1
|
Vidyakina AA, Silonov SA, Govdi AI, Ivanov AY, Podolskaya EP, Balova IA, Bräse S, Danilkina NA. Key role of cycloalkyne nature in alkyne-dye reagents for enhanced specificity of intracellular imaging by bioorthogonal bioconjugation. Org Biomol Chem 2024; 22:7637-7642. [PMID: 38973457 DOI: 10.1039/d4ob01032a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Conjugates of benzothiophene-fused azacyclononyne BT9N-NH2 with fluorescent dyes were developed to visualise azidoglycans intracellularly. The significance of the cycloalkyne core was demonstrated by comparing new reagents with DBCO- and BCN-dye conjugates. To reduce non-specificity during intracellular bioconjugation using SPAAC, less reactive BT9N-dye reagents are preferred over highly reactive DBCO- and BCN-dye conjugates.
Collapse
Affiliation(s)
- Alexandra A Vidyakina
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| | - Sergey A Silonov
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 194064, Russia
| | - Anastasia I Govdi
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| | - Alexander Yu Ivanov
- Center for Magnetic Resonance, Research Park, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia
| | | | - Irina A Balova
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany.
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Natalia A Danilkina
- Institute of Chemistry, Saint Petersburg State University (SPbU), Saint Petersburg, 199034, Russia.
| |
Collapse
|
2
|
Murata T, Komukai K, Semba Y, Murata E, Sato F, Takano T, Tsuchiya K, Matsuda C, Sakai A, Yoneoka A, Takahashi S, Nagahara Y, Shiina I. Synthesis of BODIPY FL-tethered ridaifen-B, RID-B-BODIPY, and its localization in cancer cells. Front Chem 2024; 12:1451468. [PMID: 39246721 PMCID: PMC11377228 DOI: 10.3389/fchem.2024.1451468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/26/2024] [Indexed: 09/10/2024] Open
Abstract
We synthesized ridaifen-B boron dipyrromethene (RID-B-BODIPY) using 2-methyl-6-nitro benzoic anhydride (MNBA)-mediated dehydration condensation reaction between amino alkyl-tethered RID and BODIPY FL. Comparative experiments between dicyclohexylcarbodiimide (DCC) and MNBA for their coupling reactions demonstrated that MNBA is an effective condensation reagent for amines and BODIPY FL. A cell staining study with RID-B-BODIPY showed intracellular localization of BODIPY FL fluorescence, attributed to the RID-B structure, indicating the successful development of a tool for analyzing intracellular molecular behavior efficiently.
Collapse
Affiliation(s)
- Takatsugu Murata
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | - Kyoka Komukai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | - Yuta Semba
- Division of Life Science and Engineering, College of Science and Engineering, Tokyo Denki University, Saitama, Japan
| | - Eri Murata
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | - Fumi Sato
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | - Tomohiro Takano
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | - Kaho Tsuchiya
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | - Chihiro Matsuda
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | - Anju Sakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | - Amane Yoneoka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | - Shunsuke Takahashi
- Division of Life Science and Engineering, College of Science and Engineering, Tokyo Denki University, Saitama, Japan
| | - Yukitoshi Nagahara
- Division of Life Science and Engineering, College of Science and Engineering, Tokyo Denki University, Saitama, Japan
| | - Isamu Shiina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
3
|
Stanková J, Jurášek M, Hajdúch M, Džubák P. Terpenes and Terpenoids Conjugated with BODIPYs: An Overview of Biological and Chemical Properties. JOURNAL OF NATURAL PRODUCTS 2024; 87:1306-1319. [PMID: 38482846 PMCID: PMC11061839 DOI: 10.1021/acs.jnatprod.3c00961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 05/03/2024]
Abstract
Advancements in small-molecule research have created the need for sensitive techniques to accurately study biological processes in living systems. Fluorescent-labeled probes have become indispensable tools, particularly those that use boron-dipyrromethene (BODIPY) dyes. Terpenes and terpenoids are organic compounds found in nature that offer diverse biological activities, and BODIPY-based probes play a crucial role in studying these compounds. Monoterpene-BODIPY conjugates have exhibited potential for staining bacterial and fungal cells. Sesquiterpene-BODIPY derivatives have been used to study sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA), indicating their potential for drug development. Owing to their unique properties, diterpenes have been investigated using BODIPY conjugates to evaluate their mechanisms of action. Triterpene-BODIPY conjugates have been synthesized for biological studies, with different spacers affecting their cytotoxicity. Fluorescent probes, inspired by terpenoid-containing vitamins, have also been developed. Derivatives of tocopherol, coenzyme Q10, and vitamin K1 can provide insights into their oxidation-reduction abilities. All these probes have diverse applications, including the study of cell membranes to investigate immune responses and antioxidant properties. Further research in this field can help better understand and use terpenes and terpenoids in various biological contexts.
Collapse
Affiliation(s)
- Jarmila Stanková
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, 77900 Olomouc, Czech Republic
| | - Michal Jurášek
- Department
of Chemistry of Natural Compounds, University
of Chemistry and Technology Prague, 16628 Prague, Czech Republic
| | - Marián Hajdúch
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, 77900 Olomouc, Czech Republic
- Laboratory
of Experimental Medicine, Institute of Molecular and Translational
Medicine, University Hospital Olomouc, 77900 Olomouc, Czech Republic
| | - Petr Džubák
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, 77900 Olomouc, Czech Republic
- Laboratory
of Experimental Medicine, Institute of Molecular and Translational
Medicine, University Hospital Olomouc, 77900 Olomouc, Czech Republic
| |
Collapse
|
4
|
Guseva GB, Eremeeva YV, Antina EV, Gilfanov IR, Lisovskaya SA, Ostolopovskaya OV, Trizna EY, Kayumov AR, Nikitina LE. Effect of meso-substituents and medium properties on the photo- and pH-stability, penetration efficiency into bacterial and microscopic fungi cells of terpene-BODIPY conjugates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123701. [PMID: 38070313 DOI: 10.1016/j.saa.2023.123701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/17/2023] [Accepted: 11/26/2023] [Indexed: 01/13/2024]
Abstract
In order to expand the arsenal of tools and areas for practical use of BODIPY dyes as bifunctional fluorescent theranostics, we studied the effect of the meso-substituents nature and medium properties on photo- and pH-stability, efficiency of singlet oxygen generation, and affinity to biostructures of terpene-BODIPY conjugates. The BODIPYs fused with myrtenol or thiotherpenoid via carboxylic acid residues exhibit high stability over a wide pH range and the presence of a bulky substituent at the meso-position of BODIPY conjugates increases their photostability two-fold compared to structurally related meso-unsubstituted analogues. Furthermore, the photodegradation rate of the conjugates directly depends on their ability to generate singlet oxygen and the course probability of the corresponding red-ox reactions involving reactive oxygen species. The conjugate of BODIPY with a thiotherpenoid demonstrated high ability to penetrate the membranes of filamentous and yeast-like fungi and bind to membrane of organelles in the fungal cell. At the same time, this compound also had a high ability to penetrate into biofilms of Staphylococcus aureus and Klebsiella pneumoniae and into bacterial cells within the matrix, which makes this compound promising for staining intracellular structures of eukaryotic cells and bacteria embedded into biofilms.
Collapse
Affiliation(s)
- Galina B Guseva
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 153045 Ivanovo, Russia.
| | - Yuliya V Eremeeva
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 153045 Ivanovo, Russia.
| | - Elena V Antina
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 153045 Ivanovo, Russia.
| | - Ilmir R Gilfanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia.
| | - Svetlana A Lisovskaya
- Kazan State Medical University, Faculty of Medicine and Biology, 420012 Kazan, Russia; Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; Scientific Research Institute of Epidemiology and Microbiology, 420015 Kazan, Russia.
| | - Olga V Ostolopovskaya
- Kazan State Medical University, Faculty of Medicine and Biology, 420012 Kazan, Russia; Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia.
| | - Elena Y Trizna
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia.
| | - Airat R Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia.
| | - Liliya E Nikitina
- Kazan State Medical University, Faculty of Medicine and Biology, 420012 Kazan, Russia; Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia.
| |
Collapse
|
5
|
Heise NV, Denner TC, Becker S, Hoenke S, Csuk R. Developing an Amide-Spacered Triterpenoid Rhodamine Hybrid of Nano-Molar Cytotoxicity Combined with Excellent Tumor Cell/Non-Tumor Cell Selectivity. Molecules 2023; 28:6404. [PMID: 37687233 PMCID: PMC10489938 DOI: 10.3390/molecules28176404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Asiatic acid, a pentacyclic triterpene, was converted into a series of piperazinyl, homopiperazinyl, and 1,5-diazocinyl spacered rhodamine conjugates, differing in the type of spacer and the substitution pattern on the rhodamine moiety of the hybrids. The compounds were tested for cytotoxic activity in SRB assays and compound 12, holding an EC50 of 0.8 nM, was the most cytotoxic compound of this series, but compound 18 (containing a ring expanded 1,5-diazocinyl moiety and n-propyl substituents on the rhodamine) was the most selective compound exhibiting a selectivity factor of almost 190 while retaining high cytotoxicity (EC50 = 1.9 nM, for A2780 ovarian carcinoma).
Collapse
Affiliation(s)
| | | | | | | | - René Csuk
- NF II, Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, 06120 Halle (Saale), Germany; (N.V.H.); (T.C.D.); (S.B.); (S.H.)
| |
Collapse
|
6
|
Nistor M, Rugina D, Diaconeasa Z, Socaciu C, Socaciu MA. Pentacyclic Triterpenoid Phytochemicals with Anticancer Activity: Updated Studies on Mechanisms and Targeted Delivery. Int J Mol Sci 2023; 24:12923. [PMID: 37629103 PMCID: PMC10455110 DOI: 10.3390/ijms241612923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Pentacyclic triterpenoids (TTs) represent a unique family of phytochemicals with interesting properties and pharmacological effects, with some representatives, such as betulinic acid (BA) and betulin (B), being mainly investigated as potential anticancer molecules. Considering the recent scientific and preclinical investigations, a review of their anticancer mechanisms, structure-related activity, and efficiency improved by their insertion in nanolipid vehicles for targeted delivery is presented. A systematic literature study about their effects on tumor cells in vitro and in vivo, as free molecules or encapsulated in liposomes or nanolipids, is discussed. A special approach is given to liposome-TTs and nanolipid-TTs complexes to be linked to microbubbles, known as contrast agents in ultrasonography. The production of such supramolecular conjugates to deliver the drugs to target cells via sonoporation represents a new scientific and applicative direction to improve TT efficiency, considering that they have limited availability as lipophilic molecules. Relevant and recent examples of in vitro and in vivo studies, as well as the challenges for the next steps towards the application of these complex delivery systems to tumor cells, are discussed, as are the challenges for the next steps towards the application of targeted delivery to tumor cells, opening new directions for innovative nanotechnological solutions.
Collapse
Affiliation(s)
- Madalina Nistor
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (D.R.); (Z.D.)
- Department of Biotechnology, BIODIATECH—Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| | - Dumitrita Rugina
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (D.R.); (Z.D.)
- Department of Biotechnology, BIODIATECH—Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| | - Zorita Diaconeasa
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (D.R.); (Z.D.)
- Department of Biotechnology, BIODIATECH—Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| | - Carmen Socaciu
- Department of Biochemistry, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (M.N.); (D.R.); (Z.D.)
- Department of Biotechnology, BIODIATECH—Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
| | - Mihai Adrian Socaciu
- Department of Biotechnology, BIODIATECH—Research Centre for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania
- Department of Radiology, Imaging & Nuclear Medicine, Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400347 Cluj-Napoca, Romania
| |
Collapse
|
7
|
Gonçalves BMF, Mendes VIS, Silvestre SM, Salvador JAR. Design, synthesis, and biological evaluation of new arjunolic acid derivatives as anticancer agents. RSC Med Chem 2023; 14:313-331. [PMID: 36846362 PMCID: PMC9945870 DOI: 10.1039/d2md00275b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Arjunolic acid (AA) is a pentacyclic triterpenoid with promising anticancer properties. A series of novel AA derivatives containing a pentameric A-ring with an enal moiety, combined with additional modifications at C-28, were designed and prepared. The biological activity on the viability of human cancer and non-tumor cell lines was evaluated in order to identify the most promising derivatives. Additionally, a preliminary study of the structure-activity relationship was carried out. The most active derivative, derivative 26, also showed the best selectivity between malignant cells and non-malignant fibroblasts. For compound 26, the anticancer molecular mechanism of action in PANC-1 cells was further studied and the results showed that this derivative induced a cell-cycle arrest at G0/G1 phase and significantly inhibited the wound closure rate of PANC-1 cancer cells in a concentration-dependent manner. Additionally, compound 26 synergistically increased the cytotoxicity of Gemcitabine, especially at a concentration of 0.24 μM. Moreover, a preliminary pharmacological study indicated that at lower doses this compound did not demonstrate toxicity in vivo. Taken together, these findings suggest that compound 26 may be a valuable compound for the development of new pancreatic anticancer treatment, and further studies are needed to explore its full potential.
Collapse
Affiliation(s)
- Bruno M F Gonçalves
- CHEM4PHARMA, Biocant - Parque Tecnológico de Cantanhede Núcleo 4, Lote 14 3060-197 Cantanhede Portugal
- Center for Neuroscience and Cell Biology Coimbra Portugal
| | - Vanessa I S Mendes
- CHEM4PHARMA, Biocant - Parque Tecnológico de Cantanhede Núcleo 4, Lote 14 3060-197 Cantanhede Portugal
- Center for Neuroscience and Cell Biology Coimbra Portugal
| | - Samuel M Silvestre
- Center for Neuroscience and Cell Biology Coimbra Portugal
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior Av. Infante D. Henrique 6200-506 Covilhã Portugal
| | - Jorge A R Salvador
- Center for Neuroscience and Cell Biology Coimbra Portugal
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra 3000-548 Coimbra Portugal +351 239 488 503 +351 239 488 400
| |
Collapse
|
8
|
Liu M, Wang J, Wan X, Li B, Guan M, Ning X, Hu X, Li S, Liu S, Song G. Discovery and structural optimization of 3-O-β-Chacotriosyl betulonic acid saponins as potent fusion inhibitors of Omicron virus infections. Bioorg Chem 2023; 131:106316. [PMID: 36508939 PMCID: PMC9729598 DOI: 10.1016/j.bioorg.2022.106316] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
The recent global Omicron epidemics underscore the great need for the development of small molecule therapeutics with appropriate mechanisms. The trimeric spike protein (S) of SARS-CoV-2 plays a pivotal role in mediating viral entry into host cells. We continued our efforts to develop small-molecule SARS-CoV-2 entry inhibitors. In this work, two sets of BA derivatives were designed and synthesized based on the hit BA-1 that was identified as a novel SARS-CoV-2 entry inhibitor. Compound BA-4, the most potent one, showed broad inhibitory activities against pOmicron and other pseudotyped variants with EC50 values ranging 2.73 to 5.19 μM. Moreover, pSARS-CoV-2 assay, SPR analysis, Co-IP assay and the cell-cell fusion assay coupled with docking and mutagenesis studies revealed that BA-4 could stabilize S in the pre-fusion step to interfere with the membrane fusion, thereby displaying promising inhibition against Omicron entry.
Collapse
Affiliation(s)
- Mingjian Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jinshen Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xin Wan
- Huizhou Health Sciences Polytechnic, Huizhou 516025, China
| | - Baixi Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Mingming Guan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoyun Ning
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojie Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Sumei Li
- Department of Human anatomy, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, China.
| | - Gaopeng Song
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Brandes B, Hoenke S, Schultz C, Deigner HP, Csuk R. Converting bile acids into mitocans. Steroids 2023; 189:109148. [PMID: 36414156 DOI: 10.1016/j.steroids.2022.109148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
Cholic acid (1, CD), deoxycholic (3, DCA), chenodeoxycholic acid (5, CDCA), ursodeoxycholic acid (7, UDCA), and lithocholic acid (9, LCA) were acetylated and converted into their piperazinyl spacered rhodamine B conjugates 16-20. While the parent bile acids showed almost no cytotoxic effects for several human tumor cell lines, the piperazinyl amides were cytostatic but an even superior effect was observed for the rhodamine B conjugates. Extra staining experiments showed these compounds as mitocans; they led to a cell arrest in the G1 phase.
Collapse
Affiliation(s)
- Benjamin Brandes
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Sophie Hoenke
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Christian Schultz
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Hans-Peter Deigner
- Furtwangen University, Institute of Precision Medicine, Medical and Life Science Faculty, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany
| | - René Csuk
- Martin-Luther University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| |
Collapse
|
10
|
Spivak AY, Davletshin EV, Gubaidullin RR, Tukhbatullin AA, Nedopekina DA. Synthesis of Bodipy-Labeled Fluorescent Betulinic Acid Derivatives with a Terminal Triphenylphosphonium Group on Side-Chain C-28. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Nistor G, Trandafirescu C, Prodea A, Milan A, Cristea A, Ghiulai R, Racoviceanu R, Mioc A, Mioc M, Ivan V, Șoica C. Semisynthetic Derivatives of Pentacyclic Triterpenes Bearing Heterocyclic Moieties with Therapeutic Potential. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196552. [PMID: 36235089 PMCID: PMC9572482 DOI: 10.3390/molecules27196552] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022]
Abstract
Medicinal plants have been used by humans since ancient times for the treatment of various diseases and currently represent the main source of a variety of phytocompounds, such as triterpenes. Pentacyclic triterpenes have been subjected to numerous studies that have revealed various biological activities, such as anticancer, antidiabetic, anti-inflammatory, antimicrobial, and hepatoprotective effects, which can be employed in therapy. However, due to their high lipophilicity, which is considered to exert a significant influence on their bioavailability, their current use is limited. A frequent approach employed to overcome this obstacle is the chemical derivatization of the core structure with different types of moieties including heterocycles, which are considered key elements in medicinal chemistry. The present review aims to summarize the literature published in the last 10 years regarding the derivatives of pentacyclic triterpenes bearing heterocyclic moieties and focuses on the biologically active derivatives as well as their structure-activity relationships. Predominantly, the targeted positions for the derivatization of the triterpene skeleton are C-3 (hydroxyl/oxo group), C-28 (hydroxyl/carboxyl group), and C-30 (allylic group) or the extension of the main scaffold by fusing various heterocycles with the A-ring of the phytocompound. In addition, numerous derivatives also contain linker moieties that connect the triterpenic scaffold with heterocycles; one such linker, the triazole moiety, stands out as a key pharmacophore for its biological effect. All these studies support the hypothesis that triterpenoid conjugates with heterocyclic moieties may represent promising candidates for future clinical trials.
Collapse
Affiliation(s)
- Gabriela Nistor
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Cristina Trandafirescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Alexandra Prodea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Correspondence: (A.P.); (A.M.); Tel.: +40-256-494-604 (A.P.)
| | - Andreea Milan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Correspondence: (A.P.); (A.M.); Tel.: +40-256-494-604 (A.P.)
| | - Andreea Cristea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Alexandra Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Department of Anatomy, Physiology, Pathophysiology, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Viviana Ivan
- Department of Internal Medicine II, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Codruța Șoica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| |
Collapse
|
12
|
Rhodamine 101 Conjugates of Triterpenoic Amides Are of Comparable Cytotoxicity as Their Rhodamine B Analogs. Molecules 2022; 27:molecules27072220. [PMID: 35408619 PMCID: PMC9000871 DOI: 10.3390/molecules27072220] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/31/2022] Open
Abstract
Pentacyclic triterpenoic acids (betulinic, oleanolic, ursolic, and platanic acid) were selected and subjected to acetylation followed by the formation of amides derived from either piperazine or homopiperazine. These amides were coupled with either rhodamine B or rhodamine 101. All of these compounds were screened for their cytotoxic activity in SRB assays. As a result, the cytotoxicity of the parent acids was low but increased slightly upon their acetylation while a significant increase in cytotoxicity was observed for piperazinyl and homopiperazinyl amides. A tremendous improvement in cytotoxicity was observed; however, for the rhodamine B and rhodamine 101 conjugates, and compound 27, an ursolic acid derived homopiperazinyl amide holding a rhodamine 101 residue showed an EC50 = 0.05 µM for A2780 ovarian cancer cells while being less cytotoxic for non-malignant fibroblasts. To date, the rhodamine 101 derivatives presented here are the first examples of triterpene derivatives holding a rhodamine residue different from rhodamine B.
Collapse
|
13
|
Guseva GB, Antina EV, Berezin MB, Ksenofontov AA, Bocharov PS, Smirnova AS, Pavelyev RS, Gilfanov IR, Pestova SV, Izmest'ev ES, Rubtsova SA, Kayumov AR, Kiselev SV, Azizova ZR, Ostolopovskaya OV, Efimov SV, Klochkov VV, Khodov IA, Nikitina LE. Conjugate of meso-carboxysubstituted-BODIPY with thioterpenoid as an effective fluorescent probe: Synthesis, structure, spectral characteristics, and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120638. [PMID: 34840052 DOI: 10.1016/j.saa.2021.120638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/20/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
This paper is devoted to the design of a fluorescent probe based on meso-carboxysubstituted-BODIPY with a thioterpene fragment. The functional replacement of the methoxy group in the BODIPY molecule on a thioterpene fragment was carried out in order to find out the antiplatelet and anticoagulant action mechanisms of thioterpenoids and to assess the membrane and receptor factors contributions. The molecular structure of the conjugate was confirmed via UV/vis-, NMR- and MS-spectra. It is found that the probe is a high fluorescence quantum yield (to ∼ 100%) in the blue-green region at 509-516 nm. Molecular docking of all studied molecules showed that the BODIPY with terpenoid conjugation is an excellent way to increase their affinity to platelet receptor P2Y12.
Collapse
Affiliation(s)
- Galina B Guseva
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya st., 153045 Ivanovo, Russia.
| | - Elena V Antina
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya st., 153045 Ivanovo, Russia
| | - Mikhail B Berezin
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya st., 153045 Ivanovo, Russia
| | - Alexander A Ksenofontov
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya st., 153045 Ivanovo, Russia
| | - Pavel S Bocharov
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya st., 153045 Ivanovo, Russia; Ivanovo State University of Chemistry and Technology, 7, Sheremetevskiy Avenue, 153000 Ivanovo, Russia
| | - Anastassia S Smirnova
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya st., 153045 Ivanovo, Russia; Ivanovo State University of Chemistry and Technology, 7, Sheremetevskiy Avenue, 153000 Ivanovo, Russia
| | - Roman S Pavelyev
- Kazan Federal University, 18 Kremlevskaya st., 420008 Kazan, Russia
| | - Ilmir R Gilfanov
- Kazan State Medical University, 49 Butlerova st., 420012 Kazan, Russia
| | - Svetlana V Pestova
- Institute of Chemistry, Federal Research Center "Komi Scientific Centre", Ural Branch, Russian Academy of Sciences, ul. Pervomaiskaya 48, 167000 Syktyvkar, Russia
| | - Evgeny S Izmest'ev
- Institute of Chemistry, Federal Research Center "Komi Scientific Centre", Ural Branch, Russian Academy of Sciences, ul. Pervomaiskaya 48, 167000 Syktyvkar, Russia
| | - Svetlana A Rubtsova
- Institute of Chemistry, Federal Research Center "Komi Scientific Centre", Ural Branch, Russian Academy of Sciences, ul. Pervomaiskaya 48, 167000 Syktyvkar, Russia
| | - Airat R Kayumov
- Kazan Federal University, 18 Kremlevskaya st., 420008 Kazan, Russia
| | - Sergei V Kiselev
- Kazan State Medical University, 49 Butlerova st., 420012 Kazan, Russia
| | - Zulfiya R Azizova
- Kazan State Medical University, 49 Butlerova st., 420012 Kazan, Russia
| | | | - Sergey V Efimov
- Kazan Federal University, 18 Kremlevskaya st., 420008 Kazan, Russia
| | | | - Ilya A Khodov
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya st., 153045 Ivanovo, Russia
| | - Liliya E Nikitina
- Kazan State Medical University, 49 Butlerova st., 420012 Kazan, Russia; Kazan Federal University, 18 Kremlevskaya st., 420008 Kazan, Russia
| |
Collapse
|
14
|
Antina E, Bumagina N, Marfin Y, Guseva G, Nikitina L, Sbytov D, Telegin F. BODIPY Conjugates as Functional Compounds for Medical Diagnostics and Treatment. Molecules 2022; 27:1396. [PMID: 35209191 PMCID: PMC8877204 DOI: 10.3390/molecules27041396] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022] Open
Abstract
Fluorescent dyes absorbing and emitting in the visible and near-IR regions are promising for the development of fluorescent probes for labeling and bio-visualization of body cells. The ability to absorb and emit in the long-wavelength region increases the efficiency of recording the spectral signals of the probes due to the higher permeability of the skin layers. Compared to other fluorescent dyes, BODIPYs are attractive due to their excellent photophysical properties-narrow absorption and emission, intense fluorescence, simple signal modulation for the practical applications. As part of conjugates with biomolecules, BODIPY could act as a biomarker, but as therapeutic agent, which allows solving several problems at once-labeling or bioimaging and treatment based on the suppression of pathogenic microflora and cancer cells, which provides a huge potential for practical application of BODIPY conjugates in medicine. The review is devoted to the discussion of the recent, promising directions of BODIPY application in the field of conjugation with biomolecules. The first direction is associated with the development of BODIPY conjugates with drugs, including compounds of platinum, paclitaxel, chlorambucil, isoxazole, capsaicin, etc. The second direction is devoted to the labeling of vitamins, hormones, lipids, and other biomolecules to control the processes of their transport, localization in target cells, and metabolism. Within the framework of the third direction, the problem of obtaining functional optically active materials by conjugating BODIPY with other colored and fluorescent particles, in particular, phthalocyanines, is being solved.
Collapse
Affiliation(s)
- Elena Antina
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya St., 153045 Ivanovo, Russia; (E.A.); (N.B.); (G.G.)
| | - Natalia Bumagina
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya St., 153045 Ivanovo, Russia; (E.A.); (N.B.); (G.G.)
| | - Yuriy Marfin
- Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology, 7 Sheremetevskiy Ave., 153000 Ivanovo, Russia; (D.S.); (F.T.)
| | - Galina Guseva
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya St., 153045 Ivanovo, Russia; (E.A.); (N.B.); (G.G.)
| | - Liliya Nikitina
- Department of General and Organic Chemistry, Kazan State Medical University, 49 Butlerova St., 420012 Kazan, Russia;
- Biologically Active Terpenoids Laboratory, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia
| | - Dmitry Sbytov
- Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology, 7 Sheremetevskiy Ave., 153000 Ivanovo, Russia; (D.S.); (F.T.)
| | - Felix Telegin
- Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology, 7 Sheremetevskiy Ave., 153000 Ivanovo, Russia; (D.S.); (F.T.)
| |
Collapse
|
15
|
Selective and low-cost triterpene urea and amide derivatives of high cytotoxicity and selectivity. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
16
|
Effect of meso-substituents and solvent on the photo- and thermal stability of BODIPY dyes. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Zhong Y, Liang N, Liu Y, Cheng MS. Recent progress on betulinic acid and its derivatives as antitumor agents: a mini review. Chin J Nat Med 2021; 19:641-647. [PMID: 34561074 DOI: 10.1016/s1875-5364(21)60097-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 01/01/2023]
Abstract
Natural products are one of the important sources for the discovery of new drugs. Betulinic acid (BA), a pentacyclic triterpenoid widely distributed in the plant kingdom, exhibits powerful biological effects, including antitumor activity against various types of cancer cells. A considerable number of BA derivatives have been designed and prepared to remove their disadvantages, such as poor water solubility and low bioavailability. This review summarizes the current studies of the structural diversity of antitumor BA derivatives within the last five years, which provides prospects for further research on the structural modification of betulinic acid.
Collapse
Affiliation(s)
- Ye Zhong
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Nan Liang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Mao-Sheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
18
|
Kodr D, Stanková J, Rumlová M, Džubák P, Řehulka J, Zimmermann T, Křížová I, Gurská S, Hajdúch M, Drašar PB, Jurášek M. Betulinic Acid Decorated with Polar Groups and Blue Emitting BODIPY Dye: Synthesis, Cytotoxicity, Cell-Cycle Analysis and Anti-HIV Profiling. Biomedicines 2021; 9:biomedicines9091104. [PMID: 34572290 PMCID: PMC8472287 DOI: 10.3390/biomedicines9091104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 01/23/2023] Open
Abstract
Betulinic acid (BA) is a potent triterpene, which has shown promising potential in cancer and HIV-1 treatment. Here, we report a synthesis and biological evaluation of 17 new compounds, including BODIPY labelled analogues derived from BA. The analogues terminated by amino moiety showed increased cytotoxicity (e.g., BA had on CCRF-CEM IC50 > 50 μM, amine 3 IC50 0.21 and amine 14 IC50 0.29). The cell-cycle arrest was evaluated and did not show general features for all the tested compounds. A fluorescence microscopy study of six derivatives revealed that only 4 and 6 were detected in living cells. These compounds were colocalized with the endoplasmic reticulum and mitochondria, indicating possible targets in these organelles. The study of anti-HIV-1 activity showed that 8, 10, 16, 17 and 18 have had IC50i > 10 μM. Only completely processed p24 CA was identified in the viruses formed in the presence of compounds 4 and 12. In the cases of 2, 8, 9, 10, 16, 17 and 18, we identified not fully processed p24 CA and p25 CA-SP1 protein. This observation suggests a similar mechanism of inhibition as described for bevirimat.
Collapse
Affiliation(s)
- David Kodr
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic; (D.K.); (T.Z.); (P.B.D.)
| | - Jarmila Stanková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, 77900 Olomouc, Czech Republic; (J.S.); (P.D.); (J.Ř.); (S.G.); (M.H.)
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic; (M.R.); (I.K.)
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, 77900 Olomouc, Czech Republic; (J.S.); (P.D.); (J.Ř.); (S.G.); (M.H.)
| | - Jiří Řehulka
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, 77900 Olomouc, Czech Republic; (J.S.); (P.D.); (J.Ř.); (S.G.); (M.H.)
| | - Tomáš Zimmermann
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic; (D.K.); (T.Z.); (P.B.D.)
| | - Ivana Křížová
- Department of Biotechnology, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic; (M.R.); (I.K.)
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, 77900 Olomouc, Czech Republic; (J.S.); (P.D.); (J.Ř.); (S.G.); (M.H.)
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, 77900 Olomouc, Czech Republic; (J.S.); (P.D.); (J.Ř.); (S.G.); (M.H.)
| | - Pavel B. Drašar
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic; (D.K.); (T.Z.); (P.B.D.)
| | - Michal Jurášek
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic; (D.K.); (T.Z.); (P.B.D.)
- Correspondence:
| |
Collapse
|
19
|
Heise N, Hoenke S, Simon V, Deigner HP, Al-Harrasi A, Csuk R. Type and position of linkage govern the cytotoxicity of oleanolic acid rhodamine B hybrids. Steroids 2021; 172:108876. [PMID: 34129861 DOI: 10.1016/j.steroids.2021.108876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 12/22/2022]
Abstract
Oleanolic acid/rhodamine B hybrids exhibit different cytotoxicity depending on the way these two structural elements are linked. While a hybrid holding a piperazinyl spacer at C-28 proved to be cytotoxic in the nano-molar concentration range, hybrids with a direct linkage of the Rho B residue to C-3 of the triterpenoid skeleton are cytotoxic only in the low micro-molar concentration range without any selectivity. This once again underlines the importance of selecting the right spacer and the most appropriate position on the skeleton of the triterpene to achieve the most cytotoxic hybrids possible.
Collapse
Affiliation(s)
- Niels Heise
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle, Saale, Germany
| | - Sophie Hoenke
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle, Saale, Germany
| | - Vivienne Simon
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle, Saale, Germany
| | - Hans-Peter Deigner
- Furtwangen University, Medical and Life Sciences Faculty, Jakob-Kienzle Str. 17, D-78054 Villingen-Schwenningen, Germany
| | - Ahmed Al-Harrasi
- University of Nizwa, Chair of Oman's Medicinal Plants and Marine Natural Products, P.O. Box 33, PC 616, Birkat Al-Mauz, Nizwa, Oman
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle, Saale, Germany.
| |
Collapse
|
20
|
Hoenke S, Christoph MA, Friedrich S, Heise N, Brandes B, Deigner HP, Al-Harrasi A, Csuk R. The Presence of a Cyclohexyldiamine Moiety Confers Cytotoxicity to Pentacyclic Triterpenoids. Molecules 2021; 26:molecules26072102. [PMID: 33917636 PMCID: PMC8038856 DOI: 10.3390/molecules26072102] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/29/2021] [Accepted: 04/04/2021] [Indexed: 11/16/2022] Open
Abstract
Pentacyclic triterpenoids oleanolic acid, ursolic acid, betulinic acid, and platanic acid were acetylated and converted into several amides 9-31; the cytotoxicity of which has been determined in sulforhodamine B assays employing seral human tumor cell lines and nonmalignant fibroblasts. Thereby, a betulinic acid/trans-1,4-cyclohexyldiamine amide showed excellent cytotoxicity (for example, EC50 = 0.6 μM for HT29 colon adenocarcinoma cells).
Collapse
Affiliation(s)
- Sophie Hoenke
- Organic Chemistry, Martin–Luther University Halle–Wittenberg, Kurt–Mothes, Str. 2, D-06120 Halle (Saale), Germany; (S.H.); (M.A.C.); (S.F.); (N.H.); (B.B.)
| | - Martin A. Christoph
- Organic Chemistry, Martin–Luther University Halle–Wittenberg, Kurt–Mothes, Str. 2, D-06120 Halle (Saale), Germany; (S.H.); (M.A.C.); (S.F.); (N.H.); (B.B.)
| | - Sander Friedrich
- Organic Chemistry, Martin–Luther University Halle–Wittenberg, Kurt–Mothes, Str. 2, D-06120 Halle (Saale), Germany; (S.H.); (M.A.C.); (S.F.); (N.H.); (B.B.)
| | - Niels Heise
- Organic Chemistry, Martin–Luther University Halle–Wittenberg, Kurt–Mothes, Str. 2, D-06120 Halle (Saale), Germany; (S.H.); (M.A.C.); (S.F.); (N.H.); (B.B.)
| | - Benjamin Brandes
- Organic Chemistry, Martin–Luther University Halle–Wittenberg, Kurt–Mothes, Str. 2, D-06120 Halle (Saale), Germany; (S.H.); (M.A.C.); (S.F.); (N.H.); (B.B.)
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Science Faculty, Furtwangen University, Jakob–Kienzle–Str. 17, D-78054 Villigen–Schwenningen, Germany;
| | - Ahmed Al-Harrasi
- Chair of Oman’s Medicinal Plants and Marine Natural Products, University of Nizwa, P.O. Box 33, Birkat Al-Mauz, PC 616 Nizwa, Oman;
| | - René Csuk
- Organic Chemistry, Martin–Luther University Halle–Wittenberg, Kurt–Mothes, Str. 2, D-06120 Halle (Saale), Germany; (S.H.); (M.A.C.); (S.F.); (N.H.); (B.B.)
- Correspondence: ; Tel.: +49-345-5525660
| |
Collapse
|
21
|
Hoenke S, Serbian I, Deigner HP, Csuk R. Mitocanic Di- and Triterpenoid Rhodamine B Conjugates. Molecules 2020; 25:molecules25225443. [PMID: 33233650 PMCID: PMC7699795 DOI: 10.3390/molecules25225443] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
The combination of the “correct” triterpenoid, the “correct” spacer and rhodamine B (RhoB) seems to be decisive for the ability of the conjugate to accumulate in mitochondria. So far, several triterpenoid rhodamine B conjugates have been prepared and screened for their cytotoxic activity. To obtain cytotoxic compounds with EC50 values in a low nano-molar range combined with good tumor/non-tumor selectivity, the Rho B unit has to be attached via an amine spacer to the terpenoid skeleton. To avoid spirolactamization, secondary amines have to be used. First results indicate that a homopiperazinyl spacer is superior to a piperazinyl spacer. Hybrids derived from maslinic acid or tormentic acid are superior to those from oleanolic, ursolic, glycyrrhetinic or euscaphic acid. Thus, a tormentic acid-derived RhoB conjugate 32, holding a homopiperazinyl spacer can be regarded, at present, as the most promising candidate for further biological studies.
Collapse
Affiliation(s)
- Sophie Hoenke
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Street 2, D-06120 Halle, Germany; (S.H.); (I.S.)
| | - Immo Serbian
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Street 2, D-06120 Halle, Germany; (S.H.); (I.S.)
| | - Hans-Peter Deigner
- Medical and Life Science Faculty, Institute of Precision Medicine, Furtwangen University, Jakob–Kienzle–Street 17, D-78054 Villigen–Schwenningen, Germany;
| | - René Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Street 2, D-06120 Halle, Germany; (S.H.); (I.S.)
- Correspondence: ; Tel.: +49-345-5525660
| |
Collapse
|
22
|
Brandes B, Koch L, Hoenke S, Deigner HP, Csuk R. The presence of a cationic center is not alone decisive for the cytotoxicity of triterpene carboxylic acid amides. Steroids 2020; 163:108713. [PMID: 32795453 DOI: 10.1016/j.steroids.2020.108713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/26/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
3-O-Acetyl-ursolic acid (2) and 3-O-acetyl oleanolic acid (8) were converted into piperazinylamides holding a distal NH, NMe or a NMe2 group. These compounds as well as the corresponding N-methyl-N-oxides were accessed. Their cytotoxicity was assessed in SRB assays employing a panel of human tumor cell lines and non-malignant fibroblasts (NIH 3T3). As a result, compounds holding a quaternary distal N-substituent were less cytotoxic that those holding a NH-moiety. Hence, the presence of a distal cationic center seems not to be a sufficient criterion for obtaining triterpenoids of high cytotoxicity and selectivity.
Collapse
Affiliation(s)
- Benjamin Brandes
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Lukas Koch
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Sophie Hoenke
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Hans-Peter Deigner
- Furtwangen University, Medical and Life Sciences Faculty, Jakob-Kienzle Str. 17, D-78054 Villingen-Schwenningen, Germany
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| |
Collapse
|
23
|
Cytotoxic triterpenoid-safirinium conjugates target the endoplasmic reticulum. Eur J Med Chem 2020; 209:112920. [PMID: 33049606 DOI: 10.1016/j.ejmech.2020.112920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/04/2020] [Accepted: 10/04/2020] [Indexed: 11/23/2022]
Abstract
Safirinium P and Q fluorescence labels were synthesized and conjugated with spacered triterpenoic acids to access hybrid structures. While the parent safirinium compounds were not cytotoxic at all, many triterpenoid safirinium P and Q conjugates showed moderate cytotoxicity. An exception, however, was safirinium P derived compound 30 holding low EC50 = 5.4 μM (for A375 cells) to EC50 = 7.5 μM (for FaDu cells) as well as EC50 = 6.6 μM for non-malignant fibroblasts NIH 3T3. Fluorescence imaging showed that the safirinium core structures cannot enter the cells (not even after a prolonged incubation time of 24 h), while the conjugates (as exemplified for 30) are accumulating in the endoplasmic reticulum but not in the mitochondria. The development of safirinium-hybrids targeting the endoplasmic reticulum can be regarded as a promising strategy in the development of cytotoxic agents.
Collapse
|
24
|
Hoenke S, Heise NV, Kahnt M, Deigner HP, Csuk R. Betulinic acid derived amides are highly cytotoxic, apoptotic and selective. Eur J Med Chem 2020; 207:112815. [PMID: 32956968 DOI: 10.1016/j.ejmech.2020.112815] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 01/15/2023]
Abstract
Betulinic and platanic acid derived amides were prepared and screened for their cytotoxic activity. All of the compounds were shown to be cytotoxic for a panel of human tumor cell lines, and especially apoptotic betulinic acid derived compounds 6, 8 and 19 showed low EC50 values. Of special interest was a 4-isoquinolinyl amide of 3-O-acetyl-betulinic acid (compound 19), being the most cytotoxic compound of this series and holding EC50 values as low as EC50 = 1.48 μM (A375 melanoma cells) while being significantly less cytotoxic for non-malignant fibroblasts NIH 3T3 with a selectivity index of >91.2. This finding parallels previous results obtained for SAA21, a augustic acid derived compound thus making the 4-isoquinolinyl moiety to a privileged scaffold.
Collapse
Affiliation(s)
- Sophie Hoenke
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120, Halle (Saale), Germany
| | - Niels V Heise
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120, Halle (Saale), Germany
| | - Michael Kahnt
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120, Halle (Saale), Germany
| | - Hans-Peter Deigner
- Furtwangen University, Medical and Life Sciences Faculty, Jakob-Kienzle Str. 17, D-78054, Villingen-Schwenningen, Germany
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120, Halle (Saale), Germany.
| |
Collapse
|
25
|
Castro KADF, Costa LD, Guieu S, Biazzotto JC, da Neves MGPMS, Faustino MAF, da Silva RS, Tomé AC. Photodynamic treatment of melanoma cells using aza-dipyrromethenes as photosensitizers. Photochem Photobiol Sci 2020; 19:885-891. [PMID: 32662457 DOI: 10.1039/d0pp00114g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this study, we report for the first time the use of four aza-dipyrromethenes (ADPMs) as photosensitizers for cancer PDT. The synthesis and characterization of the ADPMs and their photodynamic action against B16F10 melanoma cells were assessed. ADPM 2 is the best singlet oxygen generator and the most phototoxic (at 2.5 μM) towards B16F10 cells.
Collapse
Affiliation(s)
- Kelly A D F Castro
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil.
| | - Letícia D Costa
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Portugal
| | - Samuel Guieu
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Portugal.,CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Portugal
| | - Juliana C Biazzotto
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | | | | | - Roberto S da Silva
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Augusto C Tomé
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Portugal
| |
Collapse
|
26
|
Synthesis, distribution analysis and mechanism studies of N-acyl glucosamine-bearing oleanolic saponins. Bioorg Chem 2020; 99:103835. [DOI: 10.1016/j.bioorg.2020.103835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/25/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
|
27
|
Synthesis and cytotoxic evaluation of malachite green derived oleanolic and ursolic acid piperazineamides. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02536-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AbstractThe coupling of acetylated piperazinylamide spacered triterpenoic oleanolic acid and ursolic acid with meta or para substituted carboxylated malachite green analogs gave conjugates 10, 11, 15, and 16 that were cytotoxic for several human tumor cell lines. Especially, an oleanolic acid-derived compound 10 was cytotoxic for MCF-7 human breast carcinoma cells (EC50 = 0.7 μM). These derivatives represent first examples of triterpenoic acid derivatives holding a cationic scaffold derived from malachite green.
Collapse
|