1
|
Kavukcu SB, Vatansever HS, Ilhan S, Türkmen H. Naphthyl-Substituted Ruthenium(II)-Arene Complexes: Exploring the Impact of Binding Modes on Cytotoxicity in Cancer and Normal Cell Lines. Bioinorg Chem Appl 2025; 2025:5556956. [PMID: 40352716 PMCID: PMC12066179 DOI: 10.1155/bca/5556956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/10/2025] [Indexed: 05/14/2025] Open
Abstract
This study investigated the cytotoxic properties of three naphthyl-substituted ruthenium(II)-arene complexes (Ru1, Ru2, and Ru3) against various cancer cell lines (MCF-7, Caco-2, and HepG2) and a healthy cell line (Vero). Herein, we report the novel synthesis and characterization of Ru3 for the first time. The complexes were fully characterized by 1H, 13C, and 2D NMR spectroscopies, and their interactions with DNA and bovine serum albumin (BSA) were evaluated. Binding constant (Kb) determinations revealed values of 2.95 × 104 M-1, 2.27 × 104 M-1, and 3.70 × 104 M-1 for Ru1, Ru2, and Ru3 with FS-DNA, respectively, while Ru2 exhibited a significantly higher binding constant of 0.86 × 105 M-1 with BSA, indicating a favorable binding interaction. Molecular docking of Ru3 was performed against BSA, EGFR wild type (EGFRWT), and mutant EGFRT790M. Ru3 exhibited docking scores of -178.827, -204.437, and -176.946 kJ/mol with BSA, EGFRWT, and EGFRT790M, respectively. Cytotoxicity assays revealed that Ru1-3 exhibited superior activity against MCF-7 and Caco-2 cells compared to HepG2 cells. Following a 24-h exposure, Ru2 exhibited an IC50 of 1.39 μg/mL against the Caco-2 cell line. Morphological analysis suggested that all complexes induced apoptosis in cancer cells. Notably, Ru2 demonstrated minimal activity against Vero cells, indicating selectivity. Hirshfeld surface analysis was employed to investigate intermolecular interactions within the crystal structures of the complexes, providing insights into their molecular shapes and potential for interactions with other molecules. In conclusion, this study highlights the promising potential of naphthyl-substituted ruthenium(II) complexes as anticancer agents. Their selective cytotoxicity and ability to induce apoptosis warrant further investigation for the development of novel cancer therapies.
Collapse
Affiliation(s)
| | - Hafize Seda Vatansever
- Department of Histology and Embryology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Türkiye
- DESAM Institute, Near East University, Mersin 10, Türkiye
| | - Suleyman Ilhan
- Department of Biology, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, Manisa, Türkiye
| | - Hayati Türkmen
- Department of Chemistry, Faculty of Science, Ege University, Izmir, Türkiye
| |
Collapse
|
2
|
Petrova Z, Mocanu T, Spasov R, Hanganu A, Marinescu G, Culita DC, Alexandrova R. Antitumor activity of ruthenium(III) complexes with [N 2O 2]-tetradentate Schiff base ligands. J Inorg Biochem 2025; 266:112853. [PMID: 39946799 DOI: 10.1016/j.jinorgbio.2025.112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 03/01/2025]
Abstract
In this article, the antitumor and antiproliferative activity of three Ru(III) complexes, [RuIII(Salen)(PPh3)Cl] (RuSalen), [RuIII(Salphen)(PPh3)Cl] (RuSalphen), and [RuIII(Salpn)(PPh3)Cl] (RuSalpn) (H2Salen, H2Salphen and H2Salpn are the Schiff bases obtained by the condensation between salicylaldehyde and ethylenediamine, 1,2-phenylenediamine, and 1,3-diaminopropanne, respectively) and their precursor, [RuII(PPh3)3Cl2], were investigated against laboratory-cultured tumor cell lines: HT29 (human colorectal carcinoma), Saos-2 (human osteogenic sarcoma), HeLa (human cervical carcinoma), RST (rat transplantable sarcoma), and the non-tumor cell line Lep3 (embryonal human fibroblasts). It was found that all the cancer cell lines investigated were effectively dose-dependently inhibited in their growth by the Ru(III) complexes, while the non-tumor cell line Lep3 was the least affected by their cytotoxic effect. The Annexin V assay revealed that the Ru(III) complexes determined the occurrence of apoptosis in all cell lines tested, in a dose-dependent manner. RuSalpn exhibited the strongest ability to reduce tumor cell survival and proliferation, with efficacy that is either superior to or comparable to that of well-established clinical oncology agents such as cisplatin, oxaliplatin, epirubicin, and paclitaxel. The experiments revealed a cell-specific response, with varying degrees of sensitivity to the tested substances across different cell lines. RuSalpn demonstrated the strongest cytotoxic effect in the HT29 cell line, while RuSalen, RuSalphen showed the highest activity against RST cells. It was found that RuSalphen (≥7.0 μM) significantly inhibited cell migratory activity in the HT29 cell line, while in the RST cell line, RuSalen (≥37.6 μM), RuSalphen (≥14.0 μM), and RuSalpn (≥36.8 μM) demonstrated a strong inhibitory effect on cell migration.
Collapse
Affiliation(s)
- Zdravka Petrova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Teodora Mocanu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, Bucharest, Romania
| | - Rossen Spasov
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria; Faculty of Medicine, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria
| | - Anamaria Hanganu
- Faculty of Chemistry, University of Bucharest, Regina Elisabeta Blvd. 4-12, Bucharest, Romania; C.D. Nenitzescu" Institute of Organic and Supramolecular Chemistry of the Romanian Academy, 202B Splaiul Independentei, Bucharest, Romania
| | - Gabriela Marinescu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, Bucharest, Romania
| | - Daniela C Culita
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, Bucharest, Romania.
| | - Radostina Alexandrova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
3
|
Almoallim HS, Aljawdah HM, Bharathi M, Manickam R, Abudoleh SM, Hussein-Al-Ali SH, Surya P. Fabrication of ibuprofen/naringenin-coloaded into zein/sodium caseinate nanoparticles: evaluation of antiproliferative activity and apoptosis induction in liver cancer cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2703-2722. [PMID: 39217620 DOI: 10.1080/09205063.2024.2391653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Nowadays, liver cancer is one of the most disturbing types of cancer that can affect either sex. Nanoparticles (NPs) of zein/sodium caseinate incorporating ibuprofen (IBU) and naringenin (NAR) have improved bioavailability and a high encapsulation efficiency (EE%). These nanoparticles are uniformly spherical. In vitro, cytotoxicity analysis on HepG2 cell lines, which are used to study human liver cancer, shows that encapsulated drugs (86.49% ± 1.90, and 78.52% ± 1.98 for NAR and IBU, respectively) have significantly lower IC50 values than individual drugs or their combined free form. In addition, the combination indices of 0.623 and 0.155 for IBU and NAR, respectively, show that the two have joint beneficial effects. The scratch wound healing assay results also show that the free drugs and the engineered NPs have a more significant anti-migratory effect than the untreated cells. The designed nanoparticles also reduce angiogenesis and proliferation while inducing apoptosis, according to in vitro results. In conclusion, a new approach to treating liver cancer may lie in the nanoencapsulation of numerous drugs within nanoparticles.
Collapse
Affiliation(s)
- Hesham S Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Hossam M Aljawdah
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muruganantham Bharathi
- Centre for Drug Discovery, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Raja Manickam
- Department of Chemistry, Sona College of Technology, Salem, Tamil Nadu, India
| | - Suha Mujahed Abudoleh
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Middle East University, Amman, Jordan
| | | | - Parthasarathy Surya
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
4
|
Fan Y, Yu M, Zhang H, Wang H, Zhao Y, Wang D. A feasible strategy for fabricating pH-responsive SN-38 loaded europium metal-organic framework delivery for promising treatment for breast cancer. Process Biochem 2024; 147:51-61. [DOI: 10.1016/j.procbio.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Lei C, Liu D, Zhou Q, Ma S, Qian H. Engineering of dopamine conjugated with bovine serum albumin and zeolite imidazole framework: A promising drug delivery nanocarrier on lung cancer cells. Heliyon 2024; 10:e36580. [PMID: 39281594 PMCID: PMC11401118 DOI: 10.1016/j.heliyon.2024.e36580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Modern, highly abundant materials called metal-organic structures (MOF) comprise metal ions and organic coordinating molecules and have attracted attention as potential biomedical materials due to their unusual properties. In the present study, the anticancer drug sorafenib (SF) and the Kaempferol (KM) were encapsulated in a nanocomposite made of bovine serum albumin (BA) as the core and pH-dependent zeolitic imidazolate framework-8 (ZIF) coating. To develop a multifunctional nanocarrier, polydopamine, Au3+ chelation, and gallic acid (GL) conjugation were used to build BA@SF@ZIF and BA@SF@ZIF/KM. A variety of characterisation techniques verified the success of the nanocarrier's fabrication. Studies in vitro exhibited that BA@SF@ZIF/DA/GL and BA@SF@ZIF/KM/DA/GL released their respective ligands in a pH-dependent manner due to ZIF-8. These nanocarriers' cytotoxicity and apoptotic effects were measured with the MTT evaluation. Morphological and nuclear damage staining in A549 and H1299 human lung cancer cells. The cytotoxicity investigation displayed that BA@SF@ZIF/DA/GL and BA@SF@ZIF/KM/DA/GL were more efficient than free sorafenib in A549 and H1299 cells with less toxicity in HUVECs. The DNA fragmentation of the cells was assessed by utilizing the comet assay. BA@SF@ZIF/KM/DA/GL increased ROS levels and caused mitochondrial membrane potential and DNA damage, which resulted in apoptosis. Therefore, we believe the developed smart BA@SF@ZIF/KM/DA/GL could be a promising therapeutic approach using sorafenib for lung cancer therapy.
Collapse
Affiliation(s)
- Chenggang Lei
- Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, No.26, Chuyuan Road, Jingzhou District, Jingzhou City, Hubei Province, 434020, China
| | - Di Liu
- Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, No.26, Chuyuan Road, Jingzhou District, Jingzhou City, Hubei Province, 434020, China
| | - Qian Zhou
- Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, No.26, Chuyuan Road, Jingzhou District, Jingzhou City, Hubei Province, 434020, China
| | - Shengwei Ma
- Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, No.26, Chuyuan Road, Jingzhou District, Jingzhou City, Hubei Province, 434020, China
| | - Haiyun Qian
- Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, No.26, Chuyuan Road, Jingzhou District, Jingzhou City, Hubei Province, 434020, China
| |
Collapse
|
6
|
Lv Z, Ali A, Zou C, Wang Z, Ma M, Cheng N, Shad M, Hao H, Zhang Y, Rahman FU. Salicylaldehyde-derived piperazine-functionalized hydrazone ligand-based Pt(II) complexes: inhibition of EZH2-dependent tumorigenesis in pancreatic ductal adenocarcinoma, synergism with PARP inhibitors and enhanced apoptosis. Dalton Trans 2024; 53:13871-13889. [PMID: 39091221 DOI: 10.1039/d4dt01243g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Piperazine is an important functional unit of many clinically approved drugs, including chemotherapeutic agents. In the current study, methyl piperazine was incorporated and eight salicylaldehyde-derived piperazine-functionalized hydrazone ONN-donor ligands (L) and their Pt(II) complexes (L-PtCl) were prepared. The structures of all these ligands (L1-L8) and Pt(II) complexes (C1-C8) were determined using 1H and 13C NMR, UV-vis, FT-IR and HR-ESI MS analyses, whereas the structures of C1, C5, C6, C7 and C8 were determined in the solid state using single crystal X-ray diffraction analysis. Solution state stabilities of C3, C4, C5 and C6 were determined via time-dependent UV-vis spectroscopy. All these complexes (C1-C8) were studied for their anticancer effect in pancreatic ductal adenocarcinoma cells, including BxPC3, MIAPaCa-2 and PANC1 cells. C1-C8 displayed a potential cytotoxic effect in all these cancer cells, among which C5, C6 and C8 showed the strongest inhibitory effect in comparison with standard chemotherapeutic agents, including 5-fluorouracil (5-FU), cisplatin (CP), oxaliplatin and doxorubicin (DOX). C5, C6 and C8 suppressed the growth of pancreatic cancer cells in a dose-dependent manner. Moreover, C5, C6 and C8 inhibited clonogenic potential and invasion ability and induced apoptosis in PANC1 cells. Importantly, C5, C6 and C8 synergized the anticancer effect with PARP inhibitors, including olaparib, veliparib and niraparib, in pancreatic cancer cells, thus suggesting an important role of C5, C6 and C8 in induction of apoptosis in combination with PARP inhibitors. C5 combined with PARP inhibitors induced caspase3/7 activity and suppressed ATP production. Mechanistically, C5, C6 and C8 inhibited EZH2 protein expression to suppress EZH2-dependent tumorigenesis. Overall, these results highlighted the importance of these piperazine-functionalized Pt(II) complexes as potential anticancer agents to suppress pancreatic ductal adenocarcinoma tumorigenesis by targeting the EZH2-dependent pathway.
Collapse
Affiliation(s)
- Zhimin Lv
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| | - Amjad Ali
- Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, KPK, Pakistan
- Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Cheng Zou
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| | - Zerui Wang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| | - Minglu Ma
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| | - Na Cheng
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| | - Man Shad
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
- School of Life Sciences, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Huifang Hao
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
- School of Life Sciences, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, People's Republic of China.
| |
Collapse
|
7
|
Thangavel SK, Mohamed Kasim MS, Rengan R. Promoting the Anticancer Activity with Multidentate Furan-2-Carboxamide Functionalized Aroyl Thiourea Chelation in Binuclear Half-Sandwich Ruthenium(II) Complexes. Inorg Chem 2024; 63:7520-7539. [PMID: 38590210 DOI: 10.1021/acs.inorgchem.4c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
A new set of binuclear arene ruthenium complexes [Ru2(p-cymene)2(k4-N2OS)(L1-L3)Cl2] (Ru2L1-Ru2L3) encompassing furan-2-carboxamide-based aroylthiourea derivatives (H2L1-H2L3) was synthesized and characterized by various spectral and analytical techniques. Single-crystal XRD analysis unveils the N^O and N^S mixed monobasic bidentate coordination of the ligands constructing N, S, Cl/N, O, and Cl legged piano stool octahedral geometry. DFT analysis demonstrates the predilection for the formation of stable arene ruthenium complexes. In vitro antiproliferative activity of the complexes was examined against human cervical (HeLa), breast (MCF-7), and lung (A549) cancerous and noncancerous monkey kidney epithelial (Vero) cells. All the complexes are more efficacious against HeLa and MCF-7 cells with low inhibitory doses (3.86-11.02 μM). Specifically, Ru2L3 incorporating p-cymene and -OCH3 fragments exhibits high lipophilicity, significant cytotoxicity against cancer cells, and lower toxicity on noncancerous cells. Staining analysis indicates the apoptosis-associated cell morphological changes expressively in MCF-7 cells. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) analyses reveal that Ru2L3 can raise ROS levels, reduce MMP, and trigger mitochondrial dysfunction-mediated apoptosis. The catalytic oxidation of glutathione (GSH) to its disulfide form (GSSG) by the complexes may simultaneously increase the ROS levels, alluding to their observed cytotoxicity and apoptosis induction. Flow cytometry determined the quantitative classification of late apoptosis and S-phase arrest in MCF-7 and HeLa cells. Western blotting analysis confirmed that the complexes promote apoptosis by upregulating Caspase-3 and Caspase-9 and downregulating BCL-2. Molecular docking studies unfolded the strong binding affinities of the complexes with VEGFR2, an angiogenic signaling receptor, and BCL2, Cyclin D1, and HER2 proteins typically overexpressed on tumor cells.
Collapse
Affiliation(s)
- Sathiya Kamatchi Thangavel
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | | | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| |
Collapse
|
8
|
Franco Machado J, Cordeiro S, Duarte JN, Costa PJ, Mendes PJ, Garcia MH, Baptista PV, Fernandes AR, Morais TS. Exploiting Co(III)-Cyclopentadienyl Complexes To Develop Anticancer Agents. Inorg Chem 2024; 63:5783-5804. [PMID: 38502532 PMCID: PMC10988555 DOI: 10.1021/acs.inorgchem.3c03696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
In recent years, organometallic complexes have attracted much attention as anticancer therapeutics aiming at overcoming the limitations of platinum drugs that are currently marketed. Still, the development of half-sandwich organometallic cobalt complexes remains scarcely explored. Four new cobalt(III)-cyclopentadienyl complexes containing N,N-heteroaromatic bidentate, and phosphane ligands were synthesized and fully characterized by elemental analysis, spectroscopic techniques, and DFT methods. The cytotoxicity of all complexes was determined in vitro by the MTS assay in colorectal (HCT116), ovarian (A2780), and breast (MDA-MB-231 and MCF-7) human cancer cell lines and in a healthy human cell line (fibroblasts). The complexes showed high cytotoxicity in cancer cell lines, mostly due to ROS production, apoptosis, autophagy induction, and disruption of the mitochondrial membrane. Also, these complexes were shown to be nontoxic in vivo in an ex ovo chick embryo yolk sac membrane (YSM) assay.
Collapse
Affiliation(s)
- João Franco Machado
- Centro
de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Sandra Cordeiro
- Associate
Laboratory i4HB − Institute for Health and Bioeconomy, NOVA
School of Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2819-516 Caparica, Portugal
| | - Joana N. Duarte
- Centro
de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Paulo J. Costa
- BioISI
− Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Paulo J. Mendes
- LAQV-REQUIMTE
(Polo de Évora), Escola de Ciências e Tecnologia, Universidade de Évora, R. Romão Ramalho 59, 7000-671 Évora, Portugal
| | - Maria Helena Garcia
- Centro
de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro V. Baptista
- Associate
Laboratory i4HB − Institute for Health and Bioeconomy, NOVA
School of Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2819-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- Associate
Laboratory i4HB − Institute for Health and Bioeconomy, NOVA
School of Science and Technology, NOVA University
Lisbon, 2819-516 Caparica, Portugal
- UCIBIO,
Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2819-516 Caparica, Portugal
| | - Tânia S. Morais
- Centro
de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
9
|
Abirami A, Devan U, Ramesh R, Antony Joseph Velanganni A, Małecki JG. Exploring the cytotoxicity of dinuclear Ru(II) p-cymene complexes appended N, N'-bis(4-substituted benzoyl)hydrazines: insights into the mechanism of apoptotic cell death. Dalton Trans 2024; 53:5167-5179. [PMID: 38380977 DOI: 10.1039/d3dt04234k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Cancer is a perilous life-threatening disease, and attempts are constantly being made to create multinuclear transition metal complexes that could lead to the development of potential anticancer medications and administration procedures. Hence, this work aims to design, synthesize, characterize, and assess the anticancer efficacy of ruthenium p-cymene complexes incorporating N,N'-bis(4-substituted benzoyl)hydrazine ligands. The formation of the new complexes (Ru2H1-Ru2H3) has been thoroughly established by elemental analysis, and FT-IR, UV-vis, NMR, and HR-MS spectral techniques. The solid-state molecular structures of the complexes Ru2H1 and Ru2H3 have been determined using the SC-XRD study, which confirms the N, O, and Cl-legged piano stool pseudo-octahedral geometry of each ruthenium(II) ion. The stability of these complexes in the solution state and their lipophilicity profile have been determined. Furthermore, the title complexes were tested for their in vitro anticancer activity against cancerous H460 (lung cancer cells), SkBr3 (breast cancer cells), HepG2 (liver cancer cells), and HeLa (cervical cancer cells) along with non-cancerous (HEK-293) cells. The IC50 results revealed that complex Ru2H3 exhibits potent activity against the proliferation of all four cancer cells and outscored the effect of the standard metallodrug cisplatin. This may be attributed to the presence of a couple of lipophilic electron-donating methoxy groups in the ligand scaffold and also the ruthenium(II) p-cymene motifs. Advantageously, all the complexes (Ru2H1-Ru2H3) displayed cytotoxic specificity only towards cancerous cells by leaving the off-target non-cancerous cells undamaged. Acridine orange/ethidium bromide (AO/EB) staining, Hoechst 33342, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) staining assays were used to investigate the apoptotic pathway and ROS levels in mitochondria. The results of western blot analysis confirmed that the complexes triggered apoptosis through an intrinsic mitochondrial pathway by upregulating Bax and downregulating Bcl-2 proteins. Finally, the extent of apoptosis triggered by the complex Ru2H3 was quantified with the aid of flow cytometry using the Annexin V-FITC/propidium iodide (PI) double-staining technique.
Collapse
Affiliation(s)
- Arunachalam Abirami
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli - 620 024, India.
| | - Umapathy Devan
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, India
| | - Rengan Ramesh
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli - 620 024, India.
| | - Arockiam Antony Joseph Velanganni
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, India
| | - Jan Grzegorz Małecki
- Department of Crystallography, Institute of Chemistry, University of Silesia, Katowice, Poland
| |
Collapse
|
10
|
Sindhu M, Kalaivani P, Prabusankar G, Sivasamy R, Prabhakaran R. Preparation of new organo-ruthenium(II) complexes and their nucleic acid/albumin binding efficiency and in vitro cytotoxicity studies. Dalton Trans 2024; 53:3075-3096. [PMID: 38235791 DOI: 10.1039/d3dt04017h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Hetero-bimetallic ruthenium(II) complexes (PRAFIZ and PRBFIZ) containing acetyl ferrocene (AFIZ)/benzoyl ferrocene isonicotinic hydrazone ligands (BFIZ) were synthesized and characterized by various spectral and analytical techniques. The structure of acetyl ferrocene isonicotinic hydrazone (AFIZ) and the complex PRBFIZ was confirmed by X-ray crystallography. The hydrazide ligands coordinated in a bidentate monobasic fashion using their N1 hydrazinic nitrogen and enolic oxygen atoms. The binding interactions of the ligands and complexes were examined using Calf-Thymus DNA (CT-DNA) and bovine serum albumin (BSA). Scanning Electron Microscopic (SEM) experiments clarified the efficient binding interaction of the ligands and complexes with BSA. The results of in vitro cytotoxicity studies on MDA-MB-261 breast cancer cells and A549 human lung cancer cells and cell morphological analysis results through staining assays clearly indicated the cytotoxic nature of the complexes.
Collapse
Affiliation(s)
- M Sindhu
- Department of Chemistry, Nirmala College for Women, Bharathiar University, Coimbatore 641 018, India.
| | - P Kalaivani
- Department of Chemistry, Nirmala College for Women, Bharathiar University, Coimbatore 641 018, India.
| | - G Prabusankar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502 285, India
| | - R Sivasamy
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, India
| | - R Prabhakaran
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, India.
| |
Collapse
|
11
|
Ghardashpour M, Saeedi M, Negarandeh R, Enderami SE, Ghorbani A, Lotfizadeh A, Jafari A, Arezoumandi A, Hassannia H, Molania T. Anti-inflammatory and tissue repair effect of cinnamaldehyde and nano cinnamaldehyde on gingival fibroblasts and macrophages. BMC Oral Health 2023; 23:1014. [PMID: 38110929 PMCID: PMC10729471 DOI: 10.1186/s12903-023-03682-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Recurrent aphthous stomatitis has a complex and inflammatory origin. Among the great variety of medications it is increasingly common to use herbal medicines due to the adverse side effects of chemical medications. Considering the anti-inflammatory properties of cinnamaldehyde and the lack of studies related to the effectiveness of its nano form; This study investigates the effect of cinnamaldehyde and nano cinnamaldehyde on the healing rate of recurrent aphthous stomatitis lesions. METHODS In a laboratory experiment, cinnamaldehyde was converted into niosomal nanoparticles. The niosome vesicles diameter and polydispersity index were measured at 25°C using a dynamic light scattering (DLS) Mastersizer 2000 (Malvern Panalytical technologies: UK) and Zetasizer Nano ZS system (Malvern Instruments Worcestershire: UK). After characterizing these particles, the (2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide) [XTT] assay was used to assess the toxicity of cinnamaldehyde and nano cinnamaldehyde on gingival fibroblast (HGF) and macrophage (THP-1) cells. By determining the release of TNF-α, IL-6, and TGF-β cytokines using ELISA kits, the level of tissue repair and anti-inflammatory capabilities of these two substances were evaluated. RESULTS The size and loading rate of the cinnamaldehyde nanoparticles were established after its creation. The optimized nanovesicle exhibited the following characteristics: particle size of 228.75 ± 2.38 nm, PDI of 0.244 ± 0.01, the zeta potential of -10.87 ± 1.09 mV and the drug encapsulation percentage of 66.72 ± 3.93%. PDIs range was between 0.242-0.274. The zeta potential values at 25°C were from -2.67 to -12.9 mV. The results of the XTT test demonstrated that nano cinnamaldehyde exhibited dose-dependent toxicity effects. Moreover, nano cinnamaldehyde released more TGF-β and had better reparative effects when taken at lower concentrations than cinnamaldehyde. CONCLUSION Nano cinnamaldehyde and cinnamaldehyde are effective in repairing tissue when used in non-toxic amounts. After confirmation in animal models, it is envisaged that these substances can be utilized to treat recurrent aphthous stomatitis.
Collapse
Affiliation(s)
| | - Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Negarandeh
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anahita Ghorbani
- Department of Oral and Maxillofacial Medicine, Dental Research Center, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | | | | | | | - Hadi Hassannia
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Tahereh Molania
- Department of Oral and Maxillofacial Medicine, Dental Research Center, Faculty of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
12
|
Abirami A, Devan U, Ramesh R, Antony Joseph Velanganni A, Grzegorz Małecki J. Naphthoyl benzhydrazine-decorated binuclear arene Ru(II) complexes as anticancer agents targeting human breast cancer cells. Dalton Trans 2023; 52:16376-16387. [PMID: 37870147 DOI: 10.1039/d3dt02552g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Breast cancer is the most dangerous type in women and its fatality rate has increased over the past decade. To develop more potent and target-specific breast cancer drugs, six arene ruthenium(II) complexes (1-6) containing naphthoyl benzhydrazine ligands (NL1-NL3) were synthesized and characterized by analytical and spectroscopic (infrared, UV-visible, NMR and HR-MS) methods. The SC-XRD analysis of 1 and 6 demonstrates the bis N^O bidentate binding nature of ligands to ruthenium ions and a pseudo-octahedral geometry around the Ru(II) ion. Solution stability studies using UV-Vis spectroscopy evidenced the instantaneous hydrolysis of the complexes to form monoaquated species in a solution of 1 : 9 (v/v) DMSO/phosphate buffer. All the complexes were screened for their in vitro antiproliferative activities against different human breast cancer cells, including MCF-7, SkBr3, MDA-MB-468, MDA-MB-231, and non-cancerous HEK-293 cells, by an MTT assay, and they displayed good cancer cell growth inhibitory capacity with low IC50 values. Notably, complexes 2 and 5 comprising methoxy and p-cymene groups exhibited excellent cytotoxicity towards SkBr3 cells compared to clinical drug cisplatin. AO-EB and HOECHST-33342 staining assays revealed apoptotic morphological changes in complex-treated cancer cells. Further, reactive oxygen species and mitochondrial membrane potential assays validated that the complexes induce apoptotic cell death via an intrinsic mitochondrial pathway with ROS production. In addition, the apoptotic induction and the quantification of late apoptosis were established with the aid of western blot and flow cytometry analysis, respectively.
Collapse
Affiliation(s)
- Arunachalam Abirami
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli - 620 024, India.
| | - Umapathy Devan
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, India
| | - Rengan Ramesh
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli - 620 024, India.
| | - Arockiam Antony Joseph Velanganni
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli - 620 024, India
| | - Jan Grzegorz Małecki
- Department of Crystallography, Institute of Chemistry, University of Silesia, Katowice, Poland
| |
Collapse
|
13
|
Hao J, Lv A, Li X, Li Y. A Convergent fabrication of silk fibroin nanoparticles on quercetin loaded metal-organic frameworks for promising nanocarrier of myocardial infraction. Heliyon 2023; 9:e20746. [PMID: 37867876 PMCID: PMC10587493 DOI: 10.1016/j.heliyon.2023.e20746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
The biomacromolecule silk fibroin (SF) may be constructed to promote biomimetic nucleation and nanostructures of inorganic nanomaterials, offering it a promising candidate for use in various biomimetic applications. We combined SF-NPs and ZIF-8-NPs to fabricate new drug vehicles that effectively release the drug. SF nanoparticles (SF-NPs) were assembled into quercetin (QCT), a myocardial drug added to fabricate QSF-NPs. By acting as a template for the ZIF-8 nucleation onto the surface, the QSF-NPs fabricated core-shell-structured nanocomposites (named QSF@Z-NCs) with ZIF-8 as the core-shell and the QSF-NPs. The biocompatibility analysis using the MTT assay revealed that the developed QCT, SF-NPs, and QSF@Z-NCs are not harmful to cardiac myoblast (H9C2) cells. The in vivo model demonstrated that H9C2 cells encouraged cardiomyocyte fibre regeneration in myocardial infarction rats. We fabricated a brand-new technique using H9C2 cells and QSF@Z-NCs that might encourage the healing processes in myocardial ischemia cells. This study's results demonstrate that it successfully treats myocardial injury.
Collapse
Affiliation(s)
- Junjun Hao
- Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an-710061, China
| | - Ankang Lv
- Department of Gerontology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing-400010, China
| | - Xingsheng Li
- Department of Gerontology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing-400010, China
| | - Yongyong Li
- Department of Gerontology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing-400010, China
| |
Collapse
|
14
|
Ali JH, Walter M. Combining old and new concepts in targeting telomerase for cancer therapy: transient, immediate, complete and combinatory attack (TICCA). Cancer Cell Int 2023; 23:197. [PMID: 37679807 PMCID: PMC10483736 DOI: 10.1186/s12935-023-03041-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Telomerase can overcome replicative senescence by elongation of telomeres but is also a specific element in most cancer cells. It is expressed more vastly than any other tumor marker. Telomerase as a tumor target inducing replicative immortality can be overcome by only one other mechanism: alternative lengthening of telomeres (ALT). This limits the probability to develop resistance to treatments. Moreover, telomerase inhibition offers some degree of specificity with a low risk of toxicity in normal cells. Nevertheless, only one telomerase antagonist reached late preclinical studies. The underlying causes, the pitfalls of telomerase-based therapies, and future chances based on recent technical advancements are summarized in this review. Based on new findings and approaches, we propose a concept how long-term survival in telomerase-based cancer therapies can be significantly improved: the TICCA (Transient Immediate Complete and Combinatory Attack) strategy.
Collapse
Affiliation(s)
- Jaber Haj Ali
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Rostock, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany
| | - Michael Walter
- Institute of Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Rostock, Ernst-Heydemann-Straße 6, 18057, Rostock, Germany.
| |
Collapse
|
15
|
Cheng Q, Liu G, Yin X. Facile construction of drugs loaded lipid-coated calcium carbonate as a promising pH-Dependent drug delivery system for thyroid cancer treatment. Heliyon 2023; 9:e18413. [PMID: 37809709 PMCID: PMC10558296 DOI: 10.1016/j.heliyon.2023.e18413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 10/10/2023] Open
Abstract
To develop innovative drug delivery carriers for controllable release and cancer-targeted delivery of therapeutic agents to accomplish efficient cancer chemotherapy. Herein we effectively fabricated CaCO3 primarily loaded biotin (BT) and directly the self-assembly of oxaliplatin (Pt (IV)) prodrugs form in liposomes. The acquired BT-Pt (IV)@PEG/CaCO3 with outstanding biological stability displays rapid pH-mediated degradations, thus allowing the effective pH-responsive delivery of BT. In vitro, anticancer assays proved that BT-Pt (IV)@PEG/CaCO3 effectively kills the thyroid cancer cells (B-CPAP and FTC-133). The biochemical staining assays investigated the morphological changes of thyroid cancer after treatment with nanoparticles. The DNA fragmentation of the cells was assessed by utilizing the comet assay. BT-Pt (IV)@PEG/CaCO3 increased ROS levels and caused mitochondrial membrane potential and DNA damage, which resulted in apoptosis. Due to its versatile drug-loading capability, this research demonstrates that CaCO3 liposomal formulation is a biocompatible and reliable substrate for establishing pH-mediated drug delivery methods and promising for possible therapeutic application.
Collapse
Affiliation(s)
- Qianqian Cheng
- Department of Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, and Institute, Shenyang-110042, China
| | - Guangxuan Liu
- Department of Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, and Institute, Shenyang-110042, China
| | - Xiaojing Yin
- Department of Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, and Institute, Shenyang-110042, China
| |
Collapse
|
16
|
Ćwiklińska-Jurkowska M, Wiese-Szadkowska M, Janciauskiene S, Paprocka R. Disparities in Cisplatin-Induced Cytotoxicity-A Meta-Analysis of Selected Cancer Cell Lines. Molecules 2023; 28:5761. [PMID: 37570731 PMCID: PMC10421281 DOI: 10.3390/molecules28155761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Cisplatin is a classic anticancer drug widely used as a reference drug to test new metal complex drug candidates. We found an unexpected diversity in cisplatin-related cytotoxicity values, expressed as IC50 (the half-maximal inhibitory concentration) in tumour cell lines, such as MCF-7, HepG2 and HeLa. We reviewed the data published from 2018 to 2022. A total of 41 articles based on 56 in vitro experiments met our eligibility criteria. Using a meta-analysis based on a random effect model, we evaluated the cytotoxicity of cisplatin (IC50) after 48- or 72-h cell exposure. We found large differences between studies using a particular cell line. According to the random effect model, the 95% confidence intervals for IC50 were extremely wide. The heterogeneity of cisplatin IC50, as measured by the I2 index for all cancer cell lines, was over 99.7% at culture times of 48 or 72 h. Therefore, the variability between studies is due to experimental heterogeneity rather than chance. Despite the higher IC50 values after 48 h than after 72 h, the heterogeneity between the two culture periods did not differ significantly. This indicates that the duration of cultivation is not the main cause of heterogeneity. Therefore, the available data is diverse and not useful as a reference. We discuss possible reasons for the IC50 heterogeneity and advise researchers to conduct preliminary testing before starting experiments and not to solely rely on the published data. We hope that this systematic meta-analysis will provide valuable information for researchers searching for new cancer drugs using cisplatin as a reference drug.
Collapse
Affiliation(s)
- Małgorzata Ćwiklińska-Jurkowska
- Department of Biostatistics and Biomedical Systems Theory, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, Jagiellońska Str. 15, 87-067 Bydgoszcz, Poland;
| | - Małgorzata Wiese-Szadkowska
- Department of Immunology, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, M. Curie-Sklodowska Str. 9, 85-094 Bydgoszcz, Poland
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany;
| | - Renata Paprocka
- Department of Organic Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
17
|
Bashir M, Mantoo IA, Arjmand F, Tabassum S, Yousuf I. An overview of advancement of organoruthenium(II) complexes as prospective anticancer agents. Coord Chem Rev 2023; 487:215169. [DOI: 10.1016/j.ccr.2023.215169] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
|
18
|
Chen Y, Li W, Yang Y, Zhong R, Hu H, Huang C, Chen J, Liang L, Liu Y. Significant increase of anticancer efficacy in vitro and in vivo of liposome entrapped ruthenium(II) polypyridyl complexes. Eur J Med Chem 2023; 257:115541. [PMID: 37295162 DOI: 10.1016/j.ejmech.2023.115541] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Two polypyridyl ruthenium(II) complexes [Ru(DIP)2(BIP)](PF6)2 (DIP = 4,7-diphenyl-1,10-phenanthrolie, BIP = 2-(1,1'-biphenyl-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline, Ru1) and [Ru(DIP)2(CBIP)](PF6)2 (CBIP = 2-(4'-chloro-1,1'-biphenyl-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline, Ru2) were synthesized. The cytotoxic activities in vitro of Ru1, Ru2 toward B16, A549, HepG2, SGC-7901, HeLa, BEL-7402, non-cancer LO2 were investigated using MTT method (3-(4,5-dimethylthiazole)-2,5-diphenltetraazolium bromide). Unexpectedly, Ru1, Ru2 can't prevent these cancer cells proliferation. To improve the anti-cancer effect, we used liposomes to entrap the complexes Ru1, Ru2 to form Ru1lipo, Ru2lipo. As expectation, Ru1lipo and Ru2lipo exhibit high anti-cancer efficacy, especially, Ru1lipo (IC50 3.4 ± 0.1 μM), Ru2lipo (IC50 3.5 ± 0.1 μM) display strong ability to block the cell proliferation in SGC-7901. The cell colony, wound healing, and cell cycle distribution show that the complexes can validly inhibit the cell growth at G2/M phase. Apoptotic studied with Annex V/PI doubling method showed that Ru1lipo and Ru2lipo can effectively induce apoptosis. Reactive oxygen species (ROS), malondialdehyde, glutathione and GPX4 demonstrate that Ru1lipo and Ru2lipo improve ROS and malondialdehyde levels, inhibit generation of glutathione, and finally result in a ferroptosis. Ru1lipo and Ru2lipo interact on the lysosomes and mitochondria and damage mitochondrial dysfunction. Additionally, Ru1lipo and Ru2lipo increase intracellular Ca2+ concentration and induce autophagy. The RNA-sequence and molecular docking were performed, the expression of Bcl-2 family was investigated by Western blot analysis. Antitumor in vivo experiments confirm that 1.23 mg/kg, 2.46 mg/kg of Ru1lipo possesses a high inhibitory rate of 53.53% and 72.90% to prevent tumor growth, hematoxylin-eosin (H&E) results show that Ru1lipo doesn't cause chronic organ damage and strongly promotes the necrosis of solid tumor. Taken together, we conclude that Ru1lipo and Ru2lipo cause cell death through the following pathways: autophagy, ferroptosis, ROS-regulated mitochondrial dysfunction, and blocking the PI3K/AKT/mTOR.
Collapse
Affiliation(s)
- Yichuan Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yan Yang
- Department of Pharmacy, Guangdong Second Provincial General Hospital, 510317, PR China.
| | - Ruitong Zhong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Huiyan Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
19
|
Ceramella J, Troiano R, Iacopetta D, Mariconda A, Pellegrino M, Catalano A, Saturnino C, Aquaro S, Sinicropi MS, Longo P. Synthesis of Novel N-Heterocyclic Carbene-Ruthenium (II) Complexes, “Precious” Tools with Antibacterial, Anticancer and Antioxidant Properties. Antibiotics (Basel) 2023; 12:antibiotics12040693. [PMID: 37107055 PMCID: PMC10135378 DOI: 10.3390/antibiotics12040693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Ruthenium N-heterocyclic carbene (Ru-NHC) complexes show interesting physico-chemical properties as catalysts and potential in medicinal chemistry, exhibiting multiple biological activities, among them anticancer, antimicrobial, antioxidant, and anti-inflammatory. Herein, we designed and synthesized a new series of Ru-NHC complexes and evaluated their biological activities as anticancer, antibacterial, and antioxidant agents. Among the newly synthesized complexes, RANHC-V and RANHC-VI are the most active against triple-negative human breast cancer cell lines MDA-MB-231. These compounds were selective in vitro inhibitors of the human topoisomerase I activity and triggered cell death by apoptosis. Furthermore, the Ru-NHC complexes’ antimicrobial activity was studied against Gram-positive and -negative bacteria, revealing that all the complexes possessed the best antibacterial activity against the Gram-positive Staphylococcus aureus, at a concentration of 25 µg/mL. Finally, the antioxidant effect was assessed by DPPH and ABTS radicals scavenging assays, resulting in a higher ability for inhibiting the ABTS•+, with respect to the well-known antioxidant Trolox. Thus, this work provides encouraging insights for further development of novel Ru-NHC complexes as potent chemotherapeutic agents endowed with multiple biological properties.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Rubina Troiano
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende, Italy
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
20
|
Adhikari S, Hussain Sheikh A, Baildya N, Mahmoudi G, Alam Choudhury N, Okpareke O, Sen T, Kumar Verma A, Kumar Singh R, Pathak S, Kaminsky W. Antiproliferative Evaluation and Supramolecular Properties of a Pd(II) complex Harvested from Benzil bis(pyridyl hydrazone) Ligand: Combined Experimental and Theoretical Studies. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
21
|
Sarıdağ T, Buldurun K. New Ruthenium-p-Cymene Complexes Containing o-Vanillin and 4-Benzoxybenzaldehyde Schiff Base Ligands; Synthesis, Characterization and Catalytic Activity in the Transfer Hydrogenation of Ketones. Catal Letters 2023. [DOI: 10.1007/s10562-023-04286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
22
|
Chen C, Lv H, Xu H, Zhu D, Shen C. Cyclometalated Ru(II)-NHC complexes with phenanthroline ligands induce apoptosis mediated by mitochondria and endoplasmic reticulum stress in cancer cells. Dalton Trans 2023; 52:1671-1679. [PMID: 36648504 DOI: 10.1039/d2dt03405k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The exploration of ruthenium complexes as anticancer drugs has been the focus of intense investigation. In this study, we synthesized and characterized four C,N-cyclometalated ruthenium(II) complexes (Ru1-Ru4) coordinated with pyridine-functionalized N-heterocyclic carbene (NHC) and auxiliary ligands (e.g., acetonitrile, 1,10-phenanthroline, 3,4,7,8-tetramethyl-1,10-phenanthroline, and 4,7-diphenyl-1,10-phenanthroline). X-ray diffraction analysis showed that all of the four cycloruthenated complexes are hexa-coordinated in a typical octahedral geometry. In vitro cytotoxic studies revealed that cyclometalated Ru-NHC complexes Ru3 and Ru4 had stronger anticancer activity than their corresponding Ru-NHC precursor Ru1 and the clinically used cisplatin. For HeLa cells, Ru3 and Ru4 exhibited potent cytotoxicity with the IC50 value of 4.31 ± 0.42 μM and 3.14 ± 0.23 μM, respectively, which was approximately three times lower than that of cisplatin. More interestingly, Ru3 and Ru4 not only effectively inhibited the proliferation of HeLa cells, but also exhibited potential anti-migration activity. In the scratch wound healing assay, Ru3 and Ru4 treatment significantly reduced the wound healing rate of HUVEC cells. Mechanistic studies showed that Ru3 and Ru4 caused a dual action mode of mitochondrial membrane depolarization and endoplasmic reticulum stress and finally induced apoptosis of HeLa cells.
Collapse
Affiliation(s)
- Chao Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China. .,College of Life Sciences, Huzhou University, Huzhou, 313000, PR China
| | - He Lv
- College of Life Sciences, Huzhou University, Huzhou, 313000, PR China
| | - Hao Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Dancheng Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Chao Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
23
|
Zhu L, Wang S. A convergent fabrication of pH and redox dual-responsive hybrids of mesoporous silica nanoparticles for the treatment of breast cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:147-165. [PMID: 36136033 DOI: 10.1080/09205063.2022.2112303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mesoporous silica nanoparticle (MSN), sodium hyaluronate (SH), silk fibroin (SS), and oxidized sodium carboxymethyl cellulose (O-CMC) hybrids were used to develop an intelligent drug delivery platform that may be employed for pH and redox-responsive bi-drug administration. The first drug, cytarabine (Cyt), was loaded with amino-functionalized mesoporous silica (MSN-NH2) encased by the hydrogel of cystamine (Cys) and SH cross-linked by amide bonds. Hydrophobic doxorubicin (DOX) was co-loaded with Cyt/MSN-NH2/SA in the hydrogel of SS and O-CMC in the Cyt- loaded hydrogel. Dual-responsive drug delivery may be achieved by encapsulating SS and O-CMC in a hydrogel, including Cyt/MSN-NH2/SA/DOX/SS/O-CMC, which has acyl hydrazone bonds (-HC = N) and disulfide bond (-S-S-) exchange reaction with glutathione (GSH). Compared to hydrogels encapsulating only one drug (Cyt or DOX), cell survival analysis revealed that the newly fabricated hydrogels have significantly greater chemotherapeutic efficacy. The cell proliferation of the fabricated nanoparticles was examined in MCF-7 and MDA-MB-231 cells, which indicates that the nanoparticles effectively kill the cancer cells without affecting non-cancerous cells. Further, we effectively investigated the morphological changes, and various biochemical staining methods examined nuclear fragmentation/condensation. Furthermore, the biosafety of the nanoparticles was investigated by the in vivo animal model, which reveals that they remarkably enhanced the safety profile in various organs. These outcomes demonstrated that this nanoparticle platform was a promising beneficial agent for improving breast cancer treatment.
Collapse
Affiliation(s)
- Limin Zhu
- Department of Thyroid and Breast Surgery, the First People's Hospital of Wenling, Wenling, China
| | - Shuangyan Wang
- Department of Thyroid and Breast Surgery, the First People's Hospital of Wenling, Wenling, China
| |
Collapse
|
24
|
Lv M, Qian X, Li S, Gong J, Wang Q, Qian Y, Su Z, Xue X, Liu HK. Unlocking the potential of iridium and ruthenium arene complexes as anti-tumor and anti-metastasis chemotherapeutic agents. J Inorg Biochem 2023; 238:112057. [PMID: 36370504 DOI: 10.1016/j.jinorgbio.2022.112057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
It is a major challenge to design novel multifunctional metal-based chemotherapeutic agents for anti-tumor and anti-metastasis applications. Two complexes (OA-Ir and OA-Ru) were synthesized via CuAAC (copper-catalyzed azide-alkyne cycloaddition) reaction from nontoxic Ir-N3 or Ru-N3 species and low toxic alkynyl precursor OA-Alkyne, and exhibited satisfactory anti-tumor and anti-metastasis pharmacological effects. Conjugation of Oleanolic acid (OA) and metal-arene species significantly enhanced the cytotoxicity in A2780 cells compared to the precursors through mitochondrial-induced autophagy pathway. Moreover, the two complexes could inhibit the cell metastasis and invasion through damage of actin dynamics and down-regulation of MMP2/MMP9 proteins. Combination of two precursors improved the lipophilicity and biocompatibility, simultaneously enhanced the cell uptake and the mitochondrial accumulation of metal-arene complexes, which caused mitochondrial membrane potential damage, oxidative phosphorylation, ATP depletion and autophagy. Besides, OA-Ir and OA-Ru displayed excellent activity to disintegrate the 3D multicellular tumor spheroids, showing potential for the treatment of solid tumors. This work provides a new way for developing novel metal-based complexes via CuAAC reaction for simultaneously inhibiting tumor proliferation and metastasis.
Collapse
Affiliation(s)
- Mengdi Lv
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoting Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shijie Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jie Gong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qun Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yong Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xuling Xue
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
25
|
Zeng S, Tang Q, Jiang K, Tang X. Fabrication of metformin and survivin siRNA encapsulated into polyethyleneimine-altered silk fibroin nanoparticles for the treatment of nasopharyngeal carcinoma. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
26
|
Qian X, Xia C, Chen X, Li Q, Li D. Self-assembled amphiphilic copolymers-doxorubicin conjugated nanoparticles for gastric cancer therapy with low in vivo toxicity and high efficacy. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2202-2219. [PMID: 35924948 DOI: 10.1080/09205063.2022.2100024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Amphiphilic copolymers have long been utilized to turn hydrophobic anticancer drugs into nanoparticles administered to patients with cancer. A lack of stability in these monotherapies may be blamed for their poor clinical results in patients with cancer. We propose novel nanotherapies based on polymeric small prodrugs that preserve pharmacologic effectiveness while significantly reducing the toxicity of the fabricated drugs in animals to overcome this problem. Doxorubicin is attached to the end of the PLA fragments through a hydrolyzable ester bond utilizing methoxypolyethylene glycol-block-poly(d, l-lactic acid) (mPEG-PCL(2K)) with conjugates to mimic the self-assembly of colloidal nanotherapies. In a gastric cancer xenograft model, this nanotherapy displays a long-lasting suppression of tumor growth once a reasonable dosage is administered. Our findings imply that a toxic chemical and hydrophobic can be converted into therapeutic effective self-delivery nanotreatment.
Collapse
Affiliation(s)
- Xiaoqi Qian
- Department of Gastroenterology, the First People's Hospital of Wenling, Wenling, China
| | - Chenmei Xia
- Department of Gastroenterology, the First People's Hospital of Wenling, Wenling, China
| | - Xia Chen
- Department of Gastroenterology, the First People's Hospital of Wenling, Wenling, China
| | - Qianqian Li
- Department of Gastroenterology, the First People's Hospital of Wenling, Wenling, China
| | - Dong Li
- Department of Gastroenterology, the First People's Hospital of Wenling, Wenling, China
| |
Collapse
|
27
|
Zhang N, Wu Y, Xu W, Li Z, Wang L. Synergic fabrication of multifunctional liposomes nanocomposites for improved radiofrequency ablation combination for liver metastasis cancer therapy. Drug Deliv 2022; 29:506-518. [PMID: 35147065 PMCID: PMC8845112 DOI: 10.1080/10717544.2021.2008056] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 02/02/2023] Open
Abstract
The field of biomedical research has recently been interested in nanoplatforms with various functionalities, such as cancer drug carriers and MRI and optical imaging, as well as thermal treatment, among other things. As a result of the present investigation, a unique multifunctional liposome (MFL) was established in this investigation. Using radiofrequency-induced imaging and drug release based on magnetic field impact, a dual drug delivery targeted with tumor multi-mechanism treatment was made more effective. The C60 (fullerene) surface was coated with iron nanocomposites to establish the proposed nanosystems, and PEGylation was used (Fe3O4-C60-PEG2000). For fullerene radiofrequency-triggered drug release, thermosensitive DPPC liposomes with folate-DSPE-PEG2000 enveloped the binary nanosystems and doxorubicin (DOX). The in vitro cytotoxicity of the nanocomposites was confirmed by the liver metastasis in HT-29 colon cancer cells using radiofrequency. The flow cytometry analysis confirmed the apoptosis cell death mechanism. The thermal treatment combined chemotherapeutic MFL nano framework transformed radiofrequency radiation from thermoresponsive liposomes, which was noticed both in vivo and in vitro. Due to their superior active tumor targeting and magnetic targeting characteristics, the MFL could also selectively destroy cancerous liver cells in highly co-localized targets.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yibin Wu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Weiqi Xu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhenjian Li
- 3D Biomedicine Science & Technology Co., Limited, Shanghai, China
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
28
|
Kalaiarasi G, Senthilrajkapoor P, Indumathy R. Various coordination behavior of coumarin appended Schiff bases towards Ruthenium(II) ion: Synthesis, spectral characterization and biological evaluation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Wu C, Zhang Y, Li F, Bei S, Pan M, Feng L. Precise engineering of cholesterol-loaded chitosan micelles as a promising nanocarrier system for co-delivery drug-siRNA for the treatment of gastric cancer therapy. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
30
|
Arunachalam A, Rengan R, Umapathy D, Arockiam AJV. Impact of Biphenyl Benzhydrazone-Incorporated Arene Ru(II) Complexes on Cytotoxicity and the Cancer Cell Death Mechanism. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Abirami Arunachalam
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, India
| | - Devan Umapathy
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Antony Joseph Velanganni Arockiam
- Molecular Oncology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| |
Collapse
|
31
|
Li X, Xie S, Shen J, Chen S, Yan J. Construction of functionalized ruthenium-modified selenium coated with pH-responsive silk fibroin nanomaterials enhanced anticancer efficacy in hepatocellular cancer. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Bai B, Weng S, Wu Z, Xie Z, Tang J, Yang Q. Fabrication of Dual-Responsive pH and Reduction of Dual Anticancer Drugs Conjugates Dextran Self-Assembly for Osteosarcoma Cancer Treatment. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Li D, Xia C, Chen X, Li Q, Li J, Qian X. Fabrication of novel ruthenium loaded silk fibroin nanomaterials for fingolimod release improved antitumor efficacy in hepatocellular carcinoma. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1955-1972. [PMID: 35820069 DOI: 10.1080/09205063.2022.2090348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cancer targeted nanomaterials-based drug delivery systems have been described as promising. In this work, we employed silk fibroin (SF), ruthenium nanomaterials (RuNMs), heptapeptide (T7), and fingolimod (FTY720) to construct a pH-responsive smart nanomaterials drug delivery system. They were spherical with a mean size of around 120 nm, which may have contributed to the improved penetration and retention of the NMs in tumour areas. T7-FTY720@SF-RuNMs had an encapsulation efficiency (EE) of 72.51 ± 4.02%. When the pH of an environment is acidic, the release of FTY720 from nanocarriers is enhanced. T7-FTY720@SF-RuNMs demonstrated increased cellular uptake selective and anticancer efficacy for hepatocellular cancer in both in vitro and in vivo experiments. Additionally, the in vivo biodistribution investigation showed that T7-FTY720@SF-RuNMs could efficiently aggregate in the tumour location, improving their in vivo potential to kill cancer cells. T7-FTY720@SF-RuNMs demonstrated little toxicity to tumour-bearing animals in investigations of histology and immunohistochemistry, showing that the fabricated NMs are biocompatible in vivo. For the treatment of hepatocellular cancer, the T7-FTY720@SF-RuNMs delivery method offers significant promise.
Collapse
Affiliation(s)
- Dong Li
- Department of Gastroenterology, the First People's Hospital of Wenling, Wenling, China
| | - Chenmei Xia
- Department of Gastroenterology, the First People's Hospital of Wenling, Wenling, China
| | - Xia Chen
- Department of Gastroenterology, the First People's Hospital of Wenling, Wenling, China
| | - Qianqian Li
- Department of Gastroenterology, the First People's Hospital of Wenling, Wenling, China
| | - Jian Li
- Department of General Surgery, Baoji Hospital, Baoji, China
| | - Xiaoqi Qian
- Department of Gastroenterology, the First People's Hospital of Wenling, Wenling, China
| |
Collapse
|
34
|
Swaminathan S, Haribabu J, Mohamed Subarkhan MK, Manonmani G, Senthilkumar K, Balakrishnan N, Bhuvanesh N, Echeverria C, Karvembu R. Coordination Behavior of Acylthiourea Ligands in Their Ru(II)–Benzene Complexes─Structures and Anticancer Activity. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Srividya Swaminathan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tiruchirappalli 620015, Tamil Nadu, India
| | - Jebiti Haribabu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tiruchirappalli 620015, Tamil Nadu, India
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, Copiapo 1532502, Chile
| | - Mohamed Kasim Mohamed Subarkhan
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou 310003, PR China
- BioMe-Live Analytical Centre, Karaikudi 630003, Tamil Nadu, India
| | | | | | - Nithya Balakrishnan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tiruchirappalli 620015, Tamil Nadu, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A & M University, College Station 77842, Texas, United States
| | - Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, Copiapo 1532502, Chile
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tiruchirappalli 620015, Tamil Nadu, India
| |
Collapse
|
35
|
Kalaiarasi G, Mohamed Subarkhan M, Fathima Safwana C, Sruthi S, Sathiya Kamatchi T, Keerthana B, Ashok Kumar S. New organoruthenium(II) complexes containing N, X-donor (X = O, S) heterocyclic chelators: Synthesis, spectral characterization, in vitro cytotoxicity and apoptosis investigation. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120863] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Xu G, Tang K, Hao Y, Wang X, Sui L. Polymeric Nanocarriers Loaded with a Combination of Gemcitabine and Salinomycin: Potential Therapeutics for Liver Cancer Treatment. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02251-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Kuzin S, Bogomolov D, Berechikidze I, Larina S, Sakharova T. Peculiar features of bone marrow cell proliferation in Djungarian hamsters with genetic disorders under thiotepa effect. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e77353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The paper aims to examine the proliferation of bone marrow cell pool in Djungarian hamsters and the subsequent restoration of their genetic stability after the action of thiotepa (TT). The study involved 36 animals, of which 16 were in the control group (injected with 0.25 ml of physiological solution), and 20 in the experimental group (0.25 ml of thiotepa at a dose of 1.5 mg per 1 kg of body weight). The maximum number of cells with CA amounting to 30.0% was observed 13 hours after TT injection (p≤0.05 between the control and experimental groups) and rapidly declined to 5.7% over subsequent periods by the 37th hour of the experiment (p≤0.05). The results suggest that the restoration of cell pool genetic stability is largely associated with the cell selection mechanisms, which confers an advantage over cell proliferation without chromosome anomalies.
Collapse
|
38
|
Lin X, Bai Y, Jiang Q. Precise Fabrication of Folic Acid-Targeted Therapy on Metformin Encapsulated β-Cyclodextrin Nanomaterials for Treatment of Lung Cancer. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Fan ZX, Zhang J, Wang X, Miao GY. Convergent Fabrication of Allicin Loaded Polymeric Nanoparticles for Treatment of In Vitro Squamous Carcinoma Cells and Systemic Toxicity. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02246-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Enhancing Cell Migration on Polyetherimide-Grafted Fe3O4@SiO2-Labeled Umbilical Cord-Derived Mesenchymal Stem Cells Arrests in Intervertebral Disc Regeneration. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
González-Ballesteros MM, Mejía C, Ruiz-Azuara L. Metallodrugs, an approach against invasion and metastasis in cancer treatment. FEBS Open Bio 2022; 12:880-899. [PMID: 35170871 PMCID: PMC9063434 DOI: 10.1002/2211-5463.13381] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/21/2022] [Accepted: 02/15/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is a heterogeneous and multifactorial disease that causes high mortality throughout the world; therefore, finding the most effective therapies is a major research challenge. Currently, most anticancer drugs present a limited number of well‐established targets, such as cell proliferation or death; however, it is important to consider that the worse progression of cancer toward pathological stages implies invasion and metastasis processes. Medicinal Inorganic Chemistry (MIC) is a young area that deals with the design, synthesis, characterization, preclinical evaluation, and mechanism of action of new inorganic compounds, called metallodrugs. The properties of metallic ions allow enriching of strategies for the design of new drugs, enabling the adjustment of physicochemical and stereochemical properties. Metallodrugs can adopt geometries, such as tetrahedral, octahedral, square planar, and square planar pyramid, which adjusts their arrangement and facilitates binding with a wide variety of targets. The redox properties of some metal ions can be modulated by the presence of the bound ligands to adjust their interaction, thereby opening a range of mechanisms of action. In this regard, the mechanisms of action that trigger the biological activity of metallodrugs have been generally identified by: (a) coordination of the metal to biomolecules (for instance, cisplatin binds to the N7 in DNA guanine, as Pt‐N via coordination of the inhibition of enzymes); (b) redox‐active; and (c) ROS production. For this reason, a series of metallodrugs can interact with several specific targets in the anti‐invasive processes of cancer and can prevent metastasis. The structural base of several metal compounds shows great anticancer potential by inhibiting the signaling pathways related to cancer progression. In this minireview, we present the advances in the field of antimetastatic effects of metallodrugs.
Collapse
Affiliation(s)
- Mauricio M González-Ballesteros
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México, CP, 04510, Mexico
| | - Carmen Mejía
- Laboratorio de Biología Celular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, C.P, 76230, México
| | - Lena Ruiz-Azuara
- Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México, CP, 04510, Mexico
| |
Collapse
|
42
|
Engineering of combination drug delivery of pH/reduction response potential nanocarrier for the treatment of liver cancer. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02312-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Goudarzi A, Ghassemzadeh M, Saeidifar M, Aghapoor K, Mohsenzadeh F, Neumüller B. In vitro cytotoxicity and antibacterial activity of [Pd(AMTTO)(PPh 3) 2]: a novel promising palladium( ii) complex. NEW J CHEM 2022. [DOI: 10.1039/d1nj05545c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The synthesis and characterization of a novel palladium complex based on a bioactive 3-mercapto-1,2,4-triazine derivative have been investigated. The Pd(ii) complex showed excellent anticancer and antibacterial activity.
Collapse
Affiliation(s)
- Atousa Goudarzi
- Department of Inorganic Chemistry, Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., 17th Km of Tehran–Karaj Highway, Tehran 14968-13151, Iran
| | - Mitra Ghassemzadeh
- Department of Inorganic Chemistry, Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., 17th Km of Tehran–Karaj Highway, Tehran 14968-13151, Iran
| | - Maryam Saeidifar
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Kioumars Aghapoor
- Department of Inorganic Chemistry, Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., 17th Km of Tehran–Karaj Highway, Tehran 14968-13151, Iran
| | - Farshid Mohsenzadeh
- Department of Inorganic Chemistry, Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., 17th Km of Tehran–Karaj Highway, Tehran 14968-13151, Iran
| | - Bernhard Neumüller
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| |
Collapse
|
44
|
Giriraj K, Mohamed Kasim MS, Balasubramaniam K, Thangavel SK, Venkatesan J, Suresh S, Shanmugam P, Karri C. Various coordination modes of new coumarin Schiff bases toward Cobalt (III) ion: Synthesis, spectral characterization, in vitro cytotoxic activity, and investigation of apoptosis. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6536] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kalaiarasi Giriraj
- Department of Chemistry Karpagam Academy of Higher Education (Deemed to be University) Coimbatore 641021 India
| | - Mohamed Subarkhan Mohamed Kasim
- The First Affiliated Hospital; Key Laboratory of Combined Multi Organ Transplantation, Ministry of Public Health, School of Medicine Zhejiang University Hangzhou PR China
| | - Keerthana Balasubramaniam
- Department of Microbiology Karpagam Academy of Higher Education (Deemed to be University) Coimbatore 641021 India
| | - Sathiya Kamatchi Thangavel
- Centre for Organometallic Chemistry, School of Chemistry Bharathidasan University Tiruchirappalli 620024 India
| | - Janani Venkatesan
- Department of Chemistry Karpagam Academy of Higher Education (Deemed to be University) Coimbatore 641021 India
| | - Sharmila Suresh
- Department of Chemistry Karpagam Academy of Higher Education (Deemed to be University) Coimbatore 641021 India
| | - Pritha Shanmugam
- Department of Chemistry Karpagam Academy of Higher Education (Deemed to be University) Coimbatore 641021 India
| | - Chiranjeevi Karri
- Department of Chemistry Karpagam Academy of Higher Education (Deemed to be University) Coimbatore 641021 India
| |
Collapse
|
45
|
Zhang Z, Su T, Han Y, Yang Z, Wei J, Jin L, Fan H. A convergent synthetic platform for dual anticancer drugs functionalized by reduced graphene nanocomposite delivery for hepatocellular cancer. Drug Deliv 2021; 28:1982-1994. [PMID: 34569406 PMCID: PMC8477966 DOI: 10.1080/10717544.2021.1974606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/23/2021] [Indexed: 01/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is widespread cancer with a high degree of morbidity and mortality in individuals worldwide and a serious concern for its resistance to present chemotherapy drugs. In this investigation, the combination of cisplatin (CPT) and metformin (MET) to kill the HepG2 and caco-2 cells was developed into a new pH-responding magnetic nanocomposite based on reduced graphene oxide. Polyhydroxyethyl methacrylic (PHEA) was then linked employing grafting from approach to the reduced graphene oxide by ATRP polymerization (Fe3O4@rGO-G-PSEA). FT-IR, SEM, XRD, DLS, and TGA analyses evaluated physicochemical characteristics of the nanocomposite. In addition, the cellular uptake property of the nanocomposites was examined by the HepG2 cells. The outcomes of cell viability results indicate that the nanoparticles loaded with MET&CPT showed the lowest concentration rate of HepG2 and Caco-2 cells compared to the drug-loaded single nanocomposite groups and free drugs. The histological analysis has demonstrated relatively safe and does not produce different stress such as swelling and inflammation of the mice organs. Our results show the enhancement in cytotoxicity in HepG2 and Cocoa-2 cells by MET and CPT graphene oxide-based nanocomposite by promoting apoptotic response. Moreover, Fe3O4@rGO-G-PSEA showed potent in vivo antitumor efficacy but showed no adverse toxicity to normal tissues. Together, this study can provide insight into how surface embellishment may tune these nanocomposites' tumor specificity and provide the basis for developing anticancer efficacy.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tianhao Su
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanjing Han
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zeran Yang
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jian Wei
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Long Jin
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Haining Fan
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, Xining, China
| |
Collapse
|
46
|
Zhong T, Liu X, Li H, Zhang J. Co-delivery of sorafenib and crizotinib encapsulated with polymeric nanoparticles for the treatment of in vivo lung cancer animal model. Drug Deliv 2021; 28:2108-2118. [PMID: 34607478 PMCID: PMC8510624 DOI: 10.1080/10717544.2021.1979129] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022] Open
Abstract
To treat various cancers, including lung cancer, chemotherapy requires the systematic administering of chemotherapy. The chemotherapeutic effectiveness of anticancer drugs has been enhanced by polymer nanoparticles (NPs), according to new findings. As an outcome, we have developed biodegradable triblock poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) polymeric NPs for the co-delivery of sorafenib (SORA) and crizotinib (CRIZ) and investigated their effect on lung cancer by in vitro and in vivo. There is little polydispersity in the SORA-CRIZ@NPs, an average size of 30.45 ± 2.89 nm range. A steady release of SORA and CRIZ was observed, with no burst impact. The apoptosis rate of SORA-CRIZ@NPs was greater than that of free drugs in 4T1 and A549 cells. Further, in vitro cytotoxicity of the polymeric NPs loaded with potential anticancer drugs was more quickly absorbed by cancer cells. On the other hand, compared to free drugs (SORA + CRIZ), SORA + CRIZ@NPs showed a substantial reduction of tumor development, longer survival rate, and a lowered side effect when delivered intravenously to nude mice xenograft model with 4T1 cancer cells. TUNEL positivity was also increased in tumor cells treated with SORA-CRIZ@NPs, demonstrating the therapeutic effectiveness. SORA-CRIZ@NPs might be used to treat lung cancer soon, based on the results from our new findings.
Collapse
Affiliation(s)
- Tian Zhong
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China (Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital), Chengdu, China
| | - Xingren Liu
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China (Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital), Chengdu, China
| | - Hongmin Li
- Tumor Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China (Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital), Chengdu, China
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China (Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital), Chengdu, China
| |
Collapse
|
47
|
Wang X, Dong H. A convergent synthetic platform for anticancer drugs formulation with nanoparticle delivery for the treatment and nursing care of glioma cancer. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Liu H, Li X, Chen Z, Bai L, Wang Y, Lv W. Synergic fabrication of pembrolizumab loaded doxorubicin incorporating microbubbles delivery for ultrasound contrast agents mediated anti-proliferation and apoptosis. Drug Deliv 2021; 28:1466-1477. [PMID: 34259093 PMCID: PMC8281080 DOI: 10.1080/10717544.2021.1921080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 01/29/2023] Open
Abstract
This study evaluated pembrolizumab-conjugated, doxorubicin (DOX)-loaded microbubbles (PDMs) in combination with ultrasound (US) as molecular imaging agents for early diagnosis of B cell lymphomas, and as a targeted drug delivery system. Pembrolizumab, a monoclonal CD20 antibody, was attached to the surfaces of DOX-loaded microbubbles. PDM binding to B cell lymphoma cells was assessed using immunofluorescence. The cytotoxic effects of PDMs in combination with ultrasound (PDMs + US) were evaluated in vitro in CD20+ and CD20- cell lines, and its antitumor activities were assessed in Raji (CD20+) and Jurkat (CD20-) lymphoma cell-grafted mice. PDMs specifically bound to CD20+ cells in vitro and in vivo. Contrast enhancement was monitored in vivo via US. PDM peak intensities and contrast enhancement durations were higher in Raji than in Jurkat cell-grafted mice (p < 0.05). PDMs + US treatment resulted in improved antitumor effects and reduced systemic toxicity in Raji cell-grafted mice compared with other treatments (p < .05). Our results showed that PDMs + US enhanced tumor targeting, reduced systemic toxicity, and inhibited CD20+ B cell lymphoma growth in vivo. Targeted PDMs could be employed as US molecular imaging agents for early diagnosis, and are an effective targeted drug delivery system in combination with US for CD20+ B cell malignancy treatment.
Collapse
Affiliation(s)
- Huilin Liu
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar City, PR China
| | - Xing Li
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar City, PR China
| | - Zihe Chen
- School of Medical Technology, Qiqihar Medical University, Qiqihar City, PR China
| | - Lianjie Bai
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar City, PR China
| | - Ying Wang
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar City, PR China
| | - Weiyang Lv
- Department of Ultrasound, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar City, PR China
| |
Collapse
|
49
|
Meng F, Yun Z, Yan G, Wang G, Lin C. Engineering of anticancer drugs entrapped polymeric nanoparticles for the treatment of colorectal cancer therapy. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Sui L, Xu G, Hao Y, Wang X, Tang K. Engineering of marizomib loaded polymeric nanoparticles: In vivo safety profile and In vitro proliferation in hepatocellular carcinoma. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|