1
|
Smaldone G, Di Matteo F, Castelluccio R, Napolitano V, Miranda MR, Manfra M, Campiglia P, Vestuto V. Targeting the CXCR4/CXCL12 Axis in Cancer Therapy: Analysis of Recent Advances in the Development of Potential Anticancer Agents. Molecules 2025; 30:1380. [PMID: 40142155 PMCID: PMC11945090 DOI: 10.3390/molecules30061380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Cancer, a leading cause of premature death, arises from genetic and epigenetic mutations that transform normal cells into tumor cells, enabling them to proliferate, evade cell death, and stimulate angiogenesis. Recent evidence indicates that chemokines are essential in tumor development, activating receptors that promote proliferation, invasion, and metastasis. The CXCR4/CXCL12 signaling pathway is gaining attention as a promising target for cancer therapy. CXCR4, a chemokine receptor, is often overexpressed in various types of cancer, including kidney, lung, brain, prostate, breast, pancreas, ovarian, and melanomas. When it binds to its endogenous ligand, CXCL12, it promotes cell survival, proliferation, and migration, crucial mechanisms for the retention of hematopoietic stem cells in the bone marrow and the movement of lymphocytes. The extensive expression of CXCR4 in cancer, coupled with the constant presence of CXCL12 in various organs, drives the activation of this axis, which in turn facilitates angiogenesis, tumor progression, and metastasis. Given the detrimental role of the CXCR4/CXCL12 axis, the search for drugs acting selectively against this protein represents an open challenge. This review aims to summarize the recent advancements in the design and development of CXCR4 antagonists as potential anticancer agents.
Collapse
Affiliation(s)
- Gerardina Smaldone
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (G.S.); (F.D.M.); (R.C.); (V.N.); (P.C.)
| | - Francesca Di Matteo
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (G.S.); (F.D.M.); (R.C.); (V.N.); (P.C.)
| | - Roberta Castelluccio
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (G.S.); (F.D.M.); (R.C.); (V.N.); (P.C.)
| | - Valeria Napolitano
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (G.S.); (F.D.M.); (R.C.); (V.N.); (P.C.)
| | - Maria Rosaria Miranda
- PhD Program in Drug Discovery and Development, University of Salerno, 84084 Fisciano, Italy;
| | - Michele Manfra
- Department of Health Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (G.S.); (F.D.M.); (R.C.); (V.N.); (P.C.)
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (G.S.); (F.D.M.); (R.C.); (V.N.); (P.C.)
| |
Collapse
|
2
|
Wang F, Ma J, Yang L, Hu P, Tang S, Wang J, Li Z. Discovery of novel CXCR4 inhibitors for the treatment of inflammation by virtual screening and biological evaluation. Eur J Med Chem 2024; 275:116605. [PMID: 38885550 DOI: 10.1016/j.ejmech.2024.116605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
C-X-C chemokine receptor type 4 (CXCR4) exerts considerable influence on the pathogenesis of inflammatory disorders and offers a potent avenue for drug intervention. This research utilizes a hybrid virtual screening methodology constructed using computer-aided drug design to discover novel CXCR4 inhibitors for the treatment of inflammation. First, a compound library was screened by Lipinski's five rules and adsorption, distribution, metabolism, excretion and toxicity properties. Second, the HypoGen algorithm was used in constructing a 3D-QSAR pharmacophore model and verify it layer by layer, and the obtained optimal pharmacophore 1 (Hypo 1) was used as a 3D query for compound screening. Then, hit compounds were obtained through molecular docking (Libdock and CDOCKER). The toxicity of the compounds to MDA-MB-231 cells was evaluated in vitro, and their binding affinity to the target was evaluated according to how they compete with 12G5 antibody for CXCR4 on the surfaces of the MDA-MB-231 cells. Compound Hit14 showed the strongest binding affinity among the hit compounds and inhibited cell migration and invasion in Matrigel invasion and wound healing assay at a concentration of 100 nM, demonstrating a better effect than AMD3100. Western Blot experiments further showed that Hit14 blocked the CXCR4/CXCL12-mediated phosphorylation of Akt. Meanwhile, cellular thermal displacement assay analysis showed that CXCR4 protein bound to Hit14 had high thermal stability. Finally, through in vivo experiments, we found that Hit14 inhibited mouse ear inflammation and reduced ear swelling and damage. Therefore, Hit14 is a promising drug for the further development of CXCR4 inhibitors for inflammation treatment.
Collapse
Affiliation(s)
- Fang Wang
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jie Ma
- The Central Hospital of Wuhan, Tongji Medical College of HUST, Wuhan, China
| | - Lili Yang
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ping Hu
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Siming Tang
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jing Wang
- Department of Dermatology and Venereology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Zeng Li
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.
| |
Collapse
|
3
|
Wei X, Tao S, Mao H, Zhu H, Mao L, Pei W, Shi X, Shi Y, Zhang S, Wu Y, Wei K, Wang J, Pang S, Wang W, Chen C, Yang Q. Exosomal lncRNA NEAT1 induces paclitaxel resistance in breast cancer cells and promotes cell migration by targeting miR-133b. Gene 2023; 860:147230. [PMID: 36717039 DOI: 10.1016/j.gene.2023.147230] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/08/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
The lncRNA nuclear paraspeckle assembly transcript 1 (lncRNA NEAT1) has been associated with the development, metastasis and drug resistance of breast cancer (BC). However, the mechanisms underlying NEAT1-induced paclitaxel resistance in the microenvironment of BC remain unclear. In this study, NEAT1 expression was found to be high in paclitaxel-resistant BC cells (SKBR3/PR cells) and exosomes derived from these cells. NEAT1 promoted the migration of BC cells and their resistance to paclitaxel, whereas its downregulation reduced the drug resistance. In addition, downregulation of NEAT1 decreased the migration and proliferation of BC cells by inhibiting the expression of CXCL12 by reducing the adsorption of miR-133b. Furthermore, inhibition of miR-133b reversed the interference of NEAT1 and CXCL12 in paclitaxel resistance, migration and proliferation of BC cells. Knockdown of NEAT1 in a xenograft-bearing mouse model remarkably inhibited cancer progression and improved the response to paclitaxel. Altogether, this study revealed that SKBR3/PR cell-derived exosomal lncRNA NEAT1 can induce paclitaxel resistance and cell migration and growth in the tumour microenvironment of BC and may serve as a new target for the clinical treatment of BC.
Collapse
Affiliation(s)
- Xinyu Wei
- Anhui Province Key Laboratory of Translational Cancer Research, Clinical Testing and Diagnose Experimental Center, Bengbu Medical College, Anhui 233030, China
| | - Shuang Tao
- Anhui Province Key Laboratory of Translational Cancer Research, Clinical Testing and Diagnose Experimental Center, Bengbu Medical College, Anhui 233030, China
| | - Huilan Mao
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Life Sciences, Bengbu Medical College, Anhui 233030, China
| | - Haitao Zhu
- Anhui Province Key Laboratory of Translational Cancer Research, Clinical Testing and Diagnose Experimental Center, Bengbu Medical College, Anhui 233030, China
| | - Lingyu Mao
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Life Sciences, Bengbu Medical College, Anhui 233030, China
| | - Wenhao Pei
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Life Sciences, Bengbu Medical College, Anhui 233030, China
| | - Xiuru Shi
- Anhui Province Key Laboratory of Translational Cancer Research, Clinical Testing and Diagnose Experimental Center, Bengbu Medical College, Anhui 233030, China
| | - Yingxiang Shi
- Anhui Province Key Laboratory of Translational Cancer Research, Clinical Testing and Diagnose Experimental Center, Bengbu Medical College, Anhui 233030, China
| | - Shiwen Zhang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Life Sciences, Bengbu Medical College, Anhui 233030, China
| | - Yulun Wu
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Life Sciences, Bengbu Medical College, Anhui 233030, China
| | - Ke Wei
- Anhui Province Key Laboratory of Translational Cancer Research, Clinical Testing and Diagnose Experimental Center, Bengbu Medical College, Anhui 233030, China
| | - Jing Wang
- Anhui Province Key Laboratory of Translational Cancer Research, Clinical Testing and Diagnose Experimental Center, Bengbu Medical College, Anhui 233030, China
| | - Siyan Pang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Life Sciences, Bengbu Medical College, Anhui 233030, China
| | - Wenrui Wang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui 233030, China.
| | - Changjie Chen
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui 233030, China.
| | - Qingling Yang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biochemistry and Molecular Biology, Bengbu Medical College, Anhui 233030, China.
| |
Collapse
|
4
|
Metastasis prevention: How to catch metastatic seeds. Biochim Biophys Acta Rev Cancer 2023; 1878:188867. [PMID: 36842768 DOI: 10.1016/j.bbcan.2023.188867] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/09/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023]
Abstract
Despite considerable advances in the evolution of anticancer therapies, metastasis still remains the main cause of cancer mortality. Therefore, current strategies for cancer cure should be redirected towards prevention of metastasis. Targeting metastatic pathways represents a promising therapeutic opportunity aimed at obstructing tumor cell dissemination and metastatic colonization. In this review, we focus on preclinical studies and clinical trials over the last five years that showed high efficacy in suppressing metastasis through targeting lymph node dissemination, tumor cell extravasation, reactive oxygen species, pre-metastatic niche, exosome machinery, and dormancy.
Collapse
|
5
|
Wu Y, Yang Z, Cheng K, Bi H, Chen J. Small molecule-based immunomodulators for cancer therapy. Acta Pharm Sin B 2022; 12:4287-4308. [PMID: 36562003 PMCID: PMC9764074 DOI: 10.1016/j.apsb.2022.11.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy has led to a paradigm shift in the treatment of cancer. Current cancer immunotherapies are mostly antibody-based, thus possessing advantages in regard to pharmacodynamics (e.g., specificity and efficacy). However, they have limitations in terms of pharmacokinetics including long half-lives, poor tissue/tumor penetration, and little/no oral bioavailability. In addition, therapeutic antibodies are immunogenic, thus may cause unwanted adverse effects. Therefore, researchers have shifted their efforts towards the development of small molecule-based cancer immunotherapy, as small molecules may overcome the above disadvantages associated with antibodies. Further, small molecule-based immunomodulators and therapeutic antibodies are complementary modalities for cancer treatment, and may be combined to elicit synergistic effects. Recent years have witnessed the rapid development of small molecule-based cancer immunotherapy. In this review, we describe the current progress in small molecule-based immunomodulators (inhibitors/agonists/degraders) for cancer therapy, including those targeting PD-1/PD-L1, chemokine receptors, stimulator of interferon genes (STING), Toll-like receptor (TLR), etc. The tumorigenesis mechanism of various targets and their respective modulators that have entered clinical trials are also summarized.
Collapse
Affiliation(s)
| | | | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
6
|
Bai R, Jiang X, Hui Z, Yoon Y, Ge J, longZhu J, Shim H. Bisamide CXCR4 Modulators: Novel Anti‐IBD Agents Acting on the Chemotaxis of Inflammatory Cells. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Renren Bai
- School of Pharmacy Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Xiaoying Jiang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education Hangzhou Normal University Hangzhou 311121 P.R. China
| | - Zi Hui
- School of Pharmacy Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Younghyoun Yoon
- Department of Radiation Oncology, School of Medicine Emory University Atlanta GA 30322 USA
| | - Jiamin Ge
- School of Pharmacy Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Jun longZhu
- School of Pharmacy Hangzhou Normal University Hangzhou Zhejiang 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Hyunsuk Shim
- Department of Radiation Oncology, School of Medicine Emory University Atlanta GA 30322 USA
- Winship Cancer Institute Emory University Atlanta Georgia 30322 USA
| |
Collapse
|
7
|
A highly selective and potent CXCR4 antagonist for hepatocellular carcinoma treatment. Proc Natl Acad Sci U S A 2021; 118:2015433118. [PMID: 33753481 PMCID: PMC8020795 DOI: 10.1073/pnas.2015433118] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The CXC chemokine receptor type 4 (CXCR4) receptor and its ligand, CXCL12, are overexpressed in various cancers and mediate tumor progression and hypoxia-mediated resistance to cancer therapy. While CXCR4 antagonists have potential anticancer effects when combined with conventional anticancer drugs, their poor potency against CXCL12/CXCR4 downstream signaling pathways and systemic toxicity had precluded clinical application. Herein, BPRCX807, known as a safe, selective, and potent CXCR4 antagonist, has been designed and experimentally realized. In in vitro and in vivo hepatocellular carcinoma mouse models it can significantly suppress primary tumor growth, prevent distant metastasis/cell migration, reduce angiogenesis, and normalize the immunosuppressive tumor microenvironment by reducing tumor-associated macrophages (TAMs) infiltration, reprogramming TAMs toward an immunostimulatory phenotype and promoting cytotoxic T cell infiltration into tumor. Although BPRCX807 treatment alone prolongs overall survival as effectively as both marketed sorafenib and anti-PD-1, it could synergize with either of them in combination therapy to further extend life expectancy and suppress distant metastasis more significantly.
Collapse
|
8
|
An immune-related risk gene signature predicts the prognosis of breast cancer. Breast Cancer 2021; 28:653-663. [PMID: 33400208 DOI: 10.1007/s12282-020-01201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/02/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Accurate prediction of the outcome of breast cancer remains as a challenge due to its heterogeneous nature. We aimed to construct an immune-related risk signature to predict the overall outcome of breast cancer using bioinformatic approaches. METHODS In this study, transcriptome and survival data obtained from The Cancer Genome Atlas database and the Gene Expression Omnibus database were used to identify differentially expressed genes between breast cancer and normal samples. A regulatory network was constructed based on the immune-related prognostic genes and transcription factors screened from the differently expressed genes. The immune-related risk gene signature was obtained using the least absolute shrinkage and selection operator (LASSO) method and Cox regression model. The immune-related prognostic scores of breast cancer (IPSBC) calculated from the risk signature were used to group breast cancer patients by risk levels. The accuracy of IPSBC was evaluated by survival analysis and receiver operating characteristic curve analysis. The independency and the relationship of IPSBC with clinicopathological characteristics and abundance of tumor-infiltrated immune cells were also investigated. RESULTS A total of 4296 differentially expressed genes between breast cancer and normal samples were identified, and a total of 13 prognostic immune-related genes were eventually selected as the risk gene signature, which was an independent prognostic factor of the overall survival of breast cancer. The IPSBC stratified breast cancer patients into low- and high-risk groups. Breast cancer patients in the high-risk group were associated with worse overall outcomes, more advanced stage and less abundance of tumor-infiltrated immune cells, including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells compared to low-risk group. CONCLUSION In this study, an immune-related gene signature of breast cancer was identified, which could be used as potential prognostic and therapeutic targets of breast cancer.
Collapse
|
9
|
The Novel Target of Colorectal Carcinoma: TRIM44 Regulates Cell Migration and Invasion via Activation of CXCR4/NF-κB Signaling. Cell Biochem Biophys 2020; 79:113-121. [PMID: 33151473 DOI: 10.1007/s12013-020-00955-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 10/23/2022]
Abstract
Tripartite motif containing 44 (TRIM44) has been reported to regulate various biological effects in malignant cancers and matrix Metalloproteinases has been demonstrated to be associated with cancer cell migration and invasion. Nonetheless, the expression and molecular mechanism of TRIM44 in colorectal cancer (CRC) remain rarely known. TRIM44 was overexpressed or knocked down in CRC cells. Subsequently, the effects of TRIM44 on cell migration and invasion as well as underlying molecular mechanisms were detected. Data showed that TRIM44 was highly expressed in CRC cell lines. Downregulation of TRIM44 inhibited the cell viability, migration, and invasion in SW-480 cells. In addition, overexpression of TRIM44 enhanced the expression of NF-κB and CXCR4, and enhanced the binding between NF-κB and CXCR4 promoter region. In summarize, TRIM44 may serve as a potential target for CRC diagnosis and progression.
Collapse
|
10
|
Design, synthesis, and evaluation of novel CXCR4 antagonists based on an aminoquinoline template. Bioorg Chem 2020; 99:103824. [PMID: 32334192 DOI: 10.1016/j.bioorg.2020.103824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/23/2020] [Accepted: 04/05/2020] [Indexed: 11/22/2022]
Abstract
The chemokine receptor CXCR4 has been explored as a drug target due to its involvement in pathological conditions such as HIV infection and cancer metastasis. Here we report the structure-activity relationship study of novel CXCR4 antagonists based on an aminoquinoline template. This template is devoid of the chiral center in the classical tetrahydroquinoline (THQ) ring moiety and therefore can be easily synthesized. A number of potent CXCR4 antagonists were identified, exemplified by compound 3, which demonstrated excellent binding affinity with CXCR4 receptor (IC50 = 57 nM) and inhibited CXCL12 induced cytosolic calcium increase (IC50 = 0.24 nM). Furthermore, compound 3 potently inhibited CXLC12/CXCR4 mediated cell migration in a transwell invasion assay. The simplified synthetic approach combined with good physicochemical properties (e.g. MW 362, clogP 2.1, PSA 48, pKa 7.0 for compound 3) demonstrate the potential of this aminoquinoline template as a novel scaffold to develop CXCR4 antagonists.
Collapse
|