1
|
Guo L, Guo B, Wang Y, Zheng Y, Sun S, Wu M, Li Y, Jiang D, Xing R, Sun Z, Fu Y, Li X, Zhang Y, Liu Y, Wang L. Design and Synthesis of FR-β Targeting Chimeric Molecules for Reprogramming Tumor-Associated Macrophages Using 6-Substituted Pyrrolo[2,3- d]pyrimidines as Targeting Ligands. J Med Chem 2025; 68:8295-8309. [PMID: 40219974 DOI: 10.1021/acs.jmedchem.4c02995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Tumor-associated macrophages (TAMs) are highly plastic tumor-infiltrating immune cells. Their reprogramming has emerged as a pivotal strategy in antitumor immunotherapy. The TLR7/8 agonist, IMDQ, has significant potential for reprogramming macrophages but lacks target specificity. To address this challenge, we developed novel folate receptor beta (FR-β) targeting chimeric molecules using 6-substituted pyrrolo[2,3-d]pyrimidines as high-affinity ligands, which demonstrate superior FR-β targeting capability compared with classical folic acid. These molecules integrate the FR-β targeting moiety with IMDQ, marking the first application of this immunomodulator in targeted chimeric constructs. In vitro and in vivo studies demonstrated that our chimeric molecules selectively reprogrammed TAMs toward an immunostimulatory phenotype, reshaped the tumor microenvironment, and inhibited tumor progression without systemic toxicity. Given that TAM accumulation is prevalent across all solid tumors, our strategy of precisely targeting and reprogramming of TAMs is universally applicable to treating various types of cancers, a potent and effective strategy for antitumor immunotherapy.
Collapse
Affiliation(s)
- Lixiao Guo
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, PR China
| | - Binghao Guo
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, PR China
| | - Yuqing Wang
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, PR China
| | - Yuwei Zheng
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, PR China
| | - Shuo Sun
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, PR China
| | - Mengqi Wu
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, PR China
| | - Yingao Li
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, PR China
| | - Deguang Jiang
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, PR China
| | - Ruijuan Xing
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, PR China
| | - Zenghui Sun
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, PR China
| | - Yan Fu
- Core Facilities and Centers, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, PR China
| | - Xin Li
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, PR China
| | - Yining Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, PR China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, PR China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China
| | - Lei Wang
- Department of Medicinal Chemistry, School of Pharmacy, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang 050017, PR China
- Hebei Key Laboratory of Innovative Drug Research and Evaluation, Shijiazhuang 050017, PR China
- National Key Laboratory of New Pharmaceutical Preparations and Excipients, Shijiazhuang 050035, PR China
| |
Collapse
|
2
|
Manna T, Maji S, Maity M, Debnath B, Panda S, Khan SA, Nath R, Akhtar MJ. Anticancer potential and structure activity studies of purine and pyrimidine derivatives: an updated review. Mol Divers 2025; 29:817-848. [PMID: 38856835 DOI: 10.1007/s11030-024-10870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 06/11/2024]
Abstract
Cancer is the world's leading cause of death impacting millions of lives globally. The increasing research over the past several decades has focused on the development of new anticancer drugs, but still cancer continues to be a global health challenge. Thus, several new alternative therapeutic strategies have been tried for the drug design and discovery. Purine and pyrimidine heterocyclic compounds have received attention recently due to their potential in targeting various cancers. It is evident from the recently published data over the last decade that incorporation of the purine and pyrimidine rings in the synthesized derivatives resulted in the development of potent anticancer molecules. This review presents synthetic strategies encompassing several examples of recently developed purine and pyrimidine-containing compounds as anticancer agents. In addition, their structure-activity relationships are represented in the schemes indicating the fragment or groups that are essential for the enhanced anticancer activities. Purine and pyrimidines combined with other heterocyclic compounds have resulted in many novel anticancer molecules that address the challenges of drug resistance. The purine and pyrimidine derivatives showed significantly enhanced anticancer activities against targeted receptor proteins with numerous compounds with an IC50 value in the nanomolar range. The review will support medicinal chemists and contribute in progression and development of synthesis of more potent chemotherapeutic drug candidates to mitigate the burden of this dreadful disease.
Collapse
Affiliation(s)
- Tanushree Manna
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Sumit Maji
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Mousumi Maity
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Biplab Debnath
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Shambo Panda
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PC 130, Azaiba, Bousher, PO 620, Muscat, Sultanate of Oman
| | - Rajarshi Nath
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India.
- JIS University, Agarpara Campus, Kolkata-81, Nilgunj Road, Agarpara, Kolkata, 700109, India.
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PC 130, Azaiba, Bousher, PO 620, Muscat, Sultanate of Oman.
| |
Collapse
|
3
|
Cetin E, Guclu TF, Kantarcioglu I, Gaszek IK, Toprak E, Atilgan AR, Dedeoglu B, Atilgan C. Kinetic Barrier to Enzyme Inhibition Is Manipulated by Dynamical Local Interactions in E. coli DHFR. J Chem Inf Model 2023; 63:4839-4849. [PMID: 37491825 PMCID: PMC10428214 DOI: 10.1021/acs.jcim.3c00818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Indexed: 07/27/2023]
Abstract
Dihydrofolate reductase (DHFR) is an important drug target and a highly studied model protein for understanding enzyme dynamics. DHFR's crucial role in folate synthesis renders it an ideal candidate to understand protein function and protein evolution mechanisms. In this study, to understand how a newly proposed DHFR inhibitor, 4'-deoxy methyl trimethoprim (4'-DTMP), alters evolutionary trajectories, we studied interactions that lead to its superior performance over that of trimethoprim (TMP). To elucidate the inhibition mechanism of 4'-DTMP, we first confirmed, both computationally and experimentally, that the relative binding free energy cost for the mutation of TMP and 4'-DTMP is the same, pointing the origin of the characteristic differences to be kinetic rather than thermodynamic. We then employed an interaction-based analysis by focusing first on the active site and then on the whole enzyme. We confirmed that the polar modification in 4'-DTMP induces additional local interactions with the enzyme, particularly, the M20 loop. These changes are propagated to the whole enzyme as shifts in the hydrogen bond networks. To shed light on the allosteric interactions, we support our analysis with network-based community analysis and show that segmentation of the loop domain of inhibitor-bound DHFR must be avoided by a successful inhibitor.
Collapse
Affiliation(s)
- Ebru Cetin
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla 34956, Istanbul, Turkey
| | - Tandac F. Guclu
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla 34956, Istanbul, Turkey
| | - Isik Kantarcioglu
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla 34956, Istanbul, Turkey
- Department
of Pharmacology, University of Texas Southwestern
Medical Center, Dallas 75390, Texas, United States
| | - Ilona K. Gaszek
- Department
of Pharmacology, University of Texas Southwestern
Medical Center, Dallas 75390, Texas, United States
| | - Erdal Toprak
- Department
of Pharmacology, University of Texas Southwestern
Medical Center, Dallas 75390, Texas, United States
| | - Ali Rana Atilgan
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla 34956, Istanbul, Turkey
| | - Burcu Dedeoglu
- Department
of Chemistry, Gebze Technical University, Gebze 41400, Kocaeli, Turkey
| | - Canan Atilgan
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla 34956, Istanbul, Turkey
| |
Collapse
|
4
|
Fatahala SS, Mohamed MS, Sabry JY, Mansour YEED. Synthesis Strategies and Medicinal Value of Pyrrole and its Fused Heterocyclic Compounds. Med Chem 2022; 18:1013-1043. [PMID: 35339189 DOI: 10.2174/1573406418666220325141952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/17/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
Abstract
For several decades, interest in pyrrole and pyrrolopyrimidine derivatives increases owing to their biological importance, such as anti-tumor, anti-microbial, anti-inflammatory, anti-diabetic, anti-histaminic, anti-malarial, anti-Parkinson, antioxidant and anti-viral, specially recently against COVID-19. These tremendous biological features motivated scientists to discover more pyrrole and fused pyrrole derivatives, owing to the great importance of the pyrrole nucleus as a pharmacophore in many drugs, and motivated us to present this article, highlighting on the different synthetic pathways of pyrrole and its fused compounds specially pyrrolopyrimidine, as well as their medicinal value from 2017 till 2021.
Collapse
Affiliation(s)
- Samar Said Fatahala
- Pharmaceutical Organic Chemistry department, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo, Egypt
| | - Mosaad Sayed Mohamed
- Pharmaceutical Organic Chemistry department, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo, Egypt
| | - Jaqueline Youssef Sabry
- Pharmaceutical Organic Chemistry department, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo, Egypt
| | - Yara Esam El-Deen Mansour
- Pharmaceutical Organic Chemistry department, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo, Egypt
| |
Collapse
|
5
|
Heppler LN, Attarha S, Persaud R, Brown JI, Wang P, Petrova B, Tošić I, Burton FB, Flamand Y, Walker SR, Yeh JE, Zubarev RA, Gaetani M, Kanarek N, Page BDG, Frank DA. The antimicrobial drug pyrimethamine inhibits STAT3 transcriptional activity by targeting the enzyme dihydrofolate reductase. J Biol Chem 2022; 298:101531. [PMID: 34953855 PMCID: PMC8800111 DOI: 10.1016/j.jbc.2021.101531] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer is often characterized by aberrant gene expression patterns caused by the inappropriate activation of transcription factors. Signal transducer and activator of transcription 3 (STAT3) is a key transcriptional regulator of many protumorigenic processes and is persistently activated in many types of human cancer. However, like many transcription factors, STAT3 has proven difficult to target clinically. To address this unmet clinical need, we previously developed a cell-based assay of STAT3 transcriptional activity and performed an unbiased and high-throughput screen of small molecules known to be biologically active in humans. We identified the antimicrobial drug pyrimethamine as a novel and specific inhibitor of STAT3 transcriptional activity. Here, we show that pyrimethamine does not significantly affect STAT3 phosphorylation, nuclear translocation, or DNA binding at concentrations sufficient to inhibit STAT3 transcriptional activity, suggesting a potentially novel mechanism of inhibition. To identify the direct molecular target of pyrimethamine and further elucidate the mechanism of action, we used a new quantitative proteome profiling approach called proteome integral solubility alteration coupled with a metabolomic analysis. We identified human dihydrofolate reductase as a target of pyrimethamine and demonstrated that the STAT3-inhibitory effects of pyrimethamine are the result of a deficiency in reduced folate downstream of dihydrofolate reductase inhibition, implicating folate metabolism in the regulation of STAT3 transcriptional activity. This study reveals a previously unknown regulatory node of the STAT3 pathway that may be important for the development of novel strategies to treat STAT3-driven cancers.
Collapse
Affiliation(s)
- Lisa N Heppler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Division of Medical Sciences, Harvard University, Boston, Massachusetts, USA
| | - Sanaz Attarha
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Rosanne Persaud
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Jennifer I Brown
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Peng Wang
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Boryana Petrova
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Isidora Tošić
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Foster B Burton
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Yael Flamand
- Department of Data Sciences, Dana-Farber-Cancer Institute, Boston, Massachusetts, USA
| | - Sarah R Walker
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jennifer E Yeh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Division of Medical Sciences, Harvard University, Boston, Massachusetts, USA
| | - Roman A Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Chemical Proteomics, SciLifeLab, Stockholm, Sweden; Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Massimiliano Gaetani
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Chemical Proteomics, SciLifeLab, Stockholm, Sweden
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Brent D G Page
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - David A Frank
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
6
|
Chawla P, Teli G, Gill RK, Narang RK. An Insight into Synthetic Strategies and Recent Developments of Dihydrofolate Reductase Inhibitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202102555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Pooja Chawla
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga Punjab India
- Pooja Chawla Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga 142001 Punjab India
| | - Ghanshyam Teli
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga Punjab India
| | - Rupinder Kaur Gill
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga Punjab India
| | - Raj Kumar Narang
- Department of Pharmaceutics ISF College of Pharmacy Moga Punjab India
| |
Collapse
|
7
|
Sahu R, Mishra R, Kumar R, Salahuddin, Majee C, Mazumder A, Kumar A. Pyridine moiety: An insight into recent advances in treatment of cancer. Mini Rev Med Chem 2021; 22:248-272. [PMID: 34126914 DOI: 10.2174/1389557521666210614162031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/01/2021] [Accepted: 04/15/2021] [Indexed: 11/22/2022]
Abstract
The incidence of cancer is increasing worldwide, affecting a vast majority of the human population. As new different anticancer agents are being developed now, the requirement is to deal somehow with them and evaluate their safety. Among them, pyridine based drugs are contributing a lot, as it is one of the imperative pharmacophores occurring synthetically as well as naturally in heterocyclic compounds, and having a wide range of therapeutic applications in the area of drug discovery, thereby offering many chances for further improvement in antitumor agents via acting onto numerous receptors of extreme prominence. Many pyridine derivatives have been reported to inhibit enzymes, receptors and many other targets for controlling and curing the global health issue of cancer. Nowadays, in combination with other moieties, researchers are focusing on the development of pyridine-based new derivatives for cancer treatment. Therefore, this review sheds light on the recent therapeutic expansions of pyridine together with its molecular docking, structure-activity-relationship, availability in the market, and a summary of recently patented and published research works that shall jointly help the scientists to produce effective drugs with the desired pharmacological activity.
Collapse
Affiliation(s)
- Rakesh Sahu
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida-201310, India
| | - Rakhi Mishra
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, India
| | - Rajnish Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, India
| | - Salahuddin
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, India
| | - Chandana Majee
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, India
| | - Avijit Mazumder
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, India
| | - Ajay Kumar
- Department of Pharmaceutical Chemistry, Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Greater Noida-201306, India
| |
Collapse
|
8
|
Songsungthong W, Prasopporn S, Bohan L, Srimanote P, Leartsakulpanich U, Yongkiettrakul S. A novel bicyclic 2,4-diaminopyrimidine inhibitor of Streptococcus suis dihydrofolate reductase. PeerJ 2021; 9:e10743. [PMID: 33604179 PMCID: PMC7866885 DOI: 10.7717/peerj.10743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/18/2020] [Indexed: 12/29/2022] Open
Abstract
Streptococcus suis is a Gram-positive bacterial pathogen of pigs and an emerging zoonotic pathogen. It has become increasingly resistant to multiple classes of antibiotics. New drug candidates and knowledge of their targets are needed to combat antibiotic-resistant S. suis. In this study, the open-source Pathogen Box compound library was screened. Thirty hits that effectively inhibited S. suis growth at 10 µM were identified. Among the most potent hits, MMV675968 (a diaminoquinazoline analog) was shown to target S. suis dihydrofolate reductase (SsDHFR) via (1) growth inhibition of an E. coli surrogate whose growth is dependent on exogenously expressed SsDHFR and (2) inhibition of in vitro SsDHFR activity. Thymidine supplement is able to reverse growth inhibition by MMV675968 in both E. coli surrogate and S. suis, indicating that a thymidine-related pathway is a major target of MMV675968. Comparison of MMV675968 with seven DHFR inhibitors representing different core structures revealed that bicyclic 2,4-diaminopyrimidines with long and flexible side chains are highly effective in inhibiting SsDHFR and S. suis growth. MMV675968 and related compounds thus may serve as starting points for developing antibiotics against drug resistant S. suis.
Collapse
Affiliation(s)
- Warangkhana Songsungthong
- Biosensing and Bioprospecting Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sunisa Prasopporn
- Biosensing and Bioprospecting Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand.,Current Address: Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Louise Bohan
- Biosensing and Bioprospecting Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand.,Current Address: School of Pharmacy and Life Sciences, The Robert Gordon University, Aberdeen, United Kingdom
| | - Potjanee Srimanote
- Faculty of Allied Health Sciences, Thammasat University, Klong Luang, Pathum Thani, Thailand
| | - Ubolsree Leartsakulpanich
- Biosensing and Bioprospecting Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Suganya Yongkiettrakul
- Biosensing and Bioprospecting Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| |
Collapse
|
9
|
Mao Z, Liu M, Zhu G, Zhou J, Zhang X. Transition-metal-free highly regioselective C–H acetoxylation of pyrrolo[2,3-d]pyrimidine derivatives. Org Chem Front 2020. [DOI: 10.1039/d0qo00702a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transition-metal-free catalyzed direct C(sp2)–H acetoxylation of pyrrolo[2,3-d]pyrimidine derivatives is reported. This protocol provides a variety of acetoxylated pyrrolo[2,3-d]pyrimidines in good to excellent yields.
Collapse
Affiliation(s)
- Zhengtong Mao
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Min Liu
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Gaoyang Zhu
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Jing Zhou
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Xingxian Zhang
- College of Pharmaceutical Science
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| |
Collapse
|