, Sichuan Provincial People' Hospital, University of Electronic Science and Technology of China, Chengdu 610072, PR China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Shiou Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ling-Li Zheng
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Rd, Xindu Region, Chengdu 610500, PR China.
| | - Haixia Huang
- Oral & Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, 646000, PR China; Department of Prosthodontics, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, 646000, PR China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
15
|
Liu T, Song S, Wang X, Hao J. Small-molecule inhibitors of breast cancer-related targets: Potential therapeutic agents for breast cancer. Eur J Med Chem 2021; 210:112954. [PMID: 33158576 DOI: 10.1016/j.ejmech.2020.112954] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022]
Abstract
Despite dramatic advances in cancer research and therapy, breast cancer remains a tricky health problem and represents a top biomedical research priority. Nowadays, breast cancer is still the leading cause of malignancy-related deaths in women, and incidence and mortality rates of it are expected to increase significantly the next years. Currently more and more researchers are interested in the study of breast cancer by its arising in young women. The common treatment options of breast cancer are chemotherapy, immunotherapy, hormone therapy, surgery, and radiotherapy. Most of them require chemical agents, such as PARP inhibitors, CDK4/6 inhibitors, and HER2 inhibitors. Recent studies suggest that some targets or pathways, including BRD4, PLK1, PD-L1, HDAC, and PI3K/AKT/mTOR, are tightly related to the occurrence and development of breast cancer. This article reviews the interplay between these targets and breast cancer and summarizes the progress of current research on small molecule inhibitors of these anti-breast cancer targets. The review aims to provide structural and theoretical basis for designing novel anti-breast cancer agents.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China.
| | - Shubin Song
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Xu Wang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Jifu Hao
- Department of Medicinal Chemistry, School of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China
| |
Collapse
|
16
|
Benassi A, Doria F, Pirota V. Groundbreaking Anticancer Activity of Highly Diversified Oxadiazole Scaffolds. Int J Mol Sci 2020; 21:ijms21228692. [PMID: 33217987 PMCID: PMC7698752 DOI: 10.3390/ijms21228692] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/29/2022] Open
Abstract
Nowadays, an increasing number of heterocyclic-based drugs found application in medicinal chemistry and, in particular, as anticancer agents. In this context, oxadiazoles—five-membered aromatic rings—emerged for their interesting biological properties. Modification of oxadiazole scaffolds represents a valid strategy to increase their anticancer activity, especially on 1,2,4 and 1,3,4 regioisomers. In the last years, an increasing number of oxadiazole derivatives, with remarkable cytotoxicity for several tumor lines, were identified. Structural modifications, that ensure higher cytotoxicity towards malignant cells, represent a solid starting point in the development of novel oxadiazole-based drugs. To increase the specificity of this strategy, outstanding oxadiazole scaffolds have been designed to selectively interact with biological targets, including enzymes, globular proteins, and nucleic acids, showing more promising antitumor effects. In the present work, we aim to provide a comprehensive overview of the anticancer activity of these heterocycles, describing their effect on different targets and highlighting how their structural versatility has been exploited to modulate their biological properties.
Collapse
|
17
|
Hydroxamic acid hybrids as the potential anticancer agents: An Overview. Eur J Med Chem 2020; 205:112679. [PMID: 32791404 DOI: 10.1016/j.ejmech.2020.112679] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
|
18
|
Role of Nrf2 and mitochondria in cancer stem cells; in carcinogenesis, tumor progression, and chemoresistance. Biochimie 2020; 179:32-45. [PMID: 32946993 DOI: 10.1016/j.biochi.2020.09.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/05/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs) are rare sub-population in tumor mass with self-renewal and differentiation abilities; CSCs are considered as the main cells which are responsible for tumor metastasis, cancer recurrence, and chemo/radio-resistance. CSCs are believed to contain low mitochondria in quantity, high concentration of nuclear factor erythroid 2-related factor 2 (Nrf2), and low reactive oxygen species (ROS) levels. Mitochondria regulate certain cellular functions, including controlling of cellular energetics, calcium signaling, cell growth and cell differentiation, cell cycle regulation, and cell death. Also, mitochondria are the main sources of intrinsic ROS production. Dysfunction of CSCs mitochondria due to oxidative phosphorylation is reported in several pathological conditions, including metabolic disorders, age-related diseases, and various types of cancers. ROS levels play a significant role in cellular signal transduction and CSCs' identity and differentiation capability. Nrf2 is a master transcription factor that plays critical functions in maintaining cellular redox hemostasis by regulating several antioxidant and detoxification pathways. Recently, the critical function of Nrf2 in CSCs has been revealed by several studies. Nrf2 is an essential molecule in the maintenance of CSCs' stemness and self-renewal in response to different oxidative stresses such as chemotherapy-induced elevation of ROS. Nrf2 enables these cells to recover from chemotherapy damages, and promotes establishment of invasion and dissemination. In this study, we have summarized the role of Nrf2 and mitochondria function CSCs, which promote cancer development. The significant role of Nrf2 in the regulation of mitochondrial function and ROS levels suggests this molecule as a potential target to eradicate CSCs.
Collapse
|
19
|
Design, synthesis and biological evaluation of coumarin-based N-hydroxycinnamamide derivatives as novel histone deacetylase inhibitors with anticancer activities. Bioorg Chem 2020; 101:104023. [DOI: 10.1016/j.bioorg.2020.104023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/21/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
|
20
|
Wang Y, Shi Y, Tao M, Zhuang S, Liu N. Peritoneal fibrosis and epigenetic modulation. Perit Dial Int 2020; 41:168-178. [PMID: 32662737 DOI: 10.1177/0896860820938239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Peritoneal dialysis (PD) is an effective treatment for patients with end-stage renal disease. However, peritoneal fibrosis (PF) is a common complication that ultimately leads to ultrafiltration failure and discontinuation of PD after long-term PD therapy. There is currently no effective therapy to prevent or delay this pathologic process. Recent studies have reported epigenetic modifications involved in PF, and accumulating evidence suggests that epigenetic therapies may have the potential to prevent and treat PF clinically. The major epigenetic modifications in PF include DNA methylation, histone modification, and noncoding RNAs. The mechanisms of epigenetic regulation in PF are complex, predominantly involving modification of signaling molecules, transcriptional factors, and genes. This review will describe the mechanisms of epigenetic modulation in PF and discuss the possibility of targeting them to prevent and treat this complication.
Collapse
Affiliation(s)
- Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, China
| |
Collapse
|
21
|
Biernacki K, Daśko M, Ciupak O, Kubiński K, Rachon J, Demkowicz S. Novel 1,2,4-Oxadiazole Derivatives in Drug Discovery. Pharmaceuticals (Basel) 2020; 13:ph13060111. [PMID: 32485996 PMCID: PMC7345688 DOI: 10.3390/ph13060111] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Five-membered 1,2,4-oxadiazole heterocyclic ring has received considerable attentionbecause of its unique bioisosteric properties and an unusually wide spectrum of biological activities.Thus, it is a perfect framework for the novel drug development. After a century since the1,2,4-oxadiazole have been discovered, the uncommon potential attracted medicinal chemists'attention, leading to the discovery of a few presently accessible drugs containing 1,2,4-oxadiazoleunit. It is worth noting that the interest in a 1,2,4-oxadiazoles' biological application has been doubledin the last fifteen years. Herein, after a concise historical introduction, we present a comprehensiveoverview of the recent achievements in the synthesis of 1,2,4-oxadiazole-based compounds and themajor advances in their biological applications in the period of the last five years as well as briefremarks on prospects for further development.
Collapse
Affiliation(s)
- Karol Biernacki
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (K.B.); (O.C.); (J.R.)
| | - Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Olga Ciupak
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (K.B.); (O.C.); (J.R.)
| | - Konrad Kubiński
- Department of Molecular Biology, Faculty of Biotechnology and Environment Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1i, 20-708 Lublin, Poland;
| | - Janusz Rachon
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (K.B.); (O.C.); (J.R.)
| | - Sebastian Demkowicz
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland; (K.B.); (O.C.); (J.R.)
- Correspondence:
| |
Collapse
|
22
|
Tupychak MA, Shyyka OY, Pokhodylo NT, Obushak MD. Nitrileimines as an alternative to azides in base-mediated click [3 + 2] cycloaddition with methylene active nitriles. RSC Adv 2020; 10:13696-13699. [PMID: 35493004 PMCID: PMC9051556 DOI: 10.1039/d0ra01417f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/20/2020] [Indexed: 12/30/2022] Open
Abstract
Nitrileimines were implemented in practical click protocols with oxopropanenitriles for the straightforward 5-amino-1H-pyrazole synthesis via 1,3-dipolar cycloaddition. The reaction proceeds at room temperature in a short time with base catalysis and no chromatographic purification. High purity products were isolated by simple filtration. The selectivity of the reaction was observed.
Collapse
Affiliation(s)
- Mykola A Tupychak
- Department of Organic Chemistry, Ivan Franko National University of Lviv Kyryla i Mefodiya St. 6 Lviv 79005 Ukraine
| | - Olga Ya Shyyka
- Department of Organic Chemistry, Ivan Franko National University of Lviv Kyryla i Mefodiya St. 6 Lviv 79005 Ukraine
| | - Nazariy T Pokhodylo
- Department of Organic Chemistry, Ivan Franko National University of Lviv Kyryla i Mefodiya St. 6 Lviv 79005 Ukraine
| | - Mykola D Obushak
- Department of Organic Chemistry, Ivan Franko National University of Lviv Kyryla i Mefodiya St. 6 Lviv 79005 Ukraine
| |
Collapse
|
23
|
Frenna V, Lo Meo P, Palumbo Piccionello A, Spinelli D. Unexpected Substituent Effects in the Iso-Heterocyclic Boulton-Katritzky Rearrangement of 3-Aroylamino-5-methyl-1,2,4-oxadiazoles: A Mechanistic Study. J Phys Chem A 2019; 123:10004-10010. [PMID: 31619037 DOI: 10.1021/acs.jpca.9b08675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The kinetics of the iso-heterocyclic mononuclear rearrangement of some 3-aroylamino-5-methyl-1,2,4-ozadiazoles was carefully examined under largely variable acidic or alkaline conditions. This reaction may proceed via two different mechanistic pathways (an uncatalyzed and a base-catalyzed one), as accounted for also by the evaluation of the relevant activation parameters. Substituent effects, as quantified by means of the Hammett's equation, appear relatively modest; however, they reveal some interesting anomalies, which enabled us to draw a very precise picture of the intimate reaction course.
Collapse
Affiliation(s)
- Vincenzo Frenna
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , V.le delle Scienze pad. 17 , 90128 Palermo , Italy
| | - Paolo Lo Meo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , V.le delle Scienze pad. 17 , 90128 Palermo , Italy
| | - Antonio Palumbo Piccionello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) , Università degli Studi di Palermo , V.le delle Scienze pad. 17 , 90128 Palermo , Italy
| | - Domenico Spinelli
- Department of Chemistry "G. Ciamician" , Alma Mater Studiorum, Università di Bologna , Via Selmi 2 , 40126 Bologna , Italy
| |
Collapse
|