1
|
Ataker Y, Öncü Ö, Gülmez D, Sabuncuoğlu S, Arikan-Akdagli S, Sari S. New Ester-Containing Azole Derivatives With Potent Anti-Candida Effects: Synthesis, Antifungal Susceptibility, Cytotoxicity, and Molecular Modeling Studies. Drug Dev Res 2024; 85:e70021. [PMID: 39551958 DOI: 10.1002/ddr.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/27/2024] [Accepted: 11/02/2024] [Indexed: 11/19/2024]
Abstract
Mortalities due to mycoses have dramatically increased with the emergence of drug-resistant strains and growing immune-compromised populations globally. Azole antifungals have been the first choice against fungal infections of a wide spectrum and several azole derivatives with ester function were reported for their potentially promising and favorable activity against Candida spp. In this study, we designed and synthesized a series of 1-(aryl)-2-(1H-imidazol-1-yl/1H-1,2,4-triazol-1-yl)ethyl esters, and tested them against seven reference Candida strains using EUCAST reference microdilution method. Among the series, 6a, 6d, and 6g proved highly potent in vitro compared to fluconazole; especially against Candida albicans and Candida tropicalis with minimum inhibitor concentration (MIC) values as low as 0.125 and 0.06 mg/L, respectively, although their activities against Candida krusei and Candida glabrata remained limited. The compounds also showed minimal toxicity to murine fibroblasts according to the in vitro cytotoxicity tests. Molecular modeling predicted 6g as an orally available druglike compound according to all parameters and CYP51 inhibition as the likely mechanism for their antifungal effects. The study underpins the promise of azoles with ester functionality as a potential scaffold for small-molecule antifungal drug design.
Collapse
Affiliation(s)
- Yusuf Ataker
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Başkent University, Ankara, Turkey
| | - Özge Öncü
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Dolunay Gülmez
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Suna Sabuncuoğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sevtap Arikan-Akdagli
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
2
|
do Nascimento Dias J, Hurtado Erazo FA, Bessa LJ, Eaton P, Leite JRDSDA, Paes HC, Nicola AM, Silva-Pereira I, Albuquerque P. Synergic Effect of the Antimicrobial Peptide ToAP2 and Fluconazole on Candida albicans Biofilms. Int J Mol Sci 2024; 25:7769. [PMID: 39063009 PMCID: PMC11276877 DOI: 10.3390/ijms25147769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Candida albicans is one of the agents of invasive candidiasis, a life-threatening disease strongly associated with hospitalization, particularly among patients in intensive care units with central venous catheters. This study aimed to evaluate the synergistic activity of the antifungal peptide ToAP2 combined with fluconazole against C. albicans biofilms grown on various materials. We tested combinations of different concentrations of the peptide ToAP2 with fluconazole on C. albicans biofilms. These biofilms were generated on 96-well plates, intravenous catheters, and infusion tubes in RPMI medium at two maturation stages. Scanning electron microscopy and atomic force microscopy were employed to assess the biofilm structure. We also evaluated the expression of genes previously proven to be involved in C. albicans biofilm formation in planktonic and biofilm cells after treatment with the peptide ToAP2 using qPCR. ToAP2 demonstrated a synergistic effect with fluconazole at concentrations up to 25 µM during both the early and mature stages of biofilm formation in 96-well plates and on medical devices. Combinations of 50, 25, and 12.5 µM of ToAP2 with 52 µM of fluconazole significantly reduced the biofilm viability compared to individual treatments and untreated controls. These results were supported by substantial structural changes in the biofilms observed through both scanning and atomic force microscopy. The gene expression analysis of C. albicans cells treated with 25 µM of ToAP2 revealed a decrease in the expression of genes associated with membrane synthesis, along with an increase in the expression of genes involved in efflux pumps, adhesins, and filamentation. Our results highlight the efficacy of the combined ToAP2 and fluconazole treatment against C. albicans biofilms. This combination not only shows therapeutic potential but also suggests its utility in developing preventive biofilm tools for intravenous catheters.
Collapse
Affiliation(s)
- Jhones do Nascimento Dias
- Laboratory of Molecular Biology of Fungi, University of Brasilia, Brasilia 70910-900, Brazil; (J.d.N.D.); (F.A.H.E.)
| | - Fabián Andrés Hurtado Erazo
- Laboratory of Molecular Biology of Fungi, University of Brasilia, Brasilia 70910-900, Brazil; (J.d.N.D.); (F.A.H.E.)
| | - Lucinda J. Bessa
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (L.J.B.); (P.E.)
| | - Peter Eaton
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (L.J.B.); (P.E.)
- The Bridge, School of Chemistry, University of Lincoln, Lincoln LN6 7TS, UK
| | | | - Hugo Costa Paes
- Faculty of Medicine, University of Brasilia, Brasilia 70910-900, Brazil; (H.C.P.); (A.M.N.)
| | - André Moraes Nicola
- Faculty of Medicine, University of Brasilia, Brasilia 70910-900, Brazil; (H.C.P.); (A.M.N.)
| | - Ildinete Silva-Pereira
- Laboratory of Molecular Biology of Fungi, University of Brasilia, Brasilia 70910-900, Brazil; (J.d.N.D.); (F.A.H.E.)
| | - Patrícia Albuquerque
- Laboratory of Molecular Biology of Fungi, University of Brasilia, Brasilia 70910-900, Brazil; (J.d.N.D.); (F.A.H.E.)
| |
Collapse
|
3
|
Sari S, Yurtoğlu S, Zengin M, Marcinkowska M, Siwek A, Saraç S. Azoles display promising anticonvulsant effects through possible PPAR-α activation. Neurosci Lett 2024; 828:137750. [PMID: 38548219 DOI: 10.1016/j.neulet.2024.137750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Azoles such as nafimidone, denzimol and loreclezole are known for their clinical efficacy against epilepsy, and loreclezole acts by potentiating γ-aminobutyric acid (GABA)-ergic currents. In the current study, we report a series of azole derivatives in alcohol ester and oxime ester structure showing promising anticonvulsant effects in 6 Hz and maximal electro shock (MES) models with minimal toxicity. The most promising of the series, 5f, was active in both 6 Hz and MES tests with a median effective dose (ED50) of 118.92 mg/kg in 6 Hz test and a median toxic dose (TD50) twice as high in mice. The compounds were predicted druglike and blood-brain barrier (BBB) penetrant in silico. Contrary to what was expected, the compounds showed no in vitro affinity to GABAA receptors (GABAARs) in radioligand binding assays; however, they were found structurally similar to peroxisome proliferator-activated receptors alpha (PPAR-α) agonists and predicted to show high affinity and agonist-like binding to PPAR-α in molecular docking studies. As a result, 5f emerged as a safe azole anticonvulsant with a wide therapeutic window and possible action through PPAR-α activation.
Collapse
Affiliation(s)
- Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| | - Sibel Yurtoğlu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Merve Zengin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Monika Marcinkowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Agata Siwek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Selma Saraç
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Baskent University, Ankara, Turkey
| |
Collapse
|
4
|
Rojas AE, Cárdenas LY, García MC, Pérez JE. Expression of ERG11, ERG3, MDR1 and CDR1 genes in Candida tropicalis. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:144-155. [PMID: 37721916 PMCID: PMC10575625 DOI: 10.7705/biomedica.6852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/09/2023] [Indexed: 09/20/2023]
Abstract
INTRODUCTION Drug resistance to azoles is a growing problem in the Candida genus. OBJECTIVE To analyze molecularly the genes responsible for fluconazole resistance in Candida tropicalis strains. MATERIALS AND METHODS Nineteen strains, with and without exposure to fluconazole, were selected for this study. The expression of MDR1, CDR1, ERG11, and ERG3 genes was analyzed in sensitive, dose-dependent sensitive, and resistant strains exposed to different concentrations of the antifungal drug. RESULTS MDR1, ERG11 and ERG3 genes were significantly overexpressed in the different sensitivity groups. CDR1 gene expression was not statistically significant among the studied groups. Seven of the eight fluconazole-resistant strains showed overexpression of one or more of the analyzed genes. In some dose-dependent sensitive strains, we found overexpression of CDR1, ERG11, and ERG3. CONCLUSION The frequency of overexpression of ERG11 and ERG3 genes indicates that they are related to resistance. However, the finding of dose-dependent resistant/sensitive strains without overexpression of these genes suggests that they are not exclusive to this phenomenon. More basic research is needed to study other potentially involved genes in the resistance mechanism to fluconazole.
Collapse
Affiliation(s)
- Ana Elisa Rojas
- Grupo de Investigación en Enfermedades Infecciosas - GINEI, Universidad Católica de Manizales, Manizales, Colombia..
| | - Leidy Yurany Cárdenas
- Grupo de Investigación en Enfermería - GRIEN, Universidad Católica de Manizales y Universidad de Caldas, Manizales, Colombia..
| | - María Camila García
- Grupo de Investigación en Enfermedades Infecciosas - GINEI, Universidad Católica de Manizales, Manizales, Colombia..
| | - Jorge Enrique Pérez
- Grupo de Investigación BIOSALUD, Universidad de Caldas, Manizales, Colombia..
| |
Collapse
|
5
|
Sari S, Önder S, Akkaya D, Sabuncuoğlu S, Zengin M, Barut B, Karakurt A. Azole derivatives inhibit wildtype butyrylcholinesterase and its common mutants. Drug Dev Res 2023; 84:1018-1028. [PMID: 37154110 DOI: 10.1002/ddr.22071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/10/2023]
Abstract
Azoles, which have been used for antifungal chemotherapy for decades, have recently been of interest for their efficacy against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). There is little known about the potential of azoles against BChE, however there is none regarding their inhibitory effects against mutants of BChE. In the current study, an azole library of 1-aryl-2-(1H-imidazol-1-yl)ethanol/ethanone oxime esters were tested against AChE and BChE, which yielded derivates more potent than the positive control, galantamine, against both isoforms. Kinetic analyses were performed for wildtype and mutant (A328F and A328Y) inhibition for the two most potent BChE inhibitors, pivalic and 3-bezoylpropanoic acid esters of 2-(1H-imidazol-1-yl)-1-(2-naphthyl)ethanol, which were found to have great affinity to the wildtype and mutant BChE types with Ki values as low as 0.173 ± 0.012 µM. The compounds were identified to show linear competitive or mixed type inhibition. Molecular modeling confirmed these kinetic data and provided further insights regarding molecular basis of BChE inhibition by the active derivatives. Thus, current study suggests new azole derivatives with promising cholinesterase inhibitory effects and reveals the first set of information to promote our understanding for the inhibitory behavior of this class against the mutant BChE forms.
Collapse
Affiliation(s)
- Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Seda Önder
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Didem Akkaya
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Suna Sabuncuoğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Merve Zengin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Burak Barut
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Arzu Karakurt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Inönü University, Malatya, Turkey
| |
Collapse
|
6
|
Staniszewska M, Kuryk Ł, Gryciuk A, Kawalec J, Rogalska M, Baran J, Kowalkowska A. The Antifungal Action Mode of N-Phenacyldibromobenzimidazoles. Molecules 2021; 26:molecules26185463. [PMID: 34576932 PMCID: PMC8465355 DOI: 10.3390/molecules26185463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 11/29/2022] Open
Abstract
Our study aimed to characterise the action mode of N-phenacyldibromobenzimidazoles against C. albicans and C. neoformans. Firstly, we selected the non-cytotoxic most active benzimidazoles based on the structure–activity relationships showing that the group of 5,6-dibromobenzimidazole derivatives are less active against C. albicans vs. 4,6-dibromobenzimidazole analogues (5e–f and 5h). The substitution of chlorine atoms to the benzene ring of the N-phenacyl substituent extended the anti-C. albicans action (5e with 2,4-Cl2 or 5f with 3,4-Cl2). The excellent results for N-phenacyldibromobenzimidazole 5h against the C. albicans reference and clinical isolate showed IC50 = 8 µg/mL and %I = 100 ± 3, respectively. Compound 5h was fungicidal against the C. neoformans isolate. Compound 5h at 160–4 µg/mL caused irreversible damage of the fungal cell membrane and accidental cell death (ACD). We reported on chitinolytic activity of 5h, in accordance with the patterns observed for the following substrates: 4-nitrophenyl-N-acetyl-β-d-glucosaminide and 4-nitrophenyl-β-d-N,N′,N″-triacetylchitothiose. Derivative 5h at 16 µg/mL: (1) it affected cell wall by inducing β-d-glucanase, (2) it caused morphological distortions and (3) osmotic instability in the C. albicans biofilm-treated. Compound 5h exerted Candida-dependent inhibition of virulence factors.
Collapse
Affiliation(s)
- Monika Staniszewska
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland;
- Correspondence: (M.S.); (A.K.)
| | - Łukasz Kuryk
- Department of Virology, National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland;
- Clinical Science, Targovax Oy, Lars Sonckin Kaari 14, Espoo Stella Luna Business Park, 02600 Espoo, Finland
| | - Aleksander Gryciuk
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St 3, 00-664 Warsaw, Poland; (A.G.); (J.K.); (M.R.)
| | - Joanna Kawalec
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St 3, 00-664 Warsaw, Poland; (A.G.); (J.K.); (M.R.)
| | - Marta Rogalska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St 3, 00-664 Warsaw, Poland; (A.G.); (J.K.); (M.R.)
| | - Joanna Baran
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland;
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St 3, 00-664 Warsaw, Poland; (A.G.); (J.K.); (M.R.)
| | - Anna Kowalkowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St 3, 00-664 Warsaw, Poland; (A.G.); (J.K.); (M.R.)
- Correspondence: (M.S.); (A.K.)
| |
Collapse
|
7
|
Barut B, Sari S, Sabuncuoğlu S, Özel A. Azole antifungal compounds could have dual cholinesterase inhibitory potential according to virtual screening, enzyme kinetics, and toxicity studies of an inhouse library. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Sui YF, Ansari MF, Zhou CH. Pyrimidinetrione-imidazoles as a Unique Structural Type of Potential Agents towards Candida Albicans: Design, Synthesis and Biological Evaluation. Chem Asian J 2021; 16:1417-1429. [PMID: 33829660 DOI: 10.1002/asia.202100146] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/15/2021] [Indexed: 12/15/2022]
Abstract
Substantial morbidity and mortality of fungal infections have aroused concerns all over the world, and common Candida spp. currently bring about severe systemic infections. A series of pyrimidinetrione-imidazole conjugates as potentially antifungal agents were developed. Bioassays manifested that 4-fluobenzyl pyrimidinetrione imidazole 5 f exerted favorable inhibition towards C. albicans (MIC=0.002 mM), being 6.5 folds more active than clinical antifungal drug fluconazole (MIC=0.013 mM). Preliminary mechanism research indicated that compound 5 f could not only depolarize membrane potential but also permeabilize the membrane of C. albicans. Molecular docking was operated to simulate the interaction mode between molecule 5 f and CYP51. In addition, hybrid 5 f might form 5 f-DNA supramolecular complex via intercalating into DNA. The interference of membrane and DNA might contribute to its fungicidal capacity with no obvious tendency to induce the resistance against C. albicans. Conjugate 5 f endowed good blood compatibility as well as low cytotoxicity towards HeLa and HEK-293T cells.
Collapse
Affiliation(s)
- Yan-Fei Sui
- Institute of Bioorganic & Medicinal Chemistry', Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry', Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry', Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
9
|
Sari S, Avci A, Koçak E, Kart D, Sabuncuoğlu S, Doğan İS, Özdemir Z, Bozbey İ, Karakurt A, Saraç S, Dalkara S. Antibacterial azole derivatives: Antibacterial activity, cytotoxicity, and in silico mechanistic studies. Drug Dev Res 2020; 81:1026-1036. [PMID: 33216362 DOI: 10.1002/ddr.21721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/13/2020] [Accepted: 07/03/2020] [Indexed: 01/09/2023]
Abstract
Azole antifungal drugs are commonly used in antifungal chemotherapy. Antibacterial effects of some topical antifungals, such as miconazole and econazole, have lately been revealed, which suggests a promising venue in antimicrobial chemotherapy. In this study, we tested an in-house azole collection with antifungal properties for their antibacterial activity to identify dual-acting hits using the broth microdilution method. The in vitro screen yielded a number of potent derivatives against gram-positive bacteria, Enterococcus faecalis and Staphylococcus aureus. Compound 73's minimum inhibitory concentration (MIC) value less than 1 μg/ml against S. aureus; however, none of the compounds showed noteworthy activity against methicillin-resistant S. aureus (MRSA). All the active compounds were found safe at their MIC values against the healthy fibroblast cells in the in vitro cytotoxicity test. Molecular docking studies of the most active compounds using a set of docking programs with flavohemoglobin (flavoHb) structure, the proposed target of the azole antifungals with antibacterial activity, presented striking similarities regarding the binding modes and interactions between the tested compounds and the antifungal drugs with crystallographic data. In addition to being noncytotoxic, the library was predicted to be drug-like and free of pan-assay interference compounds (PAINS). As a result, the current study revealed several potential azole derivatives with both antifungal and antibacterial activities. Inhibition of bacterial flavoHb was suggested as a possible mechanism of action for the title compounds.
Collapse
Affiliation(s)
- Suat Sari
- Department of Pharmaceutical Chemistry, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Ahmet Avci
- Department of Pharmaceutical Chemistry, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Ebru Koçak
- Department of Pharmaceutical Chemistry, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Didem Kart
- Department of Pharmaceutical Microbiology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Suna Sabuncuoğlu
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - İnci Selin Doğan
- Department of Pharmaceutical Chemistry, Karadeniz Technical University Faculty of Pharmacy, Trabzon, Turkey
| | - Zeynep Özdemir
- Department of Pharmaceutical Chemistry, İnönü University Faculty of Pharmacy, Malatya, Turkey
| | - İrem Bozbey
- Department of Pharmaceutical Chemistry, Erzincan Binali Yıldırım University Faculty of Pharmacy, Erzincan, Turkey
| | - Arzu Karakurt
- Department of Pharmaceutical Chemistry, İnönü University Faculty of Pharmacy, Malatya, Turkey
| | - Selma Saraç
- Department of Pharmaceutical Chemistry, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Sevim Dalkara
- Department of Pharmaceutical Chemistry, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| |
Collapse
|
10
|
Sari S, Barut B, Özel A, Saraç S. Discovery of potent α-glucosidase inhibitors through structure-based virtual screening of an in-house azole collection. Chem Biol Drug Des 2020; 97:701-710. [PMID: 33107197 DOI: 10.1111/cbdd.13805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/01/2020] [Accepted: 10/17/2020] [Indexed: 12/21/2022]
Abstract
Diabetes mellitus, a chronic disorder characterized by hyperglycemia, is considered a pandemic of modern times. α-Glucosidase inhibitors emerged as a promising class of antidiabetic drugs with better tolerability compared with its alternatives. Azoles, although widely preferred in drug design, have scarcely been investigated for their potential against α-glucosidase. In this study, we evaluated α-glucosidase inhibitory effects 20 azole derivatives selected out of an in-house collection via structure-based virtual screening (VS) with consensus scoring approach. Seven compounds were identified with better IC50 values than acarbose (IC50 = 68.18 ± 1.01 µM), a well-known α-glucosidase inhibitor drug, which meant 35% success for our VS methodology. Compound 52, 54, 56, 59, and 81 proved highly potent with IC50 values in the range of 40-60 µM. According to the enzyme kinetics study, four of them were competitive, 56 was non-competitive inhibitor. Structure-activity relationships, quantum mechanical, and docking analyses showed that azole rings at ionized state may be key to the potency observed for the active compounds and modifications to shift the balance between the neutral and ionized states further to the latter could yield more potent derivatives.
Collapse
Affiliation(s)
- Suat Sari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Burak Barut
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Arzu Özel
- Department of Biochemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey.,Drug and Pharmaceutical Technology Application and Research Center, Karadeniz Technical University, Trabzon, Turkey
| | - Selma Saraç
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
11
|
Sari S, Koçak E, Kart D, Özdemir Z, Acar MF, Sayoğlu B, Karakurt A, Dalkara S. Azole derivatives with naphthalene showing potent antifungal effects against planktonic and biofilm forms of Candida spp.: an in vitro and in silico study. Int Microbiol 2020; 24:93-102. [DOI: 10.1007/s10123-020-00144-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022]
|
12
|
do Nascimento Dias J, de Souza Silva C, de Araújo AR, Souza JMT, de Holanda Veloso Júnior PH, Cabral WF, da Glória da Silva M, Eaton P, de Souza de Almeida Leite JR, Nicola AM, Albuquerque P, Silva-Pereira I. Mechanisms of action of antimicrobial peptides ToAP2 and NDBP-5.7 against Candida albicans planktonic and biofilm cells. Sci Rep 2020; 10:10327. [PMID: 32587287 PMCID: PMC7316759 DOI: 10.1038/s41598-020-67041-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
Candida albicans is a major cause of human infections, ranging from relatively simple to treat skin and mucosal diseases to systemic life-threatening invasive candidiasis. Fungal infections treatment faces three major challenges: the limited number of therapeutic options, the toxicity of the available drugs, and the rise of antifungal resistance. In this study, we demonstrate the antifungal activity and mechanism of action of peptides ToAP2 and NDBP-5.7 against planktonic cells and biofilms of C. albicans. Both peptides were active against C. albicans cells; however, ToAP2 was more active and produced more pronounced effects on fungal cells. Both peptides affected C. albicans membrane permeability and produced changes in fungal cell morphology, such as deformations in the cell wall and disruption of ultracellular organization. Both peptides showed synergism with amphotericin B, while ToAP2 also presents a synergic effect with fluconazole. Besides, ToAP2 (6.25 µM.) was able to inhibit filamentation after 24 h of treatment and was active against both the early phase and mature biofilms of C. albicans. Finally, ToAP2 was protective in a Galleria mellonella model of infection. Altogether these results point to the therapeutic potential of ToAP2 and other antimicrobial peptides in the development of new therapies for C. albicans infections.
Collapse
Affiliation(s)
- Jhones do Nascimento Dias
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Calliandra de Souza Silva
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Alyne Rodrigues de Araújo
- Biotechnology and Biodiversity Center Research, Biotec, Federal University of the Delta of Parnaíba, Parnaíba, Piauí, Brazil
| | - Jessica Maria Teles Souza
- Biotechnology and Biodiversity Center Research, Biotec, Federal University of the Delta of Parnaíba, Parnaíba, Piauí, Brazil
| | | | - Wanessa Felix Cabral
- Center for Research in Applied Morphology and Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Maria da Glória da Silva
- Center for Research in Applied Morphology and Immunology, NuPMIA, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Peter Eaton
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences of the University of Porto, Porto, Portugal
| | | | | | | | - Ildinete Silva-Pereira
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.
| |
Collapse
|