1
|
Dong HM, Chen JX, Cai YX, Tian LX, Yang ZC. Compounds Derived from 5-Fluoropyridine and Benzo[b]thiophene: Killing Mycobacterium tuberculosis and Reducing its Virulence. Chem Biodivers 2024; 21:e202401191. [PMID: 39058423 DOI: 10.1002/cbdv.202401191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
The rise of drug-resistant Mycobacterium tuberculosis (Mtb) has extended the duration of tuberculosis (TB) treatment and reduced the likelihood of cure. One strategy to combat this issue is the development of inhibitors targeting the virulence factors of bacterial pathogens. Mtb' catalase (KatG) is crucial for its detoxification mechanisms and also serves as a significant virulence factor for the bacterium. In this study, twelve derivatives synthesized from 5-fluoropyridine and benzo[b]thiophene demonstrated antimycobacterial efficacy with minimum inhibitory concentrations (MICs) varying between 0.5 and 32 μg/mL. Compound 2, 1-(benzo[b]thiophen-2-ylmethylene) thiosemicarbazide, emerged as the most potent candidate. It effectively inhibited Mtb KatG, enhanced the production of reactive oxygen species (ROS) in Mtb, and achieved Mtb killing within 96 hours at a concentration of 2 μg/mL (4×MIC). Molecular docking simulations revealed that compound 2 binds tightly to the active site of Mtb-KatG with a docking score of 114, indicating that it may serve as a potent inhibitor of Mtb-KatG. The rabbit skin tuberculosis model was employed to assess the virulence of Mtb. Animal study results indicated that the granulomas induced by Mtb after treatment with compound 2 were reduced in size, exhibited a lower bacterial load, and the bacteria were no longer aggregated, in contrast to those caused by untreated Mtb. Hence, compound 2 can be regarded as a molecule capable of neutralizing the virulence factors of Mtb. This research offers insights into the design of anti-Mtb molecules with novel mechanisms of action.
Collapse
Affiliation(s)
- Hong-Mei Dong
- College of Pharmacy, Guizhou University, Jiaxiu South Road, Guiyang, 550025, China
| | - Jun-Xian Chen
- College of Pharmacy, Guizhou University, Jiaxiu South Road, Guiyang, 550025, China
| | - Yu-Xiang Cai
- College of Pharmacy, Guizhou University, Jiaxiu South Road, Guiyang, 550025, China
| | - Li-Xia Tian
- College of Pharmacy, Guizhou University, Jiaxiu South Road, Guiyang, 550025, China
| | - Zai-Chang Yang
- College of Pharmacy, Guizhou University, Jiaxiu South Road, Guiyang, 550025, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Science Road, Guiyang, 550014, China
| |
Collapse
|
2
|
González-González A, Sánchez-Sánchez O, Wan B, Franzblau S, Palos I, Espinoza-Hicks JC, Moreno-Rodríguez A, Martínez-Vázquez AV, Lara-Ramírez EE, Ortiz-Pérez E, Paz-González AD, Rivera G. Expanding the chemical space of ester of quinoxaline-7-carboxylate 1,4-di- N-oxide derivatives as potential antitubercular agents. RSC Med Chem 2024; 15:2785-2791. [PMID: 39149106 PMCID: PMC11324059 DOI: 10.1039/d4md00221k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/24/2024] [Indexed: 08/17/2024] Open
Abstract
Tuberculosis is a worldwide health problem that warrants attention given that the current treatment options require a long-term chemotherapeutic period and have reported the development of Mycobacterium tuberculosis (M. tuberculosis) multidrug resistant strains. In this study, n-butyl and isobutyl quinoxaline-7-carboxylate 1,4-di-N-oxide were evaluated against replicating and non-replicating H37Rv M. tuberculosis strains. The results showed that seventeen of the twenty-eight derivatives have minimum inhibitory concentration (MIC) values lower than isoniazid (2.92 μM). The most active antimycobacterial agents were T-148, T-149, T-163, and T-164, which have the lowest MIC values (0.53, 0.57, 0.53, and 0.55 μM respectively). These results confirm the potential of quinoxaline-1,4-di-N-oxide against M. tuberculosis to develop and obtain new and more safety antituberculosis drugs.
Collapse
Affiliation(s)
- Alonzo González-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional Mexico
| | - Oscar Sánchez-Sánchez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional Mexico
| | - Baojie Wan
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago USA
| | - Scott Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago USA
| | - Isidro Palos
- Unidad Académica Multidisciplinaria Reynosa-Rodhe, Universidad Autónoma de Tamaulipas Mexico
| | | | - Adriana Moreno-Rodríguez
- Laboratorio de Estudios Epidemiológicos, Clínicos, Diseños Experimentales e Investigación, Facultad de Ciencias Químicas, Universidad Autónoma "Benito Juárez" de Oaxaca Mexico
| | | | - Edgar E Lara-Ramírez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional Mexico
| | - Eyra Ortiz-Pérez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional Mexico
| | - Alma D Paz-González
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional Mexico
| |
Collapse
|
3
|
Bendi A, Yadav P, Saini K, Singh Bhathiwal A, Raghav N. A Comprehensive Examination of Heterocyclic Scaffold Chemistry for Antitubercular Activity. Chem Biodivers 2024; 21:e202400067. [PMID: 38500408 DOI: 10.1002/cbdv.202400067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Tuberculosis is a communicable disease which affects humans particularly the lungs and is transmitted mainly through air. Despite two decades of intensive research aimed at understanding and combating tuberculosis, persistent biological uncertainties continue to hinder progress. Nowadays, heterocyclic compounds have proven themselves in effective treatment of tuberculosis because of their wide range of biological and pharmacological activities. Antituberculosis or antimycobacterial agents encompass a broad array of compounds utilized singly or in conjunction to combat Mycobacterium infections, spanning from tuberculosis to leprosy. Here, we summarize the synthesis of various heterocyclic compounds which includes the greener synthetic route as well as use of nano compounds as catalyst along with their anti TB activities.
Collapse
Affiliation(s)
- Anjaneyulu Bendi
- Department of Chemistry, Presidency University, Rajanukunte, Itgalpura, 560064, Bangalore, India
| | - Priyanka Yadav
- Department of Chemistry, Faculty of Science, SGT University, 122505, Gurugram, Haryana, India
| | - Komal Saini
- Applied Sciences and Humanities, World College of Technology and Management, 122506, Gurugram, Haryana, India
| | - Anirudh Singh Bhathiwal
- Department of Chemistry, Faculty of Science, SGT University, 122505, Gurugram, Haryana, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, 136119, Kurukshetra, Haryana, India
| |
Collapse
|
4
|
Li S, Zhang Q, Wang Y, Lin B, Li D, Hua H, Hu X. β-Carboline alkaloids from the roots of Peganum harmala L. Chin J Nat Med 2024; 22:171-177. [PMID: 38342569 DOI: 10.1016/s1875-5364(24)60583-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Indexed: 02/13/2024]
Abstract
This study reports the isolation of four new β-carboline alkaloids (1-4) and six previously identified alkaloids (5-10) from the roots of Peganum harmala L. Among these compounds, 1 and 2 were characterized as rare β-carboline-quinazoline dimers exhibiting axial chirality. Compound 3 possessed a unique 6/5/6/7 tetracyclic ring system with an azepine ring, and compound 4 was a novel annomontine β-carboline. The structures of these compounds were elucidated by spectroscopic data and quantum mechanical calculations. The biosynthetic pathways of 1-3 were proposed. Additionally, the cytotoxicity of some isolates against four cancer cell lines (HL-60, A549, MDA-MB-231, and DU145) was evaluated. Notably, compound 4 exhibited significant cytotoxicity against HL-60, A549, and DU145 cells with IC50 values of 12.39, 12.80, and 30.65 μmol·L-1, respectively. Furthermore, compound 2 demonstrated selective cytotoxicity against HL-60 cells with an IC50 value of 17.32 μmol·L-1.
Collapse
Affiliation(s)
- Shengge Li
- Henan Key Laboratory of Zhang Zhongjing Formulate and Herbs for Immunoregulation, Zhang Zhongjing Traditional School of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, China
| | - Qin Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuetong Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xu Hu
- Henan Key Laboratory of Zhang Zhongjing Formulate and Herbs for Immunoregulation, Zhang Zhongjing Traditional School of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, China.
| |
Collapse
|
5
|
Faheem, Kumar BK, Sekhar KVGC, Kunjiappan S, Jamalis J, Balaña-Fouce R, Sankaranarayanan M. Recent Update on the Anti-infective Potential of β-carboline Analogs. Mini Rev Med Chem 2021; 21:398-425. [PMID: 33001013 DOI: 10.2174/1389557520666201001130114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022]
Abstract
β-Carboline, a naturally occurring indole alkaloid, holds a momentous spot in the field of medicinal chemistry due to its myriad of pharmacological actions like anticancer, antiviral, antibacterial, antifungal, antileishmanial, antimalarial, neuropharmacological, anti-inflammatory and antithrombotic among others. β-Carbolines exhibit their pharmacological activity via diverse mechanisms. This review provides a recent update (2015-2020) on the anti-infective potential of natural and synthetic β-carboline analogs focusing on its antibacterial, antifungal, antiviral, antimalarial, antileishmanial and antitrypanosomal properties. In cases where enough details are available, a note on its mechanism of action is also added.
Collapse
Affiliation(s)
- Faheem
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani-333031, Rajasthan, India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani-333031, Rajasthan, India
| | - Kondapalli Venkata Gowri Chandra Sekhar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R.R. Dist. Hyderabad, 500078, Telangana, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil 626126, India
| | - Joazaizulfazli Jamalis
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor 81310, Malaysia
| | | | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Vidya Vihar, Pilani-333031, Rajasthan, India
| |
Collapse
|
6
|
Discovery and preliminary mechanism of 1-carbamoyl β-carbolines as new antifungal candidates. Eur J Med Chem 2021; 222:113563. [PMID: 34118721 DOI: 10.1016/j.ejmech.2021.113563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 11/23/2022]
Abstract
Natural β-carboline alkaloids are ideal models for the discovery of pharmaceutically important entities. Various 1-substituted β-carbolines were synthesized from commercially inexpensive tryptophan and demonstrated significant in vitro antifungal activity against G. graminis. Significantly, compound 4m (EC50 = 0.45 μM) with carboxamide at 1-position displayed the best efficacy and nearly 20 folds enhancement in antifungal potential compared to Silthiopham (EC50 = 8.95 μM). Moreover, compounds 6, 7, and 4i exhibited excellent in vitro antifungal activities and in vivo protective and curative activities against B. cinerea and F. graminearum. Preliminary mechanism studies revealed that compound 4m caused reactive oxygen species accumulation, cell membrane destruction, and deregulation of histone acetylation. These findings indicated that 1-carbamoyl β-carboline can be selected as a promising model for the discovery of novel and broad-spectrum fungicide candidates.
Collapse
|
7
|
Synthesis of β-carboline fatty alcohol hybrid molecules and characterization of their biological and antioxidant activities. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
8
|
Sampiron EG, Costacurta GF, Calsavara LL, Baldin VP, Silva GVD, Alves Olher VG, Ferraretto LH, Caleffi-Ferraciolli KR, Cardoso RF, Siqueira VLD, Vandresen F, Scodro RBDL. In Vitro and In Silico Evaluations of Anti- Mycobacterium tuberculosis Activity of Benzohydrazones Compounds. Microb Drug Resist 2021; 27:1564-1577. [PMID: 33913749 DOI: 10.1089/mdr.2020.0392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tuberculosis is a disease caused by Mycobacterium tuberculosis, with high mortality rates and an extended treatment that causes severe adverse effects, besides the emergence of resistant bacteria. Therefore, the search for new compounds with anti-M. tuberculosis activity has considerably increased in recent years. In this context, benzohydrazones are significant compounds that have antifungal and antibacterial action. This study aimed at evaluating the in vitro activity of 18 benzohydrazones against M. tuberculosis. Compounds' cytotoxicity, inhibition of M. tuberculosis efflux pumps, and in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) assays were also performed. In general, the minimum inhibitory concentration values for the standard M. tuberculosis H37Rv strain ranged from 7.8 to 250 μg/mL, and some compounds were not toxic to any of the cells tested (IC50 ranged from 18.0 to 302.5 μg/mL). In addition, compounds (4) and (7) showed to be possible efflux pump inhibitors. In ADMET assays, all benzohydrazones had high gastrointestinal absorption. Most of the compounds were able to overcome the blood-brain barrier, and no compounds had irritant or tumorigenic effects. Compounds (1), (3), (9), (12), and (15) stood out for showing good activities, both in vitro and in silico assays.
Collapse
Affiliation(s)
- Eloísa Gibin Sampiron
- Postgraduate Program in Health Sciences, State University of Maringá, Maringá, Brazil
| | | | - Leonora Lacerda Calsavara
- Postgraduate Program in Bioscience and Physiopathology, State University of Maringá, Maringá, Brazil
| | - Vanessa Pietrowski Baldin
- Postgraduate Program in Bioscience and Physiopathology, State University of Maringá, Maringá, Brazil
| | - Gabrielle Vaz da Silva
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| | | | | | - Katiany Rizzieri Caleffi-Ferraciolli
- Postgraduate Program in Bioscience and Physiopathology, State University of Maringá, Maringá, Brazil.,Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| | - Rosilene Fressatti Cardoso
- Postgraduate Program in Health Sciences, State University of Maringá, Maringá, Brazil.,Postgraduate Program in Bioscience and Physiopathology, State University of Maringá, Maringá, Brazil.,Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| | - Vera Lucia Dias Siqueira
- Postgraduate Program in Bioscience and Physiopathology, State University of Maringá, Maringá, Brazil.,Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| | - Fábio Vandresen
- Department of Chemistry, Federal Technologic University of Paraná, Londrina, Brazil
| | - Regiane Bertin de Lima Scodro
- Postgraduate Program in Health Sciences, State University of Maringá, Maringá, Brazil.,Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil
| |
Collapse
|
9
|
Tewari U, Sharma D, Srivastava S, Kumar BK, Faheem, Murugesan S. Anti‐Tubercular Insights of Carbolines – A Decade Critique. ChemistrySelect 2021. [DOI: 10.1002/slct.202100181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Upasana Tewari
- Medicinal Chemistry Research Laboratory Department of Pharmacy Birla Institute of Technology and Science Pilani, Pilani Campus Pilani 333031 Rajasthan India
| | - Divya Sharma
- Medicinal Chemistry Research Laboratory Department of Pharmacy Birla Institute of Technology and Science Pilani, Pilani Campus Pilani 333031 Rajasthan India
| | - Shrey Srivastava
- Medicinal Chemistry Research Laboratory Department of Pharmacy Birla Institute of Technology and Science Pilani, Pilani Campus Pilani 333031 Rajasthan India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory Department of Pharmacy Birla Institute of Technology and Science Pilani, Pilani Campus Pilani 333031 Rajasthan India
| | - Faheem
- Medicinal Chemistry Research Laboratory Department of Pharmacy Birla Institute of Technology and Science Pilani, Pilani Campus Pilani 333031 Rajasthan India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory Department of Pharmacy Birla Institute of Technology and Science Pilani, Pilani Campus Pilani 333031 Rajasthan India
| |
Collapse
|
10
|
Raphoko LA, Lekgau K, Lebepe CM, Leboho TC, Matsebatlela TM, Nxumalo W. Synthesis of novel quinoxaline-alkynyl derivatives and their anti-Mycobacterium tuberculosis activity. Bioorg Med Chem Lett 2021; 35:127784. [PMID: 33422606 DOI: 10.1016/j.bmcl.2021.127784] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 11/26/2022]
Abstract
The study report on the synthesis of a series of novel quinoxaline-alkynyl derivatives that were evaluated for their activity against Mycobacterium tuberculosis (Mtb) H37RV strain. A total of 19 compounds bearing an alcohol, aldehyde, mesylate and ester groups on the alkynly group, and also containing a chloro and nitro groups at the 6-position, were prepared. Seven compounds (3c, 4a-b, 5a, 5c, 6c and 6i), were found to have MIC90 < 10 µM, while five compounds (3b, 6a, 6b, 6d and 6h) had MIC90 in the range 10-20 µM. Compounds bearing a nitro substituent in the 6-position were generally more active and demonstrated a better safety profile, when compared to the unsubstituted and 6-chloro derivatives. Of the seven most active compounds, four contained nitro group at the 6-position.
Collapse
Affiliation(s)
- Lerato A Raphoko
- Department of Chemistry, Faculty of Science and Agriculture, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Karabo Lekgau
- Department of Chemistry, Faculty of Science and Agriculture, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Charity M Lebepe
- Department of Chemistry, Faculty of Science and Agriculture, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Tlabo C Leboho
- Department of Chemistry, Faculty of Science and Agriculture, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Thabe M Matsebatlela
- Department of Biochemistry, Microbiology and Biotechnology, Faculty of Science and Agriculture, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Winston Nxumalo
- Department of Chemistry, Faculty of Science and Agriculture, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa.
| |
Collapse
|
11
|
A review on β-carboline alkaloids and their distribution in foodstuffs: A class of potential functional components or not? Food Chem 2021; 348:129067. [PMID: 33548760 DOI: 10.1016/j.foodchem.2021.129067] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/14/2020] [Accepted: 01/06/2021] [Indexed: 11/23/2022]
Abstract
Pharmacologically active β-carboline alkaloids (βCs) such as harman, norharman and some others are naturally present in plants and occur in many foodstuffs. They have a lot of pharmacological properties, including antitumor, antioxidant, anti-inflammatory and antimicrobial effects, and possess the potential for treating Alzheimer's disease, Parkinson's disease, depression and other central nervous system diseases. Dietary intake is proven to be an important source of βCs. Therefore, it is important to know the amounts of βCs that can be gotten from daily diets. This review summarizes the pharmacological activities, toxicology and formation of βCs, and gives collective information on contents of βCs in different foodstuffs.
Collapse
|
12
|
Zhao Z, Yue J, Ji X, Nian M, Kang K, Qiao H, Zheng X. Research progress in biological activities of succinimide derivatives. Bioorg Chem 2020; 108:104557. [PMID: 33376010 DOI: 10.1016/j.bioorg.2020.104557] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
Succinimides are well recognized heterocyclic compounds in drug discovery which produce diverse therapeutically related applications in pharmacological practices. Researches in medicinal chemistry field have isolated and synthesized succinimide derivatives with multiple medicinal properties including anticonvulsant, anti-inflammatory, antitumor and antimicrobial agents, 5-HT receptor ligands and enzyme inhibitors. Simultaneously, SAR (Structure-Activity Relationship) analysis has been gradually possessed, along with a great deal of derivatives have been derived for potential targets. In this article, we comprehensively summarize the biological activities and SAR for succinimide derivatives, along with the featuring bioactive molecules reported in patents, wishing to provide an overall retrospect and prospect on the succinimide analogues.
Collapse
Affiliation(s)
- Zefeng Zhao
- College of Acupuncture & Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province 712046, PR China; Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China; School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an 710069, PR China
| | - Jiangxin Yue
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China
| | - Xiaotong Ji
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China
| | - Meng Nian
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China
| | - Kaiwen Kang
- Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China
| | - Haifa Qiao
- College of Acupuncture & Massage, Shaanxi University of Chinese Medicine, Xixian New Area, Shaanxi Province 712046, PR China; Shaanxi Key Laboratory of Acupuncture & Medicine, Xixian New Area, Shaanxi Province 712046, PR China.
| | - Xiaohui Zheng
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an 710069, PR China
| |
Collapse
|
13
|
Singh M, Vaishali, Kumar S, Jamra R, Pandey SK, Singh V. A metal-free approach towards synthesis of β-carboline C1 substituted Pyrido(2,3-c)carbazole derivatives (nitramarine analogues) through A3-coupling and estimation of their light emitting properties. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Jian Y, Hulpia F, Risseeuw MDP, Forbes HE, Munier-Lehmann H, Caljon G, Boshoff HIM, Van Calenbergh S. Synthesis and structure activity relationships of cyanopyridone based anti-tuberculosis agents. Eur J Med Chem 2020; 201:112450. [PMID: 32623208 DOI: 10.1016/j.ejmech.2020.112450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 11/15/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, relies on thymidylate kinase (MtbTMPK) for the synthesis of thymidine triphosphates and thus also DNA synthesis. Therefore, this enzyme constitutes a potential Achilles heel of the pathogen. Based on a previously reported MtbTMPK 6-aryl-substituted pyridone inhibitor and guided by two co-crystal structures of MtbTMPK with pyridone- and thymine-based inhibitors, we report the synthesis of a series of aryl-shifted cyanopyridone analogues. These compounds generally lacked significant MtbTMPK inhibitory potency, but some analogues did exhibit promising antitubercular activity. Analogue 11i demonstrated a 10-fold increased antitubercular activity (MIC H37Rv, 1.2 μM) compared to literature compound 5. Many analogues with whole-cell antimycobacterial activity were devoid of significant cytotoxicity.
Collapse
Affiliation(s)
- Yanlin Jian
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B9000, Gent, Belgium
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B9000, Gent, Belgium
| | - Martijn D P Risseeuw
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B9000, Gent, Belgium
| | - He Eun Forbes
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, United States
| | - Hélène Munier-Lehmann
- Unit of Chemistry and Biocatalysis, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3523, 28 Rue du Dr. Roux, Cedex 15, 75724, Paris, France
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1(S7), B2610, Wilrijk, Belgium
| | - Helena I M Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, United States
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Ottergemsesteenweg 460, B9000, Gent, Belgium.
| |
Collapse
|
15
|
Abdelhameed RM, Darwesh OM, El-Shahat M. Synthesis of arylidene hydrazinylpyrido[2,3- d]pyrimidin-4-ones as potent anti-microbial agents. Heliyon 2020; 6:e04956. [PMID: 32995633 PMCID: PMC7511821 DOI: 10.1016/j.heliyon.2020.e04956] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/15/2020] [Accepted: 09/14/2020] [Indexed: 01/12/2023] Open
Abstract
Combination of arylidene hydrazinyl moiety with pyrido[2,3-d]pyrimidin-4-one skeleton in compounds 7‒26 results in the output of unprecedented anti-microbial agents. Arylidene hydrazinyl based on Pyrido[2,3-d]pyrimidin-4-one analoges 7‒26 prepared by the treatment of [2,3-d]pyrimidin-4-ones 6a,b with various aromatic aldehydes. The antimicrobial action for recently synthesized compounds was considered towards gram positive bacterial species (Staphylococcus aurous ATCC- 47077; Bacillus cereus ATCC-12228), gram negative bacterial species (Escherichia coli ATCC-25922; Salmonella typhi ATCC-15566) and Candida albicans ATCC-10231 as fungal strains. The antimicrobial action expanded by expanding the electron donating group in position 2 and 5 for Pyrido[2,3-d]pyrimidin-4-one core. Derivatives 13, 14, 15, 16 and 12; individually appeared hopeful anti-microbial action towards all strains utilized with inhibition zone higher than that of standard reference drug with lowest MIC.
Collapse
Affiliation(s)
- Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Division, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| | - Osama M Darwesh
- Department of Agricultural Microbiology, Agricultural Research Division, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza, 12622, Egypt
| | - Mahmoud El-Shahat
- Photochemistry Department, Chemical Industries Research Division, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|